植物根际土壤酶对重金属污染的响应机制研究综述

蒲生彦, 王宇, 陈文英, 刘世宾. 植物根际土壤酶对重金属污染的响应机制研究综述[J]. 生态毒理学报, 2020, 15(4): 11-20. doi: 10.7524/AJE.1673-5897.20191117001
引用本文: 蒲生彦, 王宇, 陈文英, 刘世宾. 植物根际土壤酶对重金属污染的响应机制研究综述[J]. 生态毒理学报, 2020, 15(4): 11-20. doi: 10.7524/AJE.1673-5897.20191117001
Pu Shengyan, Wang Yu, Chen Wenying, Liu Shibin. Review on the Mechanism of Plant Rhizosphere Soil Enzyme Response to Heavy Metal Pollution[J]. Asian Journal of Ecotoxicology, 2020, 15(4): 11-20. doi: 10.7524/AJE.1673-5897.20191117001
Citation: Pu Shengyan, Wang Yu, Chen Wenying, Liu Shibin. Review on the Mechanism of Plant Rhizosphere Soil Enzyme Response to Heavy Metal Pollution[J]. Asian Journal of Ecotoxicology, 2020, 15(4): 11-20. doi: 10.7524/AJE.1673-5897.20191117001

植物根际土壤酶对重金属污染的响应机制研究综述

    作者简介: 蒲生彦(1981-),男,博士(后),教授,博士生导师,研究方向为生态环境基准和水土污染界面过程与协同修复,E-mail:pushengyan@gmail.com,pushengyan13@cdut.edu.cn
    通讯作者: 蒲生彦, E-mail: pushengyan13@cdut.edu.cn
  • 基金项目:

    国家自然科学基金资助项目(41772264)

  • 中图分类号: X171.5

Review on the Mechanism of Plant Rhizosphere Soil Enzyme Response to Heavy Metal Pollution

    Corresponding author: Pu Shengyan, pushengyan13@cdut.edu.cn
  • Fund Project:
  • 摘要: 土壤酶是生态系统物质循环和能量流动过程中最活跃的生物活性物质,其活性是表征土壤质量好坏的一项重要生化指标。相比非根际土壤,根际土壤中的酶除来自微生物外,还可经由植物根部分泌。根际土壤酶活性更能体现整个土壤生态系统的物质循环过程。近年,重金属污染对植物根际土壤酶活性的影响引起了研究人员的广泛关注。在重金属的胁迫下,土壤酶活性会上升或下降,也可能无显著变化。低浓度的重金属能促进酶活性位点与底物的配合,使酶活性得以提升;通过结合酶分子上的基团或占据酶活性位点,重金属也能抑制酶的催化功能,从而降低酶的活性。本文通过大量文献调研,较系统地回顾和总结了根际土壤酶对重金属污染响应的研究现状和最新进展,探讨了重金属作用于根际土壤酶的主要影响途径,并对未来研究中应重点关注的方向进行了展望。
  • 加载中
  • 纪小凤, 郑娜, 王洋, 等. 中国城市土壤重金属污染研究现状及展望[J]. 土壤与作物, 2016, 5(1):42-47

    Ji X F, Zheng N, Wang Y, et al. Heavy metal contamination of urban soils in China:Recent advances and prospects[J]. Soil and Crops, 2016, 5(1):42-47(in Chinese)

    Chen H, Teng Y, Lu S, et al. Contamination features and health risk of soil heavy metals in China[J]. Science of the Total Environment, 2015, 512:143-153
    Teng Y, Ni S, Wang J, et al. A geochemical survey of trace elements in agricultural and non-agricultural topsoil in Dexing Area, China[J]. Journal of Geochemical Exploration, 2010, 104(3):118-127
    刘善江, 夏雪, 陈桂梅, 等. 土壤酶的研究进展[J]. 中国农学通报, 2011, 27(21):1-7

    Liu S J, Xue X, Chen G M, et al. Study progress on functions and affecting factors of soil enzymes[J]. Chinese Agricultural Science Bulletin, 2011, 27(21):1-7(in Chinese)

    Yao X H, Min H, Lu Z H, et al. Influence of acetamiprid on soil enzymatic activities and respiration[J]. European Journal of Soil Biology, 2006, 42(2):120-126
    Acosta-Martinez V, Cano A, Johnson J. Simultaneous determination of multiple soil enzyme activities for soil health-biogeochemical indices[J]. Applied Soil Ecology, 2018, 126:121-128
    Nannipieri P, Trasar-Cepeda C, Dick R P. Soil enzyme activity:A brief history and biochemistry as a basis for appropriate interpretations and meta-analysis[J]. Biology and Fertility of Soils, 2018, 54(1):11-19
    Hiltner L, Bakteriol Z. Vber neuere erfahrungen und probleme auf dem debiete der bodenbakteriologie unter besonderer berucksichtigung der grundungung und brache[J]. Arbeiten der Deutschen Landwirtschaftlichen Gesellschaft, 1904, 98:59-78
    Kuzyakov Y, Razavi B S. Rhizosphere size and shape:Temporal dynamics and spatial stationarity[J]. Soil Biology & Biochemistry, 2019, 135:343-360
    Belnap J, Hawkes C V, Firestone M K. Boundaries in miniature:Two examples from soil[J]. BioScience, 2003, 53(8):739-749
    Dick R P. Soil enzyme activities as indicators of soil quality[J]. Soil Science Society of America Journal, 1994, 58:107-124
    Liu S, Razavi B S, Xu S, et al. Spatio-temporal patterns of enzyme activities after manure application reflect mechanisms of niche differentiation between plants and microorganisms[J]. Soil Biology & Biochemistry, 2017, 112:100-109
    Duan C, Fang L, Yang C, et al. Reveal the response of enzyme activities to heavy metals through in situ zymography[J]. Ecotoxicology and Environmental Safety, 2018, 156:106-115
    Marschner P, Marhan S, Kandeler E, et al. Microscale distribution and function of soil microorganisms in the interface between rhizosphere and detritusphere[J]. Soil Biology & Biochemistry, 2012, 49:174-183
    丁巧蓓, 晁元卿, 王诗忠, 等. 根际微生物群落多样性在重金属土壤修复中的研究[J]. 华南师范大学学报:自然科学版, 2016, 48(2):1-12

    Ding Q B, Chao Y Q, Wang S Z, et al. Research on function of rhizosphere microbial diversity in phytoremediation of heavy metal polluted soils[J]. Journal of South China Normal University:Natural Science Edition, 2016, 48(2):1-12(in Chinese)

    Mapelli F, Marasco R, Fusi M, et al. The stage of soil development modulates rhizosphere effect along a high arctic desert chronosequence[J]. ISME Journal, 2018, 12(5):1188-1198
    陈怀满, 朱永官, 董元华, 等. 环境土壤学[M]. 北京:科学出版社, 2018:72-75
    Marschner H. Mineral nutrition in higher plants[J]. Journal of Ecology, 1986, 76(4):1250
    Xu Z, Yu G, Zhang X, et al. The variations in soil microbial communities, enzyme activities and their relationships with soil organic matter decomposition along the northern slope of Changbai Mountain[J]. Applied Soil Ecology, 2015, 86(86):19-29
    Spohn M, Kuzyakov Y. Distribution of microbial and root-derived phosphatase activities in the rhizosphere depending on P availability and C allocation-coupling soil zymography with 14C imaging[J]. Soil Biology & Biochemistry, 2013, 67(3):106-113
    Aon M, Colaneri A.Ⅱ. Temporal and spatial evolution of enzymatic activities and physico-chemical properties in an agricultural soil[J]. Applied Soil Ecology, 2001, 18(3):255-270
    Magnuson T S, Crawford D. Comparison of extracellular peroxidase and esterase deficient mutants of Streptomyces viridosporus T7A[J]. Applied and Environmental Microbiology, 1992, 58(3):1070-1072
    Lee Y S, Nguyen X H, Naing K W, et al. Role of lytic enzymes secreted by Lysobacter capsici YS1215 in the control of root-knot nematode of tomato plants[J]. Indian Journal of Microbiology, 2015, 55(1):74-80
    Spohn M, Kuzyakov Y. Spatial and temporal dynamics of hotspots of enzyme activity in soil as affected by living and dead roots-A soil zymography analysis[J]. Plant and Soil, 2014, 379(1-2):67-77
    Giles C, Dupuy L, Boitt G, et al. Root development impacts on the distribution of phosphatase activity:Improvements in quantification using soil zymography[J]. Soil Biology & Biochemistry, 2018, 116:158-166
    Tischer A, Sehl L, Meyer U N, et al. Land-use intensity shapes kinetics of extracellular enzymes in rhizosphere soil of agricultural grassland plant species[J]. Plant Soil, 2019, 437(1-2):215-239
    Richardson A E, Hadobas P A, Hayes J E. Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate[J]. The Plant Journal, 2001, 25(6):641-649
    Sanchez-Hernandez J C, Del Pino J N, Capowiez Y, et al. Soil enzyme dynamics in chlorpyrifos-treated soils under the influence of earthworms[J]. Science of the Total Environment, 2018, 612:1407-1416
    Kooij P W, Pullens J W, Boomsma J J, et al. Ant mediated redistribution of a xyloglucanase enzyme in fungus gardens of Acromyrmex echinatior[J]. BMC Microbiology, 2016, 16(1):81-89
    Rudolph N, Voss S, Moradi A B, et al. Spatio-temporal mapping of local soil pH changes induced by roots of lupin and soft-rush[J]. Plant and Soil, 2013, 369(1-2):669-680
    Shahsavari F, Khoshgoftarmanesh A H, Mirmohammady Maibody S A M, et al. The role of root plasma membrane ATPase and rhizosphere acidification in zinc uptake by two different Zn-deficiency-tolerant wheat cultivars in response to zinc and histidine availability[J]. Archives of Agronomy and Soil Science, 2019, 65(12):1646-1658
    Burns R G, DeForest J L, Marxsen J, et al. Soil enzymes in a changing environment:Current knowledge and future directions[J]. Soil Biology & Biochemistry, 2013, 58:216-234
    Steinweg J M, Dukes J S, Wallenstein M D. Modeling the effects of temperature and moisture on soil enzyme activity:Linking laboratory assays to continuous field data[J]. Soil Biology & Biochemistry, 2012, 55:85-92
    Ge T, Wei X, Razavi B S, et al. Stability and dynamics of enzyme activity patterns in the rice rhizosphere:Effects of plant growth and temperature[J]. Soil Biology & Biochemistry, 2017, 113:108-115
    Razavi B S, Hoang D T T, Blagodatskaya E, et al. Mapping the footprint of nematodes in the rhizosphere:Cluster root formation and spatial distribution of enzyme activities[J]. Soil Biology & Biochemistry, 2017, 115:213-220
    Wei X, Hu Y, Razavi B S, et al. Rare taxa of alkaline phosphomonoesterase-harboring microorganisms mediate soil phosphorus mineralization[J]. Soil Biology & Biochemistry, 2019, 131:62-70
    Allison S D, Vitousek P M. Responses of extracellular enzymes to simple and complex nutrient inputs[J]. Soil Biology & Biochemistry, 2005, 37(5):937-944
    Zhang Y, Sun C, Chen Z, et al. Stoichiometric analyses of soil nutrients and enzymes in a Cambisol soil treated with inorganic fertilizers or manures for 26 years[J]. Geoderma, 2019, 353:382-390
    杨良静, 何俊瑜, 任艳芳, 等. Cd胁迫对水稻根际土壤酶活和微生物的影响[J]. 贵州农业科学, 2009, 37(3):85-88

    Yang L J, He J Y, Ren Y F, et al. Effects of cadmium stress on microbes and enzyme activity in rice rhizosphere soil[J]. Agricultural Science in Guizhou, 2009, 37(3):85-88(in Chinese)

    邓代莉, 石清清, 薛圣炀, 等. 外源铅污染对紫色土中微生物酶活性的影响研究[J]. 环境污染与防治, 2018, 40(10):1095-1100

    Deng D L, Shi Q Q, Xue S Y, et al. Effects of exogenous heavy metal Pb on microbial enzyme activity in purple soil[J]. Environmental Pollution and Prevention, 2018, 40(10):1095-1100(in Chinese)

    翁娜, 韩潇. 重金属污染对土壤酶活性影响的研究进展[J]. 农业开发与装备, 2016(10):34-35 Weng N, Han X. Research progress on the effect of heavy metal pollution on soil enzyme activity[J]. Agricultural Development and Equipment, 2016

    (10):34-35(in Chinese)

    Chaperon S, Sauvé S. Toxicity interaction of metals (Ag, Cu, Hg, Zn) to urease and dehydrogenase activities in soils[J]. Soil Biology & Biochemistry, 2007, 39(9):2329-2338
    Könemann W H, Pieters M N. Confusion of concepts in mixture toxicology[J]. Food and Chemical Toxicology, 1996, 34(11-12):1025-1031
    Dudka S, Piotrowska M, Chlopecka A. Effect of elevated concentrations of Cd and Zn in soil on spring wheat yield and the metal contents of the plants[J]. Water, Air, Soil Pollution, 1994, 76(3-4):333-341
    任安芝, 高玉葆. 铅、镉、铬单一和复合污染对青菜种子萌发的生物学效应[J]. 生态学杂志, 2000, 19(1):19-22

    Ren A Z, Gao Y B. Effects of single and combinative pollutions of lead, cadmium and chromium on the germination of Brassica chinensis L.[J]. Journal of Ecology, 2000, 19(1):19-22(in Chinese)

    Bielińska E J, Kołodziej B, Turgut K, et al. The effect of common dandelion (Taraxacum officinale Web.) rhizosphere on heavy metal content and enzymatic activity of soil[J]. Acta Horticulturae, 2009, 826(826):245-250
    贾夏, 董岁明, 周春娟. 低含量Pb对Cd处理下冬小麦根际土壤氧化还原酶活性、BIF及C/N的影响[J]. 应用与环境生物学报, 2012, 18(6):917-923

    Jia X, Dong S M, Zhou C J. Effects of low doses of Pb on rhizosphere soil oxidoreductase activities, BIF, and C:N ratio of winter wheat seedlings under Cd[J]. Journal of Applied and Environmental Biology, 2012, 18(6):917-923(in Chinese)

    Kieloaho A J, Pihlatie M, Carrasco M D, et al. Stimulation of soil organic nitrogen pool:The effect of plant and soil organic matter degrading enzymes[J]. Soil Biology & Biochemistry, 2016, 96:97-106
    Dominguez J J A, Bacosa H P, Chien M F, et al. Enhanced degradation of polycyclic aromatic hydrocarbons (PAHs) in the rhizosphere of sudangrass (Sorghum×drummondii)[J]. Chemosphere, 2019, 234:789-795
    Hou Y, Liu X, Zhang X, et al. Effects of key components of S. triqueter root exudates on fractions and bioavailability of pyrene-lead co-contaminated soils[J]. International Journal of Environmental Science Technology, 2016, 13(3):1-10
    Gao M, Zhang Z, Song Z. Effects of di-n-butyl phthalate on rhizosphere and non-rhizosphere soil microbial communities at different growing stages of wheat[J]. Ecotoxicology and Environmental Safety, 2019, 174:658-666
    石清清, 邓代莉, 颜椿, 等. 纳米金属氧化物对土壤酶活性的影响研究进展[J]. 生态毒理学报, 2018, 13(2):50-59

    Shi Q Q, Deng D L, Yan C, et al. Review on effects of engineered nano-metal oxide particles on soil enzyme[J]. Asian Journal of Ecotoxicology, 2018, 13(2):50-59(in Chinese)

    You T, Liu D, Chen J, et al. Effects of metal oxide nanoparticles on soil enzyme activities and bacterial communities in two different soil types[J]. Journal of Soils Sediments, 2018, 18(1):211-221
    Raliya R, Tarafdar J C. ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in clusterbean (Cyamopsis tetragonoloba L.)[J]. Agricultural Research, 2013, 2(1):48-57
    Sillen W M A, Thijs S, Abbamondi G R, et al. Effects of silver nanoparticles on soil microorganisms and maize biomass are linked in the rhizosphere[J]. Soil Biology & Biochemistry, 2015, 91:14-22
    Wang Z, Tian H, Tan X, et al. Long-term As contamination alters soil enzyme functional stability in response to additional heat disturbance[J]. Chemosphere, 2019, 229:471-480
    尹大川, 邓勋, 宋小双, 等. Cd胁迫下外生菌根菌对樟子松生理指标和根际土壤酶的影响[J]. 生态学杂志, 2017, 36(11):3072-3078

    Yin D C, Deng X, Song X S, et al. Effects of ectomycorrhizal fungi on physiological indexes of Pinus sylvestris var. mongolica seedlings and soil enzyme activities under cadmium stress[J]. Journal of Ecology, 2017, 36(11):3072-3078(in Chinese)

    黄冬芬, 黄耿磊, 刘国道. 重金属Cd处理对柱花草根际土壤酶活性的影响[J]. 热带作物学报, 2011, 32(4):603-607

    Huang D F, Huang G L, Liu G D. Effects of cadmium on the soil enzyme activity of Stylosanthes at the rhizoshpere zones[J]. Journal of Tropical Crops, 2011, 32(4):603-607(in Chinese)

    El-Sonbaty S M, El-Hadedy D E. Combined effect of cadmium, lead, and UV rays on Bacillus cereus using comet assay and oxidative stress parameters[J]. Environmental Science and Pollution Research, 2015, 22:3400-3407
    Jadia C D, Fulekar M H. Phytoremediation of heavy metals:Recent techniques[J]. African Journal of Biotechnology, 2009, 8(6):921-928
    Stone L F. Physical, chemical, and biological changes in the rhizosphere and nutrient availability[J]. Journal of Plant Nutrition, 2006, 29(7):1327-1356
    White P J, Broadley M R. Biofortification of crops with seven mineral elements often lacking in human diets-iron, zinc, copper, calcium, magnesium, selenium and iodine[J]. New Phytologist, 2009, 182(1):49-84
    Jaillard B, Plassard C, Hinsinger P. Measurements of H+ Fluxes and Concentrations in the Rhizosphere[M]//Rengel Z. Handbook of Soil Acidity. Perth:University of Western Australia, 2003:231-266
  • 加载中
计量
  • 文章访问数:  5691
  • HTML全文浏览数:  5691
  • PDF下载数:  162
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-11-17

植物根际土壤酶对重金属污染的响应机制研究综述

    通讯作者: 蒲生彦, E-mail: pushengyan13@cdut.edu.cn
    作者简介: 蒲生彦(1981-),男,博士(后),教授,博士生导师,研究方向为生态环境基准和水土污染界面过程与协同修复,E-mail:pushengyan@gmail.com,pushengyan13@cdut.edu.cn
  • 1. 成都理工大学, 地质灾害防治与地质环境保护国家重点实验室, 成都 610059;
  • 2. 成都理工大学生态环境学院, 国家环境保护水土污染协同控制与联合修复重点实验室, 成都 610059;
  • 3. 中国环境科学研究院, 环境基准与风险评估国家重点实验室, 北京 100012
基金项目:

国家自然科学基金资助项目(41772264)

摘要: 土壤酶是生态系统物质循环和能量流动过程中最活跃的生物活性物质,其活性是表征土壤质量好坏的一项重要生化指标。相比非根际土壤,根际土壤中的酶除来自微生物外,还可经由植物根部分泌。根际土壤酶活性更能体现整个土壤生态系统的物质循环过程。近年,重金属污染对植物根际土壤酶活性的影响引起了研究人员的广泛关注。在重金属的胁迫下,土壤酶活性会上升或下降,也可能无显著变化。低浓度的重金属能促进酶活性位点与底物的配合,使酶活性得以提升;通过结合酶分子上的基团或占据酶活性位点,重金属也能抑制酶的催化功能,从而降低酶的活性。本文通过大量文献调研,较系统地回顾和总结了根际土壤酶对重金属污染响应的研究现状和最新进展,探讨了重金属作用于根际土壤酶的主要影响途径,并对未来研究中应重点关注的方向进行了展望。

English Abstract

参考文献 (63)

目录

/

返回文章
返回