磷酸三(1,3-二氯-2-丙基)酯导致小鼠神经毒性结局的潜在靶点研究

朱亭, 严骁, 邹忠杰, 王美欢, 唐斌, 许榕发, 郑晶, 麦碧娴, 于云江. 磷酸三(1,3-二氯-2-丙基)酯导致小鼠神经毒性结局的潜在靶点研究[J]. 生态毒理学报, 2021, 16(2): 158-166. doi: 10.7524/AJE.1673-5897.20200305001
引用本文: 朱亭, 严骁, 邹忠杰, 王美欢, 唐斌, 许榕发, 郑晶, 麦碧娴, 于云江. 磷酸三(1,3-二氯-2-丙基)酯导致小鼠神经毒性结局的潜在靶点研究[J]. 生态毒理学报, 2021, 16(2): 158-166. doi: 10.7524/AJE.1673-5897.20200305001
Zhu Ting, Yan Xiao, Zou Zhongjie, Wang Meihuan, Tang Bin, Xu Rongfa, Zheng Jing, Mai Bixian, Yu Yunjiang. A Potential Target Research of Neurotoxicity Induced by Tris(1,3-dichloro-2-propyl) Phosphate (TDCPP) in Mice[J]. Asian journal of ecotoxicology, 2021, 16(2): 158-166. doi: 10.7524/AJE.1673-5897.20200305001
Citation: Zhu Ting, Yan Xiao, Zou Zhongjie, Wang Meihuan, Tang Bin, Xu Rongfa, Zheng Jing, Mai Bixian, Yu Yunjiang. A Potential Target Research of Neurotoxicity Induced by Tris(1,3-dichloro-2-propyl) Phosphate (TDCPP) in Mice[J]. Asian journal of ecotoxicology, 2021, 16(2): 158-166. doi: 10.7524/AJE.1673-5897.20200305001

磷酸三(1,3-二氯-2-丙基)酯导致小鼠神经毒性结局的潜在靶点研究

    作者简介: 朱亭(1993-),女,博士,研究方向为环境污染与健康,E-mail:ztzoe_093@163.com
    通讯作者: 郑晶, E-mail: zhengjing@scies.org
  • 基金项目:

    广州市科技计划项目(201804010074);中央级公益性科研院所基本科研业务费专项资金资助项目(PM-zx703-201904-122);国家自然科学基金重点项目(41931290)

  • 中图分类号: X171.5

A Potential Target Research of Neurotoxicity Induced by Tris(1,3-dichloro-2-propyl) Phosphate (TDCPP) in Mice

    Corresponding author: Zheng Jing, zhengjing@scies.org
  • Fund Project:
  • 摘要: 磷酸三(1,3-二氯-2-丙基)酯(TDCPP)在环境介质及生物样本中被广泛检出,为探究TDCPP的潜在神经毒性以及作用机制,以C57BL/6小鼠为动物模型,考察经300 mg·kg-1·d-1的TDCPP持续染毒35 d后,小鼠大脑皮层神经功能相关因子及血清代谢组学的变化。结果显示,小鼠在TDCPP染毒35 d后,大脑皮层中5-羟色胺(5-HT)含量和乙酰胆碱酯酶(AChE)活性无显著变化(P>0.05),而促炎性细胞因子白细胞介素-6(IL-6)、白细胞介素-1βIL-1β)、肿瘤坏死因子-αTNF-α)、诱导型一氧化氮合酶(iNOS)及胶质细胞源性神经营养因子(GDNF)基因表达水平显著上调(P<0.05),神经营养因子-3(Ntf3)基因表达水平显著下调(P<0.05);同时,TDCPP染毒显著干扰了小鼠的代谢过程,引起异亮氨酸、谷氨酸、甘氨酸和β-葡萄糖等多种神经性疾病相关生物标志物的改变,以及氨基酸代谢、糖类代谢和脂质代谢紊乱。研究结果表明,TDCPP的神经毒性效应与神经炎症和神经元损伤相关因子转录水平改变,以及代谢失衡引起的信号紊乱有关。
  • 加载中
  • van der Veen I, de Boer J. Phosphorus flame retardants:Properties, production, environmental occurrence, toxicity and analysis[J]. Chemosphere, 2012, 88(10):1119-1153
    Wang Q W, Lam J C, Man Y C, et al. Bioconcentration, metabolism and neurotoxicity of the organophorous flame retardant 1,3-dichloro 2-propyl phosphate (TDCPP) to zebrafish[J]. Aquatic Toxicology, 2015, 158:108-115
    Betts K S. Exposure to TDCPP appears widespread[J]. Environmental Health Perspectives, 2013, 121(5):a150
    van den Eede N, Dirtu A C, Neels H, et al. Analytical developments and preliminary assessment of human exposure to organophosphate flame retardants from indoor dust[J]. Environment International, 2011, 37(2):454-461
    He C T, Zheng J, Qiao L, et al. Occurrence of organophosphorus flame retardants in indoor dust in multiple microenvironments of Southern China and implications for human exposure[J]. Chemosphere, 2015, 133:47-52
    Zheng X B, Sun R X, Qiao L, et al. Flame retardants on the surface of phones and personal computers[J]. Science of the Total Environment, 2017, 609:541-545
    Qiao L, Zheng X B, Zheng J, et al. Analysis of human hair to assess exposure to organophosphate flame retardants:Influence of hair segments and gender differences[J]. Environmental Research, 2016, 148:177-183
    Xu F C, Eulaers I, Alves A, et al. Human exposure pathways to organophosphate flame retardants:Associations between human biomonitoring and external exposure[J]. Environment International, 2019, 127:462-472
    Behl M, Hsieh J H, Shafer T J, et al. Use of alternative assays to identify and prioritize organophosphorus flame retardants for potential developmental and neurotoxicity[J]. Neurotoxicology and Teratology, 2015, 52(Pt B):181-193
    Wei G L, Li D Q, Zhuo M N, et al. Organophosphorus flame retardants and plasticizers:Sources, occurrence, toxicity and human exposure[J]. Environmental Pollution, 2015, 196:29-46
    Dishaw L V, Powers C M, Ryde I T, et al. Is the PentaBDE replacement, tris (1,3-dichloro-2-propyl) phosphate (TDCPP), a developmental neurotoxicant? Studies in PC12 cells[J]. Toxicology and Applied Pharmacology, 2011, 256(3):281-289
    王思敏, 李学彦, 周启星, 等. 三(1,3-二氯-2-丙基)磷酸酯对大鼠的神经毒性效应[J]. 生态毒理学报, 2019, 14(3):186-195

    Wang S M, Li X Y, Zhou Q X, et al. Tris(1,3-dichloro-2-propyl) phosphate (TDCPP) induced neurotoxic effects in rats[J]. Asian Journal of Ecotoxicology, 2019, 14(3):186-195(in Chinese)

    Nagana Gowda G A, Raftery D. Recent advances in NMR-based metabolomics[J]. Analytical Chemistry, 2017, 89(1):490-510
    Chahine L M, Stern M B, Chen-Plotkin A. Blood-based biomarkers for Parkinson's disease[J]. Parkinsonism & Related Disorders, 2014, 20(Suppl 1):S99-S103
    Peña-Bautista C, Roca M, Hervás D, et al. Plasma metabolomics in early Alzheime's disease patients diagnosed with amyloid biomarker[J]. Journal of Proteomics, 2019, 200:144-152
    Zheng P, Gao H C, Li Q, et al. Plasma metabonomics as a novel diagnostic approach for major depressive disorder[J]. Journal of Proteome Research, 2012, 11(3):1741-1748
    Block M L, Calderón-Garcidueñas L. Air pollution:Mechanisms of neuroinflammation and CNS disease[J]. Trends in Neurosciences, 2009, 32(9):506-516
    World Health Organization. Flame retardants:Tris(chloropropyl) phosphate and tris(2-chloroethyl) phosphate[R]. Geneva:World Health Organization, 1998
    Songa E A, Okonkwo J O. Recent approaches to improving selectivity and sensitivity of enzyme-based biosensors for organophosphorus pesticides:A review[J]. Talanta, 2016, 155:289-304
    Xu J, Hu X T, Khan H, et al. Converting solution viscosity to distance-readout on paper substrates based on enzyme-mediated alginate hydrogelation:Quantitative determination of organophosphorus pesticides[J]. Analytica Chimica Acta, 2019, 1071:1-7
    Bradley M, Rutkiewicz J, Mittal K, et al. In ovo exposure to organophosphorous flame retardants:Survival, development, neurochemical, and behavioral changes in white leghorn chickens[J]. Neurotoxicology and Teratology, 2015, 52(Pt B):228-235
    Li R W, Zhang L, Shi Q P, et al. A protective role of autophagy in TDCIPP-induced developmental neurotoxicity in zebrafish larvae[J]. Aquatic Toxicology, 2018, 199:46-54
    Yuan L L, Li J S, Zha J M, et al. Targeting neurotrophic factors and their receptors, but not cholinesterase or neurotransmitter, in the neurotoxicity of TDCPP in Chinese rare minnow adults (Gobiocypris rarus)[J]. Environmental Pollution, 2016, 208(Pt B):670-677
    Colombo E, Farina C. Astrocytes:Key regulators of neuroinflammation[J]. Trends in Immunology, 2016, 37(9):608-620
    Walker A K, Kavelaars A, Heijnen C J, et al. Neuroinflammation and comorbidity of pain and depression[J]. Pharmacological Reviews, 2014, 66(1):80-101
    Heneka M T, Carson M J, Khoury J E, et al. Neuroinflammation in Alzheimer's disease[J]. The Lancet Neurology, 2015, 14(4):388-405
    Lee Mosley R, Benner E J, Kadiu I, et al. Neuroinflammation, oxidative stress, and the pathogenesis of Parkinson's disease[J]. Clinical Neuroscience Research, 2006, 6(5):261-281
    Pathare G, Anderegg M, Albano G, et al. Elevated FGF23 levels in mice lacking the thiazide-sensitive NaCl cotransporter (NCC)[J]. Scientific Reports, 2018, 8(1):3590
    MacDonald K, Krishnan A, Cervenka E, et al. Biomarkers for major depressive and bipolar disorders using metabolomics:A systematic review[J]. American Journal of Medical Genetics Part B, Neuropsychiatric Genetics, 2019, 180(2):122-137
    Baranyi A, Meinitzer A, Rothenhäusler H B, et al. Metabolomics approach in the investigation of depression biomarkers in pharmacologically induced immune-related depression[J]. PLoS One, 2018, 13(11):e0208238
    Heales S J R, Bolaños J P, Stewart V C, et al. Nitric oxide, mitochondria and neurological disease[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1999, 1410(2):215-228
    Xu C J, Klunk W E, Kanfer J N, et al. Phosphocreatine-dependent glutamate uptake by synaptic vesicles[J]. Journal of Biological Chemistry, 1996, 271(23):13435-13440
    Sethi S, Pedrini M, Rizzo L B, et al.1H-NMR, 1H-NMR T2-edited, and 2D-NMR in bipolar disorder metabolic profiling[J]. International Journal of Bipolar Disorders, 2017, 5(1):23
    Lan M J, McLoughlin G A, Griffin J L, et al. Metabonomic analysis identifies molecular changes associated with the pathophysiology and drug treatment of bipolar disorder[J]. Molecular Psychiatry, 2009, 14(3):269-279
    Fenili D, Brown M, Rappaport R, et al. Properties of scyllo-inositol as a therapeutic treatment of AD-like pathology[J]. Journal of Molecular Medicine, 2007, 85(6):603-611
    刘燕燕, 曾新安, 朱思明, 等. 甜菜碱的生理功能与药物活性[J]. 现代食品科技, 2008, 24(1):96-100

    Liu Y Y, Zeng X A, Zhu S M, et al. Physiological functions and pharmacological activities of betaine[J]. Modern Food Science and Technology, 2008, 24(1):96-100(in Chinese)

  • 加载中
计量
  • 文章访问数:  2272
  • HTML全文浏览数:  2272
  • PDF下载数:  88
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-03-05
朱亭, 严骁, 邹忠杰, 王美欢, 唐斌, 许榕发, 郑晶, 麦碧娴, 于云江. 磷酸三(1,3-二氯-2-丙基)酯导致小鼠神经毒性结局的潜在靶点研究[J]. 生态毒理学报, 2021, 16(2): 158-166. doi: 10.7524/AJE.1673-5897.20200305001
引用本文: 朱亭, 严骁, 邹忠杰, 王美欢, 唐斌, 许榕发, 郑晶, 麦碧娴, 于云江. 磷酸三(1,3-二氯-2-丙基)酯导致小鼠神经毒性结局的潜在靶点研究[J]. 生态毒理学报, 2021, 16(2): 158-166. doi: 10.7524/AJE.1673-5897.20200305001
Zhu Ting, Yan Xiao, Zou Zhongjie, Wang Meihuan, Tang Bin, Xu Rongfa, Zheng Jing, Mai Bixian, Yu Yunjiang. A Potential Target Research of Neurotoxicity Induced by Tris(1,3-dichloro-2-propyl) Phosphate (TDCPP) in Mice[J]. Asian journal of ecotoxicology, 2021, 16(2): 158-166. doi: 10.7524/AJE.1673-5897.20200305001
Citation: Zhu Ting, Yan Xiao, Zou Zhongjie, Wang Meihuan, Tang Bin, Xu Rongfa, Zheng Jing, Mai Bixian, Yu Yunjiang. A Potential Target Research of Neurotoxicity Induced by Tris(1,3-dichloro-2-propyl) Phosphate (TDCPP) in Mice[J]. Asian journal of ecotoxicology, 2021, 16(2): 158-166. doi: 10.7524/AJE.1673-5897.20200305001

磷酸三(1,3-二氯-2-丙基)酯导致小鼠神经毒性结局的潜在靶点研究

    通讯作者: 郑晶, E-mail: zhengjing@scies.org
    作者简介: 朱亭(1993-),女,博士,研究方向为环境污染与健康,E-mail:ztzoe_093@163.com
  • 1. 中国科学院广州地球化学研究所, 有机地球化学国家重点实验室, 广州 510640;
  • 2. 生态环境部华南环境科学研究所, 国家环境保护环境污染健康风险评价重点实验室, 广州 510655;
  • 3. 中国科学院大学, 北京 100049;
  • 4. 广东药科大学中药学院, 广州 510006
基金项目:

广州市科技计划项目(201804010074);中央级公益性科研院所基本科研业务费专项资金资助项目(PM-zx703-201904-122);国家自然科学基金重点项目(41931290)

摘要: 磷酸三(1,3-二氯-2-丙基)酯(TDCPP)在环境介质及生物样本中被广泛检出,为探究TDCPP的潜在神经毒性以及作用机制,以C57BL/6小鼠为动物模型,考察经300 mg·kg-1·d-1的TDCPP持续染毒35 d后,小鼠大脑皮层神经功能相关因子及血清代谢组学的变化。结果显示,小鼠在TDCPP染毒35 d后,大脑皮层中5-羟色胺(5-HT)含量和乙酰胆碱酯酶(AChE)活性无显著变化(P>0.05),而促炎性细胞因子白细胞介素-6(IL-6)、白细胞介素-1βIL-1β)、肿瘤坏死因子-αTNF-α)、诱导型一氧化氮合酶(iNOS)及胶质细胞源性神经营养因子(GDNF)基因表达水平显著上调(P<0.05),神经营养因子-3(Ntf3)基因表达水平显著下调(P<0.05);同时,TDCPP染毒显著干扰了小鼠的代谢过程,引起异亮氨酸、谷氨酸、甘氨酸和β-葡萄糖等多种神经性疾病相关生物标志物的改变,以及氨基酸代谢、糖类代谢和脂质代谢紊乱。研究结果表明,TDCPP的神经毒性效应与神经炎症和神经元损伤相关因子转录水平改变,以及代谢失衡引起的信号紊乱有关。

English Abstract

参考文献 (36)

返回顶部

目录

/

返回文章
返回