磷酸三(1,3-二氯-2-丙基)酯导致小鼠神经毒性结局的潜在靶点研究
A Potential Target Research of Neurotoxicity Induced by Tris(1,3-dichloro-2-propyl) Phosphate (TDCPP) in Mice
-
摘要: 磷酸三(1,3-二氯-2-丙基)酯(TDCPP)在环境介质及生物样本中被广泛检出,为探究TDCPP的潜在神经毒性以及作用机制,以C57BL/6小鼠为动物模型,考察经300 mg·kg-1·d-1的TDCPP持续染毒35 d后,小鼠大脑皮层神经功能相关因子及血清代谢组学的变化。结果显示,小鼠在TDCPP染毒35 d后,大脑皮层中5-羟色胺(5-HT)含量和乙酰胆碱酯酶(AChE)活性无显著变化(P>0.05),而促炎性细胞因子白细胞介素-6(IL-6)、白细胞介素-1β(IL-1β)、肿瘤坏死因子-α(TNF-α)、诱导型一氧化氮合酶(iNOS)及胶质细胞源性神经营养因子(GDNF)基因表达水平显著上调(P<0.05),神经营养因子-3(Ntf3)基因表达水平显著下调(P<0.05);同时,TDCPP染毒显著干扰了小鼠的代谢过程,引起异亮氨酸、谷氨酸、甘氨酸和β-葡萄糖等多种神经性疾病相关生物标志物的改变,以及氨基酸代谢、糖类代谢和脂质代谢紊乱。研究结果表明,TDCPP的神经毒性效应与神经炎症和神经元损伤相关因子转录水平改变,以及代谢失衡引起的信号紊乱有关。
-
关键词:
- 磷酸三(1,3-二氯-2-丙基)酯 /
- 小鼠 /
- 神经毒性 /
- 代谢组学 /
- 生物标志物
Abstract: Tris(1,3-dichloro-2-propyl) phosphate (TDCPP) was widely detected in a variety of environmental media and biota samples. C57BL/6 mice were used as an animal model to study the potential neurotoxicity mechanisms caused by TDCPP. Changes of the neural function related factors in cerebral cortex and serum metabolomics in mice were investigated after continuous exposure to TDCPP at 300 mg·kg-1·d-1 for 35 d. The results showed that, after 35 d of TDCPP exposure, the concentrations of 5-hydroxytryptamine (5-HT) and activities of acetylcholinesterase (AChE) in the cerebral cortex had no significant change (P>0.05). Significant up-regulations of the gene expression levels of the proinflammatory cytokine interleukin-6 (IL-6), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), inducible nitric oxide synthase (iNOS) and glial cell line-derived neurotrophic factor (GDNF) were observed (P<0.05) in exposed mice. However, the gene expression level of neurotrophic factor-3 (Ntf3) was significantly down-regulated (P<0.05). Meanwhile, TDCPP exposure interfered with the metabolic process of amino acid metabolism, glycometabolism and lipid metabolism, leading to changes in the levels of biomarkers such as isoleucine, glutamate, glycine and β-glucose, which were associated with a variety of neurological diseases. The results showed that the neurotoxic effects of TDCPP were related to changes in the transcriptional levels of neuroinflammation and neuronal damage-related factors as well as the metabolic signal disorder caused by metabolic imbalance.-
Key words:
- tris(1,3-dichloro-2-propyl) phosphate /
- mouse /
- neurotoxicity /
- metabolomics /
- biomarkers
-
van der Veen I, de Boer J. Phosphorus flame retardants:Properties, production, environmental occurrence, toxicity and analysis[J]. Chemosphere, 2012, 88(10):1119-1153 Wang Q W, Lam J C, Man Y C, et al. Bioconcentration, metabolism and neurotoxicity of the organophorous flame retardant 1,3-dichloro 2-propyl phosphate (TDCPP) to zebrafish[J]. Aquatic Toxicology, 2015, 158:108-115 Betts K S. Exposure to TDCPP appears widespread[J]. Environmental Health Perspectives, 2013, 121(5):a150 van den Eede N, Dirtu A C, Neels H, et al. Analytical developments and preliminary assessment of human exposure to organophosphate flame retardants from indoor dust[J]. Environment International, 2011, 37(2):454-461 He C T, Zheng J, Qiao L, et al. Occurrence of organophosphorus flame retardants in indoor dust in multiple microenvironments of Southern China and implications for human exposure[J]. Chemosphere, 2015, 133:47-52 Zheng X B, Sun R X, Qiao L, et al. Flame retardants on the surface of phones and personal computers[J]. Science of the Total Environment, 2017, 609:541-545 Qiao L, Zheng X B, Zheng J, et al. Analysis of human hair to assess exposure to organophosphate flame retardants:Influence of hair segments and gender differences[J]. Environmental Research, 2016, 148:177-183 Xu F C, Eulaers I, Alves A, et al. Human exposure pathways to organophosphate flame retardants:Associations between human biomonitoring and external exposure[J]. Environment International, 2019, 127:462-472 Behl M, Hsieh J H, Shafer T J, et al. Use of alternative assays to identify and prioritize organophosphorus flame retardants for potential developmental and neurotoxicity[J]. Neurotoxicology and Teratology, 2015, 52(Pt B):181-193 Wei G L, Li D Q, Zhuo M N, et al. Organophosphorus flame retardants and plasticizers:Sources, occurrence, toxicity and human exposure[J]. Environmental Pollution, 2015, 196:29-46 Dishaw L V, Powers C M, Ryde I T, et al. Is the PentaBDE replacement, tris (1,3-dichloro-2-propyl) phosphate (TDCPP), a developmental neurotoxicant? Studies in PC12 cells[J]. Toxicology and Applied Pharmacology, 2011, 256(3):281-289 王思敏, 李学彦, 周启星, 等. 三(1,3-二氯-2-丙基)磷酸酯对大鼠的神经毒性效应[J]. 生态毒理学报, 2019, 14(3):186-195 Wang S M, Li X Y, Zhou Q X, et al. Tris(1,3-dichloro-2-propyl) phosphate (TDCPP) induced neurotoxic effects in rats[J]. Asian Journal of Ecotoxicology, 2019, 14(3):186-195(in Chinese)
Nagana Gowda G A, Raftery D. Recent advances in NMR-based metabolomics[J]. Analytical Chemistry, 2017, 89(1):490-510 Chahine L M, Stern M B, Chen-Plotkin A. Blood-based biomarkers for Parkinson's disease[J]. Parkinsonism & Related Disorders, 2014, 20(Suppl 1):S99-S103 Peña-Bautista C, Roca M, Hervás D, et al. Plasma metabolomics in early Alzheime's disease patients diagnosed with amyloid biomarker[J]. Journal of Proteomics, 2019, 200:144-152 Zheng P, Gao H C, Li Q, et al. Plasma metabonomics as a novel diagnostic approach for major depressive disorder[J]. Journal of Proteome Research, 2012, 11(3):1741-1748 Block M L, Calderón-Garcidueñas L. Air pollution:Mechanisms of neuroinflammation and CNS disease[J]. Trends in Neurosciences, 2009, 32(9):506-516 World Health Organization. Flame retardants:Tris(chloropropyl) phosphate and tris(2-chloroethyl) phosphate[R]. Geneva:World Health Organization, 1998 Songa E A, Okonkwo J O. Recent approaches to improving selectivity and sensitivity of enzyme-based biosensors for organophosphorus pesticides:A review[J]. Talanta, 2016, 155:289-304 Xu J, Hu X T, Khan H, et al. Converting solution viscosity to distance-readout on paper substrates based on enzyme-mediated alginate hydrogelation:Quantitative determination of organophosphorus pesticides[J]. Analytica Chimica Acta, 2019, 1071:1-7 Bradley M, Rutkiewicz J, Mittal K, et al. In ovo exposure to organophosphorous flame retardants:Survival, development, neurochemical, and behavioral changes in white leghorn chickens[J]. Neurotoxicology and Teratology, 2015, 52(Pt B):228-235 Li R W, Zhang L, Shi Q P, et al. A protective role of autophagy in TDCIPP-induced developmental neurotoxicity in zebrafish larvae[J]. Aquatic Toxicology, 2018, 199:46-54 Yuan L L, Li J S, Zha J M, et al. Targeting neurotrophic factors and their receptors, but not cholinesterase or neurotransmitter, in the neurotoxicity of TDCPP in Chinese rare minnow adults (Gobiocypris rarus)[J]. Environmental Pollution, 2016, 208(Pt B):670-677 Colombo E, Farina C. Astrocytes:Key regulators of neuroinflammation[J]. Trends in Immunology, 2016, 37(9):608-620 Walker A K, Kavelaars A, Heijnen C J, et al. Neuroinflammation and comorbidity of pain and depression[J]. Pharmacological Reviews, 2014, 66(1):80-101 Heneka M T, Carson M J, Khoury J E, et al. Neuroinflammation in Alzheimer's disease[J]. The Lancet Neurology, 2015, 14(4):388-405 Lee Mosley R, Benner E J, Kadiu I, et al. Neuroinflammation, oxidative stress, and the pathogenesis of Parkinson's disease[J]. Clinical Neuroscience Research, 2006, 6(5):261-281 Pathare G, Anderegg M, Albano G, et al. Elevated FGF23 levels in mice lacking the thiazide-sensitive NaCl cotransporter (NCC)[J]. Scientific Reports, 2018, 8(1):3590 MacDonald K, Krishnan A, Cervenka E, et al. Biomarkers for major depressive and bipolar disorders using metabolomics:A systematic review[J]. American Journal of Medical Genetics Part B, Neuropsychiatric Genetics, 2019, 180(2):122-137 Baranyi A, Meinitzer A, Rothenhäusler H B, et al. Metabolomics approach in the investigation of depression biomarkers in pharmacologically induced immune-related depression[J]. PLoS One, 2018, 13(11):e0208238 Heales S J R, Bolaños J P, Stewart V C, et al. Nitric oxide, mitochondria and neurological disease[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1999, 1410(2):215-228 Xu C J, Klunk W E, Kanfer J N, et al. Phosphocreatine-dependent glutamate uptake by synaptic vesicles[J]. Journal of Biological Chemistry, 1996, 271(23):13435-13440 Sethi S, Pedrini M, Rizzo L B, et al.1H-NMR, 1H-NMR T2-edited, and 2D-NMR in bipolar disorder metabolic profiling[J]. International Journal of Bipolar Disorders, 2017, 5(1):23 Lan M J, McLoughlin G A, Griffin J L, et al. Metabonomic analysis identifies molecular changes associated with the pathophysiology and drug treatment of bipolar disorder[J]. Molecular Psychiatry, 2009, 14(3):269-279 Fenili D, Brown M, Rappaport R, et al. Properties of scyllo-inositol as a therapeutic treatment of AD-like pathology[J]. Journal of Molecular Medicine, 2007, 85(6):603-611 刘燕燕, 曾新安, 朱思明, 等. 甜菜碱的生理功能与药物活性[J]. 现代食品科技, 2008, 24(1):96-100 Liu Y Y, Zeng X A, Zhu S M, et al. Physiological functions and pharmacological activities of betaine[J]. Modern Food Science and Technology, 2008, 24(1):96-100(in Chinese)
计量
- 文章访问数: 2272
- HTML全文浏览数: 2272
- PDF下载数: 88
- 施引文献: 0