纳米银在诺氟沙星胁迫下对黄孢原毛平革菌的毒物兴奋效应
Hormesis of Silver Nanoparticles on Phanerochaete chrysosporium under Norfloxacin Stress
-
摘要: 具有生物毒性的纳米银(AgNPs)在低浓度下能产生毒物兴奋效应,可以刺激细胞的活性增强。研究了在诺氟沙星胁迫下,AgNPs对黄孢原毛平革菌活性的影响,并通过探究AgNPs的迁移转化以及细胞外蛋白质浓度的变化,结合扫描电镜、X射线衍射以及傅里叶红外光谱分析进行机理探索。结果表明,AgNPs在0.001 mg·L-1和0.01 mg·L-1浓度下可以将黄孢原毛平革菌的细胞活性提高1.29倍与1.51倍,而在1.3 mg·L-1 AgNPs的刺激下,细胞活性降低64%,同时,相同浓度的Ag离子仅对细胞产生毒性抑制作用。低浓度AgNPs可以在溶液相与生物相之间进行迁移,触发细胞生物学特性的变化,刺激细胞在面临诺氟沙星胁迫时产生较多的胞外蛋白质来减轻毒性抑制作用。黄孢原毛平革菌的菌丝表面存在的羟基、醛、酮和巯基等官能团可以将Ag离子还原为纳米氯化银和硫化银,在细胞表面聚集。Abstract: Low concentrations of silver nanoparticles (AgNPs) with biological toxicity can produce hormesis and stimulate the activity of cells. The effect of AgNPs on the activity of Phanerochaete chrysosporium was studied under the stress of norfloxacin. The mechanism was explored by investigating the migration and transformation of AgNPs as well as the concentration change of extracellular protein, combined with scanning electron microscope (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The results showed that the cell activity of Phanerochaete chrysosporium increased by 1.29 and 1.51 times as the concentrations of AgNPs were 0.001 mg·L-1 and 0.01 mg·L-1; it decreased by 64% when the concentration was 1.3 mg·L-1. And the same concentration of Ag ion could only inhibit cell activity. Low concentration of AgNPs can migrate between the solution phase and the biological phase, thus triggering the change of biological characteristics of cells, and stimulating cells to produce more extracellular proteins under the stress of norfloxacin to reduce toxicity inhibition. The functional groups such as hydroxyl group, aldehyde group, ketone group, and sulfhydryl group on the mycelial surface of Phanerochaete chrysosporium can reduce silver ions to AgCl-NPs and AgS-NPs, which can aggregate on the cell surface.
-
Key words:
- silver nanoparticles /
- norfloxacin /
- Phanerochaete chrysosporium /
- hormesis
-
-
卢雪蓉, 冯晓丽, 刘朝莹, 等. 纳米银的迁移转化对环境微生物毒性的影响[J]. 生态毒理学报, 2018, 13(5):49-57 Lu X R, Feng X L, Liu Z Y, et al. Impact of migration and transformation of AgNPs on its toxicity towards environmental microorganism[J]. Asian Journal of Ecotoxicology, 2018, 13(5):49-57(in Chinese)
衣俊, 黄俊, 程金平. 纳米银在水环境中的环境行为和毒性效应研究进展[J]. 生态毒理学报, 2015, 10(1):101-109 Yi J, Huang J, Cheng J P. Review of environmental behavior and toxicity of silver nanoparticles in the aquatic environment[J]. Asian Journal of Ecotoxicology, 2015, 10(1):101-109(in Chinese)
Xiu Z M, Zhang Q B, Puppala H L, et al. Negligible particle-specific antibacterial activity of silver nanoparticles[J]. Nano Letters, 2012, 12(8):4271-4275 Arora S, Jain J, Rajwade J M, et al. Cellular responses induced by silver nanoparticles:In vitro studies[J]. Toxicology Letters, 2008, 179(2):93-100 Shin S H, Ye M K, Kim H S, et al. The effects of nano-silver on the proliferation and cytokine expression by peripheral blood mononuclear cells[J]. International Immunopharmacology, 2007, 7(13):1813-1818 Braydich-Stolle L, Hussain S, Schlager J J, et al. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells[J]. Toxicological Sciences, 2005, 88(2):412-419 Li H B, Chen J, Hou H J, et al. Sustained molecular oxygen activation by solid iron doped silicon carbide under microwave irradiation:Mechanism and application to norfloxacin degradation[J]. Water Research, 2017, 126:274-284 González-Plaza J J, Blau K, Milakovic' M, et al. Antibiotic-manufacturing sites are hot-spots for the release and spread of antibiotic resistance genes and mobile genetic elements in receiving aquatic environments[J]. Environment International, 2019, 130:104735 Kivits T, Broers H P, Beeltje H, et al. Presence and fate of veterinary antibiotics in age-dated groundwater in areas with intensive livestock farming[J]. Environmental Pollution, 2018, 241:988-998 Zhang Q Q, Ying G G, Pan C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China:Source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015, 49(11):6772-6782 汪皓琦, 董玉瑛, 汪灵伟, 等. 4种喹诺酮类抗生素对发光菌毒性作用研究[J]. 生态毒理学报, 2017, 12(3):453-459 Wang H Q, Dong Y Y, Wang L W, et al. The toxicity of four quinolones to Photobacterium phosphoreum[J]. Asian Journal of Ecotoxicology, 2017, 12(3):453-459(in Chinese)
Guo Z, Chen G Q, Zeng G M, et al. Determination of inequable fate and toxicity of Ag nanoparticles in a Phanerochaete chrysosporium biofilm system through different sulfide sources[J]. Environmental Science:Nano, 2016, 3(5):1027-1035 Chen A W, Zeng G M, Chen G Q, et al. Plasma membrane behavior, oxidative damage, and defense mechanism in Phanerochaete chrysosporium under cadmium stress[J]. Process Biochemistry, 2014, 49(4):589-598 Cornelis G, Kirby J K, Beak D, et al. A method for determination of retention of silver and cerium oxide manufactured nanoparticles in soils[J]. Environmental Chemistry, 2010, 7(3):298 Huang Z Z, Chen G Q, Zeng G M, et al. Polyvinyl alcohol-immobilized Phanerochaete chrysosporium and its application in the bioremediation of composite-polluted wastewater[J]. Journal of Hazardous Materials, 2015, 289:174-183 谭琼. 废水处理中复合纳米生物材料白腐真菌的生理响应机制研究[D]. 长沙:湖南大学, 2015:9-10 Tan Q. Physiological response mechanism of composite nano-biomaterial Phanerochaete chrysosporium in the wastewater[D]. Changsha:Hunan University, 2015:9 -10(in Chinese)
Deraman A M, Talib I A, Omar M R, et al. Microcrystallite dimension and total active surface area of carbon electrode from mixtures of pre-carbonized oil palm empty fruit bunches and green petroleum cokes[J]. Sains Malaysiana, 2010, 39(1):83-86 Chen G Q, Zou Z J, Zeng G M, et al. Coarsening of extracellularly biosynthesized cadmium crystal particles induced by thioacetamide in solution[J]. Chemosphere, 2011, 83(9):1201-1207 Lad U, Kale G M, Bryaskova R. Glucose oxidase encapsulated polyvinyl alcohol-silica hybrid films for an electrochemical glucose sensing electrode[J]. Analytical Chemistry, 2013, 85(13):6349-6355 Zuo Y N, Chen G Q, Zeng G M, et al. Transport, fate, and stimulating impact of silver nanoparticles on the removal of Cd(Ⅱ) by Phanerochaete chrysosporium in aqueous solutions[J]. Journal of Hazardous Materials, 2015, 285:236-244 Sanghi R, Verma P. A facile green extracellular biosynthesis of CdS nanoparticles by immobilized fungus[J]. Chemical Engineering Journal, 2009, 155(3):886-891 Verma D K, Hasan S H, Ranjan D, et al. Modified biomass of Phanerochaete chrysosporium immobilized on Luffa sponge for biosorption of hexavalent chromium[J]. International Journal of Environmental Science and Technology, 2014, 11(7):1927-1938 Calabrese E J. Overcompensation stimulation:A mechanism for hormetic effects[J]. Critical Reviews in Toxicology, 2001, 31(4-5):425-470 Wang Z, Xia T, Liu S J. Mechanisms of nanosilver-induced toxicological effects:More attention should be paid to its sublethal effects[J]. Nanoscale, 2015, 7(17):7470-7481 Nel A E, Mädler L, Velegol D, et al. Understanding biophysicochemical interactions at the nano-bio interface[J]. Nature Materials, 2009, 8(7):543-557 Xie X L, Sun T C, Xue J Z, et al. Targeted antibacterial therapy:Ag nanoparticles cluster with pH-triggered reassembly in targeting antimicrobial applications (Adv. Funct. Mater. 17/2020)[J]. Advanced Functional Materials, 2020, 30(17):2070106 Bae S, Hwang Y S, Lee Y J, et al. Effects of water chemistry on aggregation and soil adsorption of silver nanoparticles[J]. Environmental Health and Toxicology, 2013, 28:e2013006 Huang Z Z, Chen G Q, Zeng G M, et al. Toxicity mechanisms and synergies of silver nanoparticles in 2,4-dichlorophenol degradation by Phanerochaete chrysosporium[J]. Journal of Hazardous Materials, 2017, 321:37-46 Akaighe N, Maccuspie R I, Navarro D A, et al. Humic acid-induced silver nanoparticle formation under environmentally relevant conditions[J]. Environmental Science & Technology, 2011, 45(9):3895-3901 -

计量
- 文章访问数: 2389
- HTML全文浏览数: 2389
- PDF下载数: 112
- 施引文献: 0