微/纳米塑料对淡水生物毒性、机理及其影响因素研究进展

张帆, 王壮. 微/纳米塑料对淡水生物毒性、机理及其影响因素研究进展[J]. 生态毒理学报, 2021, 16(3): 95-106. doi: 10.7524/AJE.1673-5897.20200514001
引用本文: 张帆, 王壮. 微/纳米塑料对淡水生物毒性、机理及其影响因素研究进展[J]. 生态毒理学报, 2021, 16(3): 95-106. doi: 10.7524/AJE.1673-5897.20200514001
Zhang Fan, Wang Zhuang. Toxicity, Mechanism and Their Impact Factors of Micro/Nano Plastics to Freshwater Organisms: A Review[J]. Asian Journal of Ecotoxicology, 2021, 16(3): 95-106. doi: 10.7524/AJE.1673-5897.20200514001
Citation: Zhang Fan, Wang Zhuang. Toxicity, Mechanism and Their Impact Factors of Micro/Nano Plastics to Freshwater Organisms: A Review[J]. Asian Journal of Ecotoxicology, 2021, 16(3): 95-106. doi: 10.7524/AJE.1673-5897.20200514001

微/纳米塑料对淡水生物毒性、机理及其影响因素研究进展

    作者简介: 张帆(1995-),女,硕士研究生,研究方向为纳米生态毒理学,E-mail:zhangfan_nuist@163.com
    通讯作者: 王壮, E-mail: zhuang.wang@nuist.edu.cn
  • 基金项目:

    国家自然科学基金资助项目(31971522);江苏省自然科学基金资助项目(BK20191403)

  • 中图分类号: X171.5

Toxicity, Mechanism and Their Impact Factors of Micro/Nano Plastics to Freshwater Organisms: A Review

    Corresponding author: Wang Zhuang, zhuang.wang@nuist.edu.cn
  • Fund Project:
  • 摘要: 微/纳米塑料(MNPs)在全球水环境中被检出,其污染问题已引起科学界和公众的普遍关注。MNPs因其物理化学特性可对水环境生物产生不可预知的危害。本文综述了MNPs对不同营养级淡水生物(藻类、水溞和鱼类)毒理效应的研究进展,阐述了MNPs对淡水生物毒性的作用机理,重点评述了影响MNPs对淡水生物毒性的主要因素,包括直接因素(聚合物类型、元素掺杂、尺寸、颗粒形状和表面特征)和间接因素(单体和添加剂释放、其他污染物及水溶液化学条件),并指出了塑料生态毒理学今后的研究趋势。
  • 加载中
  • Lebreton L C M, van der Zwet J, Damsteeg J W, et al. River plastic emissions to the world's oceans[J]. Nature Communications, 2017, 8:15611
    Ng E L, Huerta Lwanga E, Eldridge S M, et al. An overview of microplastic and nanoplastic pollution in agroecosystems[J]. Science of the Total Environment, 2018, 627:1377-1388
    Thompson R C, Olsen Y, Mitchell R P, et al. Lost at sea:Where is all the plastic?[J]. Science, 2004, 304(5672):838
    Gigault J, Halle A T, Baudrimont M, et al. Current opinion:What is a nanoplastic?[J]. Environmental Pollution, 2018, 235:1030-1034
    陈彪, 汪羚, 李达, 等. 水环境中的微塑料及其生态效应[J]. 生态毒理学报, 2019, 14(1):30-40

    Chen B, Wang L, Li D, et al. Microplastics in water environment and their ecological effects[J]. Asian Journal of Ecotoxicology, 2019, 14(1):30-40(in Chinese)

    韩丽花, 李巧玲, 徐笠, 等. 大辽河流域土壤中微塑料的丰度与分布研究[J]. 生态毒理学报, 2020, 15(1):174-185

    Han L H, Li Q L, Xu L, et al. Abundance and distribution of microplastics of soils in Daliao River basin[J]. Asian Journal of Ecotoxicology, 2020, 15(1):174-185(in Chinese)

    Wright S L, Kelly F J. Plastic and human health:A micro issue?[J]. Environmental Science & Technology, 2017, 51(12):6634-6647
    de Sá L C, Oliveira M, Ribeiro F, et al. Studies of the effects of microplastics on aquatic organisms:What do we know and where should we focus our efforts in the future?[J]. Science of the Total Environment, 2018, 645:1029-1039
    蒲生彦, 张颖, 吕雪. 微塑料在土壤-地下水中的环境行为及其生态毒性研究进展[J]. 生态毒理学报, 2020, 15(1):44-55

    Pu S Y, Zhang Y, Lv X. Review on the environmental behavior and ecotoxicity of microplastics in soil-groundwater[J]. Asian Journal of Ecotoxicology, 2020, 15(1):44-55(in Chinese)

    丁剑楠, 张闪闪, 邹华, 等. 淡水环境中微塑料的赋存、来源和生态毒理效应研究进展[J]. 生态环境学报, 2017, 26(9):1619-1626

    Ding J N, Zhang S S, Zou H, et al. Occurrence, source and ecotoxicological effect of microplastics in freshwater environment[J]. Ecology and Environmental Sciences, 2017, 26(9):1619-1626(in Chinese)

    Besseling E, Quik J T K, Sun M Z, et al. Fate of nano- and microplastic in freshwater systems:A modeling study[J]. Environmental Pollution, 2017, 220:540-548
    Cai L, Hu L L, Shi H H, et al. Effects of inorganic ions and natural organic matter on the aggregation of nanoplastics[J]. Chemosphere, 2018, 197:142-151
    van Leeuwen C J, Bro-Rasmussen F, Feijtel T C J, et al. Risk assessment and management of new and existing chemicals[J]. Environmental Toxicology and Pharmacology, 1996, 2(4):243-299
    Prata J C, da Costa J P, Lopes I, et al. Effects of microplastics on microalgae populations:A critical review[J]. Science of the Total Environment, 2019, 665:400-405
    Casado M P, Macken A, Byrne H J. Ecotoxicological assessment of silica and polystyrene nanoparticles assessed by a multitrophic test battery[J]. Environment International, 2013, 51:97-105
    Besseling E, Wang B, Lürling M, et al. Nanoplastic affects growth of S. obliquus and reproduction of D. magna[J]. Environmental Science & Technology, 2014, 48(20):12336-12343
    Bhattacharya P, Lin S J, Turner J P, et al. Physical adsorption of charged plastic nanoparticles affects algal photosynthesis[J]. The Journal of Physical Chemistry C, 2010, 114(39):16556-16561
    Mao Y F, Ai H N, Chen Y, et al. Phytoplankton response to polystyrene microplastics:Perspective from an entire growth period[J]. Chemosphere, 2018, 208:59-68
    Lagarde F, Olivier O, Zanella M, et al. Microplastic interactions with freshwater microalgae:Hetero-aggregation and changes in plastic density appear strongly dependent on polymer type[J]. Environmental Pollution, 2016, 215:331-339
    Eltemsah Y S, Bøhn T. Acute and chronic effects of polystyrene microplastics on juvenile and adult Daphnia magna[J]. Environmental Pollution, 2019, 254(Pt A):112919
    Rehse S, Kloas W, Zarfl C. Short-term exposure with high concentrations of pristine microplastic particles leads to immobilisation of Daphnia magna[J]. Chemosphere, 2016, 153:91-99
    Liu Z Q, Yu P, Cai M Q, et al. Polystyrene nanoplastic exposure induces immobilization, reproduction, and stress defense in the freshwater cladoceran Daphnia pulex[J]. Chemosphere, 2019, 215:74-81
    Cui R X, Kim S W, An Y J. Polystyrene nanoplastics inhibit reproduction and induce abnormal embryonic development in the freshwater crustacean Daphnia galeata[J]. Scientific Reports, 2017, 7:12095
    Zhang W Y, Liu Z Q, Tang S K, et al. Transcriptional response provides insights into the effect of chronic polystyrene nanoplastic exposure on Daphnia pulex[J]. Chemosphere, 2020, 238:124563
    Bosker T, Olthof G, Vijver M G, et al. Significant decline of Daphnia magna population biomass due to microplastic exposure[J]. Environmental Pollution, 2019, 250:669-675
    Elizalde-Velázquez A, Carcano A M, Crago J, et al. Translocation, trophic transfer, accumulation and depuration of polystyrene microplastics in Daphnia magna and Pimephales promelas[J]. Environmental Pollution, 2020, 259:113937
    Scherer C, Brennholt N, Reifferscheid G, et al. Feeding type and development drive the ingestion of microplastics by freshwater invertebrates[J]. Scientific Reports, 2017, 7:17006
    Chae Y, Kim D, Kim S W, et al. Trophic transfer and individual impact of nano-sized polystyrene in a four-species freshwater food chain[J]. Scientific Reports, 2018, 8:284
    Malafaia G, de Souza A M, Pereira A C, et al. Developmental toxicity in zebrafish exposed to polyethylene microplastics under static and semi-static aquatic systems[J]. Science of the Total Environment, 2020, 700:134867
    Lei L L, Wu S Y, Lu S B, et al. Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans[J]. Science of the Total Environment, 2018, 619-620:1-8
    Parenti C C, Ghilardi A, Della Torre C, et al. Evaluation of the infiltration of polystyrene nanobeads in zebrafish embryo tissues after short-term exposure and the related biochemical and behavioural effects[J]. Environmental Pollution, 2019, 254:112947
    Qiang L Y, Cheng J P. Exposure to microplastics decreases swimming competence in larval zebrafish (Danio rerio)[J]. Ecotoxicology and Environmental Safety, 2019, 176:226-233
    Ding J N, Zhang S S, Razanajatovo R M, et al. Accumulation, tissue distribution, and biochemical effects of polystyrene microplastics in the freshwater fish red tilapia (Oreochromis niloticus)[J]. Environmental Pollution, 2018, 238:1-9
    Déniel M, Lagarde F, Caruso A, et al. Infrared spectroscopy as a tool to monitor interactions between nanoplastics and microalgae[J]. Analytical and Bioanalytical Chemistry, 2020, 412(18):4413-4422
    巩宁, 韩旭, 李佳璠, 等. 不同粒径聚乙烯微粒对大型溞的生物毒性效应[J]. 海洋环境科学, 2020, 39(2):169-176

    Gong N, Han X, Li J F, et al. Toxic effects of different particle size polyethylene microbeads on Daphnia magna[J]. Marine Environmental Science, 2020, 39(2):169-176(in Chinese)

    Liu Z Q, Jiao Y, Chen Q, et al. Two sigma and two mu class genes of glutathione S-transferase in the waterflea Daphnia pulex:Molecular characterization and transcriptional response to nanoplastic exposure[J]. Chemosphere, 2020, 248:126065
    Wu D L, Liu Z Q, Cai M Q, et al. Molecular characterisation of cytochrome P450 enzymes in waterflea (Daphnia pulex) and their expression regulation by polystyrene nanoplastics[J]. Aquatic Toxicology, 2019, 217:105350
    Liu Z Q, Cai M Q, Yu P, et al. Age-dependent survival, stress defense, and AMPK in Daphnia pulex after short-term exposure to a polystyrene nanoplastic[J]. Aquatic Toxicology, 2018, 204:1-8
    Liu Z Q, Cai M Q, Wu D L, et al. Effects of nanoplastics at predicted environmental concentration on Daphnia pulex after exposure through multiple generations[J]. Environmental Pollution, 2020, 256:113506
    Liu Z Q, Huang Y H, Jiao Y, et al. Polystyrene nanoplastic induces ROS production and affects the MAPK-HIF-1/NFkB-mediated antioxidant system in Daphnia pulex[J]. Aquatic Toxicology, 2020, 220:105420
    Hoang T C, Felix-Kim M. Microplastic consumption and excretion by fathead minnows (Pimephales promelas):Influence of particles size and body shape of fish[J]. Science of the Total Environment, 2020, 704:135433
    袁鹏, 胡献刚, 周启星. 微塑料在肠道的蓄积毒性及其生态危害研究进展[J]. 徐州工程学院学报:自然科学版, 2019, 34(4):54-58

    Yuan P, Hu X G, Zhou Q X. Progress on cumulative toxicity and ecological hazards of microplastics in intestinal tract[J]. Journal of Xuzhou Institute of Technology:Natural Sciences Edition, 2019, 34(4):54-58(in Chinese)

    Qiao R X, Sheng C, Lu Y F, et al. Microplastics induce intestinal inflammation, oxidative stress, and disorders of metabolome and microbiome in zebrafish[J]. Science of the Total Environment, 2019, 662:246-253
    Jin Y X, Xia J Z, Pan Z H, et al. Polystyrene microplastics induce microbiota dysbiosis and inflammation in the gut of adult zebrafish[J]. Environmental Pollution, 2018, 235:322-329
    Mattsson K, Ekvall M T, Hansson L A, et al. Altered behavior, physiology, and metabolism in fish exposed to polystyrene nanoparticles[J]. Environmental Science & Technology, 2015, 49(1):553-561
    Mattsson K, Johnson E V, Malmendal A, et al. Brain damage and behavioural disorders in fish induced by plastic nanoparticles delivered through the food chain[J]. Scientific Reports, 2017, 7:11452
    LeMoine C M R, Kelleher B M, Lagarde R, et al. Transcriptional effects of polyethylene microplastics ingestion in developing zebrafish (Danio rerio)[J]. Environmental Pollution, 2018, 243:591-600
    Karami A, Romano N, Galloway T, et al. Virgin microplastics cause toxicity and modulate the impacts of phenanthrene on biomarker responses in African catfish (Clarias gariepinus)[J]. Environmental Research, 2016, 151:58-70
    Pitt J A, Kozal J S, Jayasundara N, et al. Uptake, tissue distribution, and toxicity of polystyrene nanoparticles in developing zebrafish (Danio rerio)[J]. Aquatic Toxicology, 2018, 194:185-194
    Brun N R, Koch B E V, Varela M, et al. Nanoparticles induce dermal and intestinal innate immune system responses in zebrafish embryos[J]. Environmental Science:Nano, 2018, 5(4):904-916
    Greven A C, Merk T, Karagöz F, et al. Polycarbonate and polystyrene nanoplastic particles act as stressors to the innate immune system of fathead minnow (Pimephales promelas)[J]. Environmental Toxicology and Chemistry, 2016, 35(12):3093-3100
    Lu Y F, Zhang Y, Deng Y F, et al. Uptake and accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver[J]. Environmental Science & Technology, 2016, 50(7):4054-4060
    Brun N R, van Hage P, Hunting E R, et al. Polystyrene nanoplastics disrupt glucose metabolism and cortisol levels with a possible link to behavioural changes in larval zebrafish[J]. Communications Biology, 2019, 2:382
    Sökmen T Ö, Sulukan E, Türkoǧlu M, et al. Polystyrene nanoplastics (20 nm) are able to bioaccumulate and cause oxidative DNA damages in the brain tissue of zebrafish embryo (Danio rerio)[J]. NeuroToxicology, 2020, 77:51-59
    Mak C W, Ching-Fong Yeung K, Chan K M. Acute toxic effects of polyethylene microplastic on adult zebrafish[J]. Ecotoxicology and Environmental Safety, 2019, 182:109442
    Duan Z H, Duan X Y, Zhao S, et al. Barrier function of zebrafish embryonic chorions against microplastics and nanoplastics and its impact on embryo development[J]. Journal of Hazardous Materials, 2020, 395:122621
    张凯, 孙红文. (可降解)微塑料颗粒吸附有机污染物及对其生物有效性的影响[J]. 环境化学, 2018, 37(3):375-382

    Zhang K, Sun H W. Adsorption of organic pollutants on (degradable) microplastics and the influences on their bioavailability[J]. Environmental Chemistry, 2018, 37(3):375-382(in Chinese)

    Renzi M, Grazioli E, Blašković A. Effects of different microplastic types and surfactant-microplastic mixtures under fasting and feeding conditions:A case study on Daphnia magna[J]. Bulletin of Environmental Contamination and Toxicology, 2019, 103(3):367-373
    Mitrano D M, Beltzung A, Frehland S, et al. Synthesis of metal-doped nanoplastics and their utility to investigate fate and behaviour in complex environmental systems[J]. Nature Nanotechnology, 2019, 14(4):362-368
    Zhang F, Wang Z, Song L, et al. Aquatic toxicity of iron-oxide-doped microplastics to Chlorella pyrenoidosa and Daphnia magna[J]. Environmental Pollution, 2020, 257:113451
    Sjollema S B, Redondo-Hasselerharm P, Leslie H A, et al. Do plastic particles affect microalgal photosynthesis and growth?[J]. Aquatic Toxicology, 2016, 170:259-261
    Rist S, Baun A, Hartmann N B. Ingestion of micro- and nanoplastics in Daphnia magna-Quantification of body burdens and assessment of feeding rates and reproduction[J]. Environmental Pollution, 2017, 228:398-407
    Yang H, Xiong H R, Mi K H, et al. Toxicity comparison of nano-sized and micron-sized microplastics to goldfish Carassius auratus larvae[J]. Journal of Hazardous Materials, 2020, 388:122058
    Ding J N, Huang Y J, Liu S J, et al. Toxicological effects of nano- and micro-polystyrene plastics on red tilapia:Are larger plastic particles more harmless?[J]. Journal of Hazardous Materials, 2020, 396:122693
    Della Torre C, Bergami E, Salvati A, et al. Accumulation and embryotoxicity of polystyrene nanoparticles at early stage of development of sea urchin embryos Paracentrotus lividus[J]. Environmental Science & Technology, 2014, 48(20):12302-12311
    Andrady A L. Microplastics in the marine environment[J]. Marine Pollution Bulletin, 2011, 62(8):1596-1605
    Nolte T M, Hartmann N B, Kleijn J M, et al. The toxicity of plastic nanoparticles to green algae as influenced by surface modification, medium hardness and cellular adsorption[J]. Aquatic Toxicology, 2017, 183:11-20
    Manfra L, Rotini A, Bergami E, et al. Comparative ecotoxicity of polystyrene nanoparticles in natural seawater and reconstituted seawater using the rotifer Brachionus plicatilis[J]. Ecotoxicology and Environmental Safety, 2017, 145:557-563
    Qiao R X, Deng Y F, Zhang S H, et al. Accumulation of different shapes of microplastics initiates intestinal injury and gut microbiota dysbiosis in the gut of zebrafish[J]. Chemosphere, 2019, 236:124334
    Frydkjær C K, Iversen N, Roslev P. Ingestion and egestion of microplastics by the cladoceran Daphnia magna:Effects of regular and irregular shaped plastic and sorbed phenanthrene[J]. Bulletin of Environmental Contamination and Toxicology, 2017, 99(6):655-661
    Ogonowski M, Schür C, Jarsén Å, et al. The effects of natural and anthropogenic microparticles on individual fitness in Daphnia magna[J]. PLoS One, 2016, 11(5):e0155063
    杨婧婧, 徐笠, 陆安祥, 等. 环境中微(纳米)塑料的来源及毒理学研究进展[J]. 环境化学, 2018, 37(3):383-396

    Yang J J, Xu L, Lu A X, et al. Research progress on the sources and toxicology of micro (nano) plastics in environment[J]. Environmental Chemistry, 2018, 37(3):383-396(in Chinese)

    徐擎擎, 张哿, 邹亚丹, 等. 微塑料与有机污染物的相互作用研究进展[J]. 生态毒理学报, 2018, 13(1):40-49

    Xu Q Q, Zhang G, Zou Y D, et al. Interactions between microplastics and organic pollutants:Current status and knowledge gaps[J]. Asian Journal of Ecotoxicology, 2018, 13(1):40-49(in Chinese)

    Boyle D, Catarino A I, Clark N J, et al. Polyvinyl chloride (PVC) plastic fragments release Pb additives that are bioavailable in zebrafish[J]. Environmental Pollution, 2020, 263:114422
    Hermabessiere L, Dehaut A, Paul-Pont I, et al. Occurrence and effects of plastic additives on marine environments and organisms:A review[J]. Chemosphere, 2017, 182:781-793
    Lithner D, Larsson Å, Dave G. Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition[J]. Science of the Total Environment, 2011, 409(18):3309-3324
    Staniszewska M, Graca B, Nehring I. The fate of bisphenol A, 4-tert-octylphenol and 4-nonylphenol leached from plastic debris into marine water-Experimental studies on biodegradation and sorption on suspended particulate matter and nano-TiO2[J]. Chemosphere, 2016, 145:535-542
    Luo H W, Xiang Y H, He D Q, et al. Leaching behavior of fluorescent additives from microplastics and the toxicity of leachate to Chlorella vulgaris[J]. Science of the Total Environment, 2019, 678:1-9
    王子健. 塑料及塑料添加剂环境管理的政策分析[J]. 生态毒理学报, 2019, 14(3):1
    李富云, 贾芳丽, 涂海峰, 等. 海洋中微塑料的环境行为和生态影响[J]. 生态毒理学报, 2017, 12(6):11-18

    Li F Y, Jia F L, Tu H F, et al. Environmental behavior and ecological effects of microplastics in the ocean[J]. Asian Journal of Ecotoxicology, 2017, 12(6):11-18(in Chinese)

    陈启晴, 杨守业, Henner Hollert, 等. 微塑料污染的水生生态毒性与载体作用[J]. 生态毒理学报, 2018, 13(1):16-30

    Chen Q Q, Yang S Y, Hollert H, et al. The ecotoxicity and carrier function of microplastics in the aquatic environment[J]. Asian Journal of Ecotoxicology, 2018, 13(1):16-30(in Chinese)

    Lin W, Jiang R F, Xiong Y X, et al. Quantification of the combined toxic effect of polychlorinated biphenyls and nano-sized polystyrene on Daphnia magna[J]. Journal of Hazardous Materials, 2019, 364:531-536
    李广宇, 陈景文, 李雪花, 等. 几类有机污染物的微塑料/水分配系数的线性溶解能关系模型[J]. 生态毒理学报, 2017, 12(3):225-233

    Li G Y, Chen J W, Li X H, et al. LSER models for several classes of organic pollutants partitioning between microplastics and water[J]. Asian Journal of Ecotoxicology, 2017, 12(3):225-233(in Chinese)

    邹亚丹, 徐擎擎, 张哿, 等. 微塑料与农药污染的联合毒性作用研究进展[J]. 生态毒理学报, 2017, 12(4):25-33

    Zou Y D, Xu Q Q, Zhang G, et al. Review on the joint toxicity of microplastics and pesticide pollution[J]. Asian Journal of Ecotoxicology, 2017, 12(4):25-33(in Chinese)

    Wang F, Wang B, Qu H, et al. The influence of nanoplastics on the toxic effects, bioaccumulation, biodegradation and enantioselectivity of ibuprofen in freshwater algae Chlorella pyrenoidosa[J]. Environmental Pollution, 2020, 263:114593
    Qu H, Ma R X, Barrett H, et al. How microplastics affect chiral illicit drug methamphetamine in aquatic food chain? From green alga (Chlorella pyrenoidosa) to freshwater snail (Cipangopaludian cathayensis)[J]. Environment International, 2020, 136:105480
    Qiao R X, Lu K, Deng Y F, et al. Combined effects of polystyrene microplastics and natural organic matter on the accumulation and toxicity of copper in zebrafish[J]. Science of the Total Environment, 2019, 682:128-137
    Liu Y H, Wang Z, Wang S, et al. Ecotoxicological effects on Scenedesmus obliquus and Danio rerio co-exposed to polystyrene nano-plastic particles and natural acidic organic polymer[J]. Environmental Toxicology and Pharmacology, 2019, 67:21-28
    Lee W S, Cho H J, Kim E, et al. Bioaccumulation of polystyrene nanoplastics and their effect on the toxicity of Au ions in zebrafish embryos[J]. Nanoscale, 2019, 11(7):3173-3185
    Kim D, Chae Y, An Y J. Mixture toxicity of nickel and microplastics with different functional groups on Daphnia magna[J]. Environmental Science & Technology, 2017, 51(21):12852-12858
    Wang F, Wong C S, Chen D, et al. Interaction of toxic chemicals with microplastics:A critical review[J]. Water Research, 2018, 139:208-219
    贾雨薇, 赵建亮, 于旭彪, 等. 微塑料对疏水性有机污染物的生物富集影响研究进展[J]. 生态毒理学报, 2019, 14(6):1-10

    Jia Y W, Zhao J L, Yu X B, et al. Resent advances on the effects of microplastics on bioaccumulation of hydrophobic organic pollutants[J]. Asian Journal of Ecotoxicology, 2019, 14(6):1-10(in Chinese)

    王一飞, 李淼, 于海瀛, 等. 微塑料对环境中有机污染物吸附解吸的研究进展[J]. 生态毒理学报, 2019, 14(4):23-30

    Wang Y F, Li M, Yu H Y, et al. Research progress on the adsorption and desorption between microplastics and environmental organic pollutants[J]. Asian Journal of Ecotoxicology, 2019, 14(4):23-30(in Chinese)

    Huang B, Wei Z B, Yang L Y, et al. Combined toxicity of silver nanoparticles with hematite or plastic nanoparticles toward two freshwater algae[J]. Environmental Science & Technology, 2019, 53(7):3871-3879
    Gu W, Liu S, Chen L, et al. Single-cell RNA sequencing reveals size-dependent effects of polystyrene microplastics on immune and secretory cell populations from zebrafish intestines[J]. Environmental Science & Technology, 2020, 54(6):3417-3427
    Zhang F, Wang Z, Wang S, et al. Aquatic behavior and toxicity of polystyrene nanoplastic particles with different functional groups:Complex roles of pH, dissolved organic carbon and divalent cations[J]. Chemosphere, 2019, 228:195-203
    Chen W, Ouyang Z Y, Qian C, et al. Induced structural changes of humic acid by exposure of polystyrene microplastics:A spectroscopic insight[J]. Environmental Pollution, 2018, 233:1-7
    Zhang R, Silic M R, Schaber A, et al. Exposure route affects the distribution and toxicity of polystyrene nanoplastics in zebrafish[J]. Science of the Total Environment, 2020, 724:138065
    Kögel T, Bjorøy Ø, Toto B, et al. Micro- and nanoplastic toxicity on aquatic life:Determining factors[J]. Science of the Total Environment, 2020, 709:136050
    Kratina P, Watts T J, Green D S, et al. Interactive effects of warming and microplastics on metabolism but not feeding rates of a key freshwater detritivore[J]. Environmental Pollution, 2019, 255:113259
    Yang Y M, Guo Y W, O'Brien A M, et al. Biological responses to climate change and nanoplastics are altered in concert:Full-factor screening reveals effects of multiple stressors on primary producers[J]. Environmental Science & Technology, 2020, 54(4):2401-2410
    包旭辉, 闫振华, 陆光华. 我国淡水中微塑料的污染现状及生物效应研究[J]. 水资源保护, 2019, 35(6):115-123

    Bao X H, Yan Z H, Lu G H. Study on pollution status and biological effect of microplastics in fresh water of China[J]. Water Resources Protection, 2019, 35(6):115-123(in Chinese)

  • 加载中
计量
  • 文章访问数:  3453
  • HTML全文浏览数:  3453
  • PDF下载数:  218
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-05-14

微/纳米塑料对淡水生物毒性、机理及其影响因素研究进展

    通讯作者: 王壮, E-mail: zhuang.wang@nuist.edu.cn
    作者简介: 张帆(1995-),女,硕士研究生,研究方向为纳米生态毒理学,E-mail:zhangfan_nuist@163.com
  • 南京信息工程大学环境科学与工程学院, 南京 210044
基金项目:

国家自然科学基金资助项目(31971522);江苏省自然科学基金资助项目(BK20191403)

摘要: 微/纳米塑料(MNPs)在全球水环境中被检出,其污染问题已引起科学界和公众的普遍关注。MNPs因其物理化学特性可对水环境生物产生不可预知的危害。本文综述了MNPs对不同营养级淡水生物(藻类、水溞和鱼类)毒理效应的研究进展,阐述了MNPs对淡水生物毒性的作用机理,重点评述了影响MNPs对淡水生物毒性的主要因素,包括直接因素(聚合物类型、元素掺杂、尺寸、颗粒形状和表面特征)和间接因素(单体和添加剂释放、其他污染物及水溶液化学条件),并指出了塑料生态毒理学今后的研究趋势。

English Abstract

参考文献 (102)

目录

/

返回文章
返回