FTIR在环境毒理学研究中的应用

胡立新, 熊倩, 陈晓雯, 赵佳慧, 赵建亮, 刘有胜, 应光国. FTIR在环境毒理学研究中的应用[J]. 生态毒理学报, 2021, 16(3): 107-114. doi: 10.7524/AJE.1673-5897.20200511001
引用本文: 胡立新, 熊倩, 陈晓雯, 赵佳慧, 赵建亮, 刘有胜, 应光国. FTIR在环境毒理学研究中的应用[J]. 生态毒理学报, 2021, 16(3): 107-114. doi: 10.7524/AJE.1673-5897.20200511001
Hu Lixin, Xiong Qian, Chen Xiaowen, Zhao Jiahui, Zhao Jianliang, Liu Yousheng, Ying Guangguo. Application of Fourier Transform Infrared Spectroscopy in Environmental Toxicology[J]. Asian Journal of Ecotoxicology, 2021, 16(3): 107-114. doi: 10.7524/AJE.1673-5897.20200511001
Citation: Hu Lixin, Xiong Qian, Chen Xiaowen, Zhao Jiahui, Zhao Jianliang, Liu Yousheng, Ying Guangguo. Application of Fourier Transform Infrared Spectroscopy in Environmental Toxicology[J]. Asian Journal of Ecotoxicology, 2021, 16(3): 107-114. doi: 10.7524/AJE.1673-5897.20200511001

FTIR在环境毒理学研究中的应用

    作者简介: 胡立新(1993-),男,博士,研究方向为基于生物光谱技术的毒性测试,E-mail:lixin.hu@m.scnu.edu.cn
    通讯作者: 应光国, E-mail: guangguo.ying@m.scnu.edu.cn
  • 基金项目:

    国家自然科学基金资助项目(41907343)

  • 中图分类号: X171.5

Application of Fourier Transform Infrared Spectroscopy in Environmental Toxicology

    Corresponding author: Ying Guangguo, guangguo.ying@m.scnu.edu.cn
  • Fund Project:
  • 摘要: 傅里叶变换红外光谱(FTIR)作为一种常用化学分析方法,与多元统计分析方法相结合,可以识别生物分子的变化情况。红外光谱具有操作简单、快速、灵敏、样品无损等特点,逐渐在环境监测和污染物毒性效应方面被广泛应用。通过研究生物体受到外界胁迫时生物大分子在结构上的变化情况,可从分子水平揭示污染物的毒性效应及其毒性机制。笔者从FTIR在环境毒理学中的研究进展、技术优势,以及其在毒理学中的应用等方面进行了综述。
  • 加载中
  • Baker M J, Trevisan J, Bassan P, et al. Using Fourier transform IR spectroscopy to analyze biological materials[J]. Nature Protocols, 2014, 9(8):1771-1791
    Martin F L, Kelly J G, Llabjani V, et al. Distinguishing cell types or populations based on the computational analysis of their infrared spectra[J]. Nature Protocols, 2010, 5(11):1748-1760
    Gautam R, Vanga S, Ariese F, et al. Review of multidimensional data processing approaches for Raman and infrared spectroscopy[J]. EPJ Techniques and Instrumentation, 2015, 2:8
    Movasaghi Z, Rehman S, ur Rehman D I. Fourier transform infrared (FTIR) spectroscopy of biological tissues[J]. Applied Spectroscopy Reviews, 2008, 43(2):134-179
    Trevisan J, Angelov P P, Carmichael P L, et al. Extracting biological information with computational analysis of Fourier-transform infrared (FTIR) biospectroscopy datasets:Current practices to future perspectives[J]. The Analyst, 2012, 137(14):3202-3215
    Kong J, Yu S. Fourier transform infrared spectroscopic analysis of protein secondary structures[J]. Acta Biochimica et Biophysica Sinica, 2007, 39(8):549-559
    Yang H Y, Yang S N, Kong J L, et al. Obtaining information about protein secondary structures in aqueous solution using Fourier transform IR spectroscopy[J]. Nature Protocols, 2015, 10(3):382-396
    Duan P, Liu B S, Morais C L M, et al. 4-nonylphenol effects on rat testis and Sertoli cells determined by spectrochemical techniques coupled with chemometric analysis[J]. Chemosphere, 2019, 218:64-75
    Staroszczyk H, Sztuka K, Wolska J, et al. Interactions of fish gelatin and chitosan in uncrosslinked and crosslinked with EDC films:FT-IR study[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2014, 117:707-712
    Miller L M, Bourassa M W, Smith R J. FTIR spectroscopic imaging of protein aggregation in living cells[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2013, 1828(10):2339-2346
    Byler D M, Susi H. Examination of the secondary structure of proteins by deconvolved FTIR spectra[J]. Biopolymers, 1986, 25(3):469-487
    Wong T S, Roccatano D, Zacharias M, et al. A statistical analysis of random mutagenesis methods used for directed protein evolution[J]. Journal of Molecular Biology, 2006, 355(4):858-871
    Evans M S, Sander I M, Clark P L. Cotranslational folding promotes β-helix formation and avoids aggregation in vivo[J]. Journal of Molecular Biology, 2008, 383(3):683-692
    Suat K, Jois S. Design of β-turn based therapeutic agents[J]. Current Pharmaceutical Design, 2003, 9(15):1209-1224
    Guo Y L, Huang W C, Wu Y F, et al. Conformational changes of proteins and oil molecules in fish oil/water interfaces of fish oil-in-water emulsions stabilized by bovine serum albumin[J]. Food Chemistry, 2019, 274:402-406
    Zhang F Q, Huang Q, Yan J W, et al. Assessment of the effect of trichostatin A on HeLa cells through FT-IR spectroscopy[J]. Analytical Chemistry, 2015, 87(4):2511-2517
    Chen L, Holman H Y N, Hao Z, et al. Synchrotron infrared measurements of protein phosphorylation in living single PC12 cells during neuronal differentiation[J]. Analytical Chemistry, 2012, 84(9):4118-4125
    Yehuda S, Rabinovitz S, Carasso R L, et al. The role of polyunsaturated fatty acids in restoring the aging neuronal membrane[J]. Neurobiology of Aging, 2002, 23(5):843-853
    Nadtochenko V A, Rincon A G, Stanca S E, et al. Dynamics of E. coli membrane cell peroxidation during TiO2 photocatalysis studied by ATR-FTIR spectroscopy and AFM microscopy[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2005, 169(2):131-137
    Sinclair R G, McKay A F, Myers G S, et al. The infrared absorption spectra of unsaturated fatty acids and esters[J]. Journal of the American Chemical Society, 1952, 74(10):2578-2585
    Dias M, Naik A, Guy R H, et al. In vivo infrared spectroscopy studies of alkanol effects on human skin[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 69(3):1171-1175
    Dreissig I, Machill S, Salzer R, et al. Quantification of brain lipids by FTIR spectroscopy and partial least squares regression[J]. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 2009, 71(5):2069-2075
    Goates C Y, Knutson K. Enhanced permeation of polar compounds through human epidermis. Ⅰ. Permeability and membrane structural changes in the presence of short chain alcohols[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1994, 1195(1):169-179
    Mignolet A, Mathieu V, Goormaghtigh E. HTS-FTIR spectroscopy allows the classification of polyphenols according to their differential effects on the MDA-MB-231 breast cancer cell line[J]. Analyst, 2017, 142(8):1244-1257
    Furnkranz A, Leitinger N. Regulation of inflammatory responses by oxidized phospholipids:Structure-function relationships[J]. Current Pharmaceutical Design, 2004, 10(8):915-921
    Goormaghtigh E, Raussens V, Ruysschaert J M. Attenuated total reflection infrared spectroscopy of proteins and lipids in biological membranes[J]. Biochimica et Biophysica Acta (BBA)-Reviews on Biomembranes, 1999, 1422(2):105-185
    Ahmed M K, Amiama F, Sealy E A. Unique spectral features of DNA infrared bands of some microorganisms[J]. Spectroscopy, 2009, 23(5-6):291-297
    Taillandier E, Liquier J. Infrared Spectroscopy of DNA[M]//DNA Structures Part A:Synthesis and Physical Analysis of DNA. Amsterdam:Elsevier, 1992:307-335
    Zhang F Q, Huang Q, Yan J W, et al. Histone acetylation induced transformation of B-DNA to Z-DNA in cells probed through FT-IR spectroscopy[J]. Analytical Chemistry, 2016, 88(8):4179-4182
    Palaniappan P R, Vijayasundaram V. Arsenic-induced biochemical changes in Labeo rohita kidney:An FTIR study[J]. Spectroscopy Letters, 2009, 42(5):213-218
    Senthamilselvan D, Chezhian A, Kabilan N, et al. FTIR study of nickel and mercury induced biochemical changes in the muscles tissues of Lates calcarifer[J]. International Journal of Environmental Sciences, 2012, 2(4):1976-1983
    Kardas M, Gozen A G, de Severcan F. FTIR spectroscopy offers hints towards widespread molecular changes in cobalt-acclimated freshwater bacteria[J]. Aquatic Toxicology, 2014, 155:15-23
    Llabjani V, Hoti V, Pouran H M, et al. Bimodal responses of cells to trace elements:Insights into their mechanism of action using a biospectroscopy approach[J]. Chemosphere, 2014, 112:377-384
    Gupta A D, Karthikeyan S. Individual and combined toxic effect of nickel and chromium on biochemical constituents in E. coli using FTIR spectroscopy and principle component analysis[J]. Ecotoxicology and Environmental Safety, 2016, 130:289-294
    Hu X J, Liu Z X, Wang Y D, et al. Synchrotron FTIR spectroscopy reveals molecular changes in Escherichia coli upon Cu2+ exposure[J]. Nuclear Science and Techniques, 2016, 27(3):1-8
    Dao L, Beardall J, Heraud P. Characterisation of Pb-induced changes and prediction of Pb exposure in microalgae using infrared spectroscopy[J]. Aquatic Toxicology, 2017, 188:33-42
    Barber J L, Walsh M J, Hewitt R, et al. Low-dose treatment with polybrominated diphenyl ethers (PBDEs) induce altered characteristics in MCF-7 cells[J]. Mutagenesis, 2006, 21(5):351-360
    Llabjani V, Jones K C, Thomas G O, et al. Polybrominated diphenyl ether-associated alterations in cell biochemistry as determined by attenuated total reflection Fourier-transform infrared spectroscopy:A comparison with DNA-reactive and/or endocrine-disrupting agents[J]. Environmental Science & Technology, 2009, 43(9):3356-3364
    Llabjani V, Trevisan J, Jones K C, et al. Binary mixture effects by PBDE congeners (47, 153, 183, or 209) and PCB congeners (126 or 153) in MCF-7 cells:Biochemical alterations assessed by IR spectroscopy and multivariate analysis[J]. Environmental Science & Technology, 2010, 44(10):3992-3998
    Pang W, Li J, Ahmadzai A A, et al. Identification of benzopyrene-induced cell cycle-associated alterations in MCF-7 cells using infrared spectroscopy with computational analysis[J]. Toxicology, 2012, 298(1-3):24-29
    Gorrochategui E, Lacorte S, Tauler R, et al. Perfluoroalkylated substance effects in Xenopus laevis A6 kidney epithelial cells determined by ATR-FTIR spectroscopy and chemometric analysis[J]. Chemical Research in Toxicology, 2016, 29(5):924-932
    Cakmak G, Togan I, de Severcan F. 17β-estradiol induced compositional, structural and functional changes in rainbow trout liver, revealed by FT-IR spectroscopy:A comparative study with nonylphenol[J]. Aquatic Toxicology, 2006, 77(1):53-63
    Johnson C M, Pleshko N, Achary M, et al. Rapid and sensitive screening of 17β-estradiol estrogenicity using Fourier transform infrared imaging spectroscopy (FT-IRIS)[J]. Environmental Science & Technology, 2014, 48(8):4581-4587
    Dakhakhni T H, Raouf G A, Qusti S Y. Evaluation of the toxic effect of the herbicide 2,4-D on rat hepatocytes:An FT-IR spectroscopic study[J]. European Biophysics Journal, 2016, 45(4):311-320
    Strong R J, Halsall C J, Jones K C, et al. Infrared spectroscopy detects changes in an amphibian cell line induced by fungicides:Comparison of single and mixture effects[J]. Aquatic Toxicology, 2016, 178:8-18
    Xin X Y, Huang G H, Liu X, et al. Molecular toxicity of triclosan and carbamazepine to green algae Chlorococcum sp.:A single cell view using synchrotron-based Fourier transform infrared spectromicroscopy[J]. Environmental Pollution, 2017, 226:12-20
    Palaniappan P L, Pramod K S. FTIR study of the effect of nTiO2 on the biochemical constituents of gill tissues of zebrafish (Danio rerio)[J]. Food and Chemical Toxicology, 2010, 48(8-9):2337-2343
    Riding M J, Martin F L, Trevisan J, et al. Concentration-dependent effects of carbon nanoparticles in Gram-negative bacteria determined by infrared spectroscopy with multivariate analysis[J]. Environmental Pollution, 2012, 163:226-234
    Li J, Strong R, Trevisan J, et al. Dose-related alterations of carbon nanoparticles in mammalian cells detected using biospectroscopy:Potential for real-world effects[J]. Environmental Science & Technology, 2013, 47(17):10005-10011
    Novak S, Drobne D, Vaccari L, et al. Effect of ingested tungsten oxide (WOx) nanofibers on digestive gland tissue of Porcellio scaber (Isopoda, Crustacea):Fourier transform infrared (FTIR) imaging[J]. Environmental Science & Technology, 2013, 47(19):11284-11292
    Rhiem S, Riding M J, Baumgartner W, et al. Interactions of multiwalled carbon nanotubes with algal cells:Quantification of association, visualization of uptake, and measurement of alterations in the composition of cells[J]. Environmental Pollution, 2015, 196:431-439
    Li H, Gao Y, Li C, et al. A comparative study of the antibacterial mechanisms of silver ion and silver nanoparticles by Fourier transform infrared spectroscopy[J]. Vibrational Spectroscopy, 2016, 85:112-121
  • 加载中
计量
  • 文章访问数:  2879
  • HTML全文浏览数:  2879
  • PDF下载数:  80
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-05-11

FTIR在环境毒理学研究中的应用

    通讯作者: 应光国, E-mail: guangguo.ying@m.scnu.edu.cn
    作者简介: 胡立新(1993-),男,博士,研究方向为基于生物光谱技术的毒性测试,E-mail:lixin.hu@m.scnu.edu.cn
  • 1. 华南师范大学环境学院, 广州 510006;
  • 2. 广东省化学品污染与环境安全重点实验室&环境理论化学教育部重点实验室, 华南师范大学, 广州 510006;
  • 3. 国家环境保护环境污染健康风险评价重点实验室, 生态环境部华南环境科学研究所, 广州 510655
基金项目:

国家自然科学基金资助项目(41907343)

摘要: 傅里叶变换红外光谱(FTIR)作为一种常用化学分析方法,与多元统计分析方法相结合,可以识别生物分子的变化情况。红外光谱具有操作简单、快速、灵敏、样品无损等特点,逐渐在环境监测和污染物毒性效应方面被广泛应用。通过研究生物体受到外界胁迫时生物大分子在结构上的变化情况,可从分子水平揭示污染物的毒性效应及其毒性机制。笔者从FTIR在环境毒理学中的研究进展、技术优势,以及其在毒理学中的应用等方面进行了综述。

English Abstract

参考文献 (52)

目录

/

返回文章
返回