Mn对超富集植物青葙Cd毒害的缓解效应

程艳, 刘杰, 蒋萍萍, 俞果, 蒋旭升, 丁志凡, 雷玲, 张冰. Mn对超富集植物青葙Cd毒害的缓解效应[J]. 生态毒理学报, 2021, 16(1): 223-232. doi: 10.7524/AJE.1673-5897.20200803002
引用本文: 程艳, 刘杰, 蒋萍萍, 俞果, 蒋旭升, 丁志凡, 雷玲, 张冰. Mn对超富集植物青葙Cd毒害的缓解效应[J]. 生态毒理学报, 2021, 16(1): 223-232. doi: 10.7524/AJE.1673-5897.20200803002
Cheng Yan, Liu Jie, Jiang Pingping, Yu Guo, Jiang Xusheng, Ding Zhifan, Lei Ling, Zhang Bing. Mitigation Effect of Mn on Cd Toxicity in a Hyperaccumulator Celosia argentea Linn.[J]. Asian journal of ecotoxicology, 2021, 16(1): 223-232. doi: 10.7524/AJE.1673-5897.20200803002
Citation: Cheng Yan, Liu Jie, Jiang Pingping, Yu Guo, Jiang Xusheng, Ding Zhifan, Lei Ling, Zhang Bing. Mitigation Effect of Mn on Cd Toxicity in a Hyperaccumulator Celosia argentea Linn.[J]. Asian journal of ecotoxicology, 2021, 16(1): 223-232. doi: 10.7524/AJE.1673-5897.20200803002

Mn对超富集植物青葙Cd毒害的缓解效应

    作者简介: 程艳(1996-),女,硕士研究生,研究方向为土壤重金属污染植物修复,E-mail:2672469167@qq.com
    通讯作者: 刘杰, E-mail: liujie@glut.edu.cn
  • 基金项目:

    国家自然科学基金资助项目(41867022);广西高等学校高水平创新团队及卓越学者计划资助项目(桂财教函[2018]319号)

  • 中图分类号: X171.5

Mitigation Effect of Mn on Cd Toxicity in a Hyperaccumulator Celosia argentea Linn.

    Corresponding author: Liu Jie, liujie@glut.edu.cn
  • Fund Project:
  • 摘要: 为了探究Cd胁迫下青葙中Mn的生理作用,通过水培实验,研究在Cd暴露下(0、5和25 μmol·L-1)施加Mn(5、100和1 000 μmol·L-1)对青葙的干重、叶绿素含量、Cd含量和青葙根部不同区域实时Cd2+流速的影响。结果表明,提高Mn的供应水平可缓解Cd对青葙生长的抑制效应。在Cd浓度为5 μmol·L-1,施加1 000 μmol·L-1的Mn时,青葙的根、茎、叶干重和总干重分别增加了26.8%、11.8%、22.7%和21.19%。当Cd处理浓度为25 μmol·L-1时,1 000 μmol·L-1的Mn显著增加了青葙的叶绿素a和总叶绿素的含量(P<0.05)。相反地,Mn的添加显著减少了叶片中的丙二醛含量(P<0.05)。在Cd处理为5 μmol·L-1和25 μmol·L-1时,施加Mn使丙二醛含量降低了30%。这表明,Mn浓度的增加能够减少Cd对青葙的脂质过氧化伤害,保护叶绿素。Mn对青葙Cd积累的影响并不是严格的拮抗效应。在低Cd浓度(5 μmol·L-1)处理组中,Mn的添加对青葙Cd累积无显著影响(P>0.05)。在高浓度处理时(25 μmol·L-1 Cd),1 000 μmol·L-1的Mn显著降低了青葙根、茎和叶的Cd含量(P<0.05),较施加5 μmol·L-1 Mn处理分别降低了41.4%、41.5%和23.3%。这可能与Mn2+抑制青葙根系对Cd2+的吸收有关。非损伤微测技术(NMT)分析结果显示,Mn2+的添加显著抑制了根表面Cd2+的内流速率。当加入50 μmol·L-1的Mn时,距根尖200 μm的Cd2+的内流速率下降了71.4%。上述结果表明,施加Mn有效地缓解了Cd对青葙的毒性效应。
  • 加载中
  • 王娜, 魏样. 土壤重金属镉污染来源及其修复技术探究[J]. 环境与发展, 2019, 31(8):55-56

    , 58 Wang N, Wei Y. Study on sources of heavy metal cadmium pollution in soil and its remediation technology[J]. Environment and Development, 2019, 31(8):55-56, 58(in Chinese)

    陈志良, 莫大伦, 仇荣亮. 镉污染对生物有机体的危害及防治对策[J]. 环境保护科学, 2001, 27(4):37-39

    Chen Z L, Mo D L, Qiu R L. Biological damage of soil cadmium (Cd) pollution and its control[J]. Environmental Protection Science, 2001, 27(4):37-39(in Chinese)

    中华人民共和国国土资源部. 环境保护部和国土资源部发布全国土壤污染状况调查公报[J]. 资源与人居环境, 2014(4):26-27
    Arasimowicz-Jelonek M, Floryszak-Wieczorek J, Gwóźdź E A. The message of nitric oxide in cadmium challenged plants[J]. Plant Science, 2011, 181(5):612-620
    杨亚丽, 李友丽, 陈青云, 等. 土壤铅、镉、铬对蔬菜发育影响及迁移规律的研究进展[J]. 华北农学报, 2015, 30(S1):511-517

    Yang Y L, Li Y L, Chen Q Y, et al. The research progress of lead, cadmium and chromium in soil on the growth and migration of vegetables[J]. Acta Agriculturae Boreali-Sinica, 2015, 30(S1):511-517(in Chinese)

    张静, 赵秀侠, 汪翔, 等. 重金属镉(Cd)胁迫对水芹生长及生理特性的影响[J]. 植物生理学报, 2015, 51(11):1969-1974

    Zhang J, Zhao X X, Wang X, et al. Effects of cadmium stress on the growth and physiological property of Oenanthe javanica[J]. Plant Physiology Journal, 2015, 51(11):1969-1974(in Chinese)

    陈琪, 朱润良, 葛飞, 等. 两种典型粘土矿物对狐尾藻镉毒害效应的缓解作用[J]. 环境化学, 2017, 36(7):1596-1601

    Chen Q, Zhu R L, Ge F, et al. Alleviating effect of two clay minerals toward cadmium treated Myriophyllum verticillatum[J]. Environmental Chemistry, 2017, 36(7):1596-1601(in Chinese)

    Yang H Y, Wu W L, Li W L, et al. Accumulation and physiological response of cadmium in Hydrocharis dubia[J]. Biologia, 2017, 72(2):145-152
    Varun M, Ogunkunle C O, Sarathambal C, et al. Effect of cadmium uptake on growth and physiology of water lettuce[J]. Indian Journal of Weed Science, 2017, 49(1):102-104
    葛依立, 陈心胜, 黄道友, 等. 湿地植物水蓼(Polygonum hydropiper L.)对镉的富集特征及生理响应[J]. 生态毒理学报, 2020, 15(2):190-200

    Ge Y L, Chen X S, Huang D Y, et al. Accumulation characteristics and physiological responses of the wetland plant, Polygonum hydropiper L. to cadmium[J]. Asian Journal of Ecotoxicology, 2020, 15(2):190-200(in Chinese)

    秦晓凤, 徐瑞成, 王振华, 等. 锰锌铁氧体/锆钛酸铅复合陶瓷微结构及磁电性能研究[J]. 电子元件与材料, 2019, 38(8):20-28

    Qin X F, Xu R C, Wang Z H, et al. Microstructure and magnetoelectric properties of MZFO/PZT composite ceramics[J]. Electronic Components and Materials, 2019, 38(8):20-28(in Chinese)

    叶攀骅, 王洋, 刘可慧, 等. 改良剂对锰超富集植物短毛蓼锰吸收及抗氧化酶系统的影响[J]. 土壤, 2016, 48(1):109-116

    Ye P H, Wang Y, Liu K H, et al. Effects of mineral amendment on manganese absorption and antioxidant enzymes activities in hyperaccumulator Polygonum pubescens Blume[J]. Soils, 2016, 48(1):109-116(in Chinese)

    Li M S, Luo Y P, Su Z Y. Heavy metal concentrations in soils and plant accumulation in a restored manganese mineland in Guangxi, South China[J]. Environmental Pollution, 2007, 147(1):168-175
    徐莜, 杨益新, 李文华, 等. 锰离子浓度及其转运通道对水稻幼苗镉吸收转运特性的影响[J]. 农业环境科学学报, 2016, 35(8):1429-1435

    Xu Y, Yang Y X, Li W H, et al. Effects of manganese concentrations and transporters on uptake and translocation of cadmium in rice seedlings[J]. Journal of Agro-Environment Science, 2016, 35(8):1429-1435(in Chinese)

    Peng K J, Luo C L, You W X, et al. Manganese uptake and interactions with cadmium in the hyperaccumulator-Phytolacca Americana L.[J]. Journal of Hazardous Materials, 2008, 154(1-3):674-681
    Zornoza P, Sánchez-Pardo B, Carpena R O. Interaction and accumulation of manganese and cadmium in the manganese accumulator Lupinus albus[J]. Journal of Plant Physiology, 2010, 167(13):1027-1032
    Liu J, Yu G, Jiang P P, et al. Interaction of Mn and Cd during their uptake in Celosia argentea differs between hydroponic and soil systems[J]. Plant and Soil, 2020, 450(1-2):323-336
    Jarvis S C, Jones L H P, Hopper M J. Cadmium uptake from solution by plants and its transport from roots to shoots[J]. Plant and Soil, 1976, 44(1):179-191
    Cataldo D A, Garland T R, Wildung R E. Cadmium uptake kinetics in intact soybean plants[J]. Plant Physiology, 1983, 73(3):844-848
    Pal'ove-Balang P, Kisová A, Pavlovkin J, et al. Effect of manganese on cadmium toxicity in maize seedlings[J]. Plant, Soil and Environment, 2011, 52(4):143-149
    李明顺, 钟闱桢. 锰和镉单独及联合染毒对豇豆生长及叶片脂质过氧化的影响[J]. 环境与健康杂志, 2009, 26(5):431-434

    Li M S, Zhong W Z. Effect of manganese, cadmium and manganese-cadmium combined exposure on cowpea growth and leaf physiological parameters[J]. Journal of Environment and Health, 2009, 26(5):431-434(in Chinese)

    李然, 徐应明, 王林, 等. 不同锰处理对镉胁迫下2种油菜重金属累积和根系形态的影响[J]. 生态毒理学报, 2018, 13(2):140-148

    Li R, Xu Y M, Wang L, et al. Effects of different manganese treatments on heavy metals accumulation and root morphology of two cultivars of Brassica chinensis under cadmium stress[J]. Asian Journal of Ecotoxicology, 2018, 13(2):140-148(in Chinese)

    Huang Q N, An H, Yang Y J, et al. Effects of Mn-Cd antagonistic interaction on Cd accumulation and major agronomic traits in rice genotypes by different Mn forms[J]. Plant Growth Regulation, 2017, 82(2):317-331
    Liu J, Mo L Y, Zhang X H, et al. Simultaneous hyperaccumulation of cadmium and manganese in Celosia argentea Linn[J]. International Journal of Phytoremediation, 2018, 20(11):1106-1112
    于磊, 刘宗林, 徐宗艺, 等. NaCl胁迫对大豆生理特征的影响[J]. 安徽农业科学, 2019, 47(24):39-41

    Yu L, Liu Z L, Xu Z Y, et al. Physiological characteristics of soybean under NaCl stress[J]. Journal of Anhui Agricultural Sciences, 2019, 47(24):39-41(in Chinese)

    Karimi N, Jamali N, Ghaderian S M. Effects of cadmium and zinc on growth and metal accumulation of Mathiola flavida Boiss[J]. Environmental Engineering and Management Journal, 2014, 13(12):2937-2944
    张玉秀, 李林峰, 柴团耀, 等. 锰对植物毒害及植物耐锰机理研究进展[J]. 植物学报, 2010, 45(4):506-520

    Zhang Y X, Li L F, Chai T Y, et al. Mechanisms of manganese toxicity and manganese tolerance in plants[J]. Chinese Bulletin of Botany, 2010, 45(4):506-520(in Chinese)

    钟闱桢. 锰矿区尾矿坝及锰镉复合污染对植物的生态毒理学研究[D]. 桂林:广西师范大学, 2008:34-35 Zhong W Z. Ecotoxicological effect of manganese mine tailings and Mn-Cd combined pollution on plants[D]. Guilin:Guangxi Normal University, 2008:34

    -35(in Chinese)

    Socha A L, Guerinot M L. Mn-euvering manganese:The role of transporter gene family members in manganese uptake and mobilization in plants[J]. Frontiers in Plant Science, 2014, 5:106
    Ramos I, Esteban E, Lucena J J, et al. Cadmium uptake and subcellular distribution in plants of Lactuca sp. Cd-Mn interaction[J]. Plant Science, 2002, 162(5):761-767
    Wu S W, Shi K L, Hu C X, et al. Non-invasive microelectrode cadmium flux measurements reveal the decrease of cadmium uptake by zinc supply in pakchoi root (Brassica chinensis L.)[J]. Ecotoxicology and Environmental Safety, 2019, 168:363-368
    Sasaki A, Yamaji N, Yokosho K, et al. Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice[J]. The Plant Cell, 2012, 24(5):2155-2167
    Yao Y N, Xu G, Mou D L, et al. Subcellular Mn compartation, anatomic and biochemical changes of two grape varieties in response to excess manganese[J]. Chemosphere, 2012, 89(2):150-157
    Saraswat S, Rai J P N. Complexation and detoxification of Zn and Cd in metal accumulating plants[J]. Reviews in Environmental Science and Bio/Technology, 2011, 10(4):327-339
  • 加载中
计量
  • 文章访问数:  2132
  • HTML全文浏览数:  2132
  • PDF下载数:  82
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-08-03
程艳, 刘杰, 蒋萍萍, 俞果, 蒋旭升, 丁志凡, 雷玲, 张冰. Mn对超富集植物青葙Cd毒害的缓解效应[J]. 生态毒理学报, 2021, 16(1): 223-232. doi: 10.7524/AJE.1673-5897.20200803002
引用本文: 程艳, 刘杰, 蒋萍萍, 俞果, 蒋旭升, 丁志凡, 雷玲, 张冰. Mn对超富集植物青葙Cd毒害的缓解效应[J]. 生态毒理学报, 2021, 16(1): 223-232. doi: 10.7524/AJE.1673-5897.20200803002
Cheng Yan, Liu Jie, Jiang Pingping, Yu Guo, Jiang Xusheng, Ding Zhifan, Lei Ling, Zhang Bing. Mitigation Effect of Mn on Cd Toxicity in a Hyperaccumulator Celosia argentea Linn.[J]. Asian journal of ecotoxicology, 2021, 16(1): 223-232. doi: 10.7524/AJE.1673-5897.20200803002
Citation: Cheng Yan, Liu Jie, Jiang Pingping, Yu Guo, Jiang Xusheng, Ding Zhifan, Lei Ling, Zhang Bing. Mitigation Effect of Mn on Cd Toxicity in a Hyperaccumulator Celosia argentea Linn.[J]. Asian journal of ecotoxicology, 2021, 16(1): 223-232. doi: 10.7524/AJE.1673-5897.20200803002

Mn对超富集植物青葙Cd毒害的缓解效应

    通讯作者: 刘杰, E-mail: liujie@glut.edu.cn
    作者简介: 程艳(1996-),女,硕士研究生,研究方向为土壤重金属污染植物修复,E-mail:2672469167@qq.com
  • 1. 桂林理工大学, 广西环境污染控制理论与技术重点实验室, 桂林 541004;
  • 2. 自然资源部南方石山地区矿山地质环境修复工程技术创新中心, 桂林 541004
基金项目:

国家自然科学基金资助项目(41867022);广西高等学校高水平创新团队及卓越学者计划资助项目(桂财教函[2018]319号)

摘要: 为了探究Cd胁迫下青葙中Mn的生理作用,通过水培实验,研究在Cd暴露下(0、5和25 μmol·L-1)施加Mn(5、100和1 000 μmol·L-1)对青葙的干重、叶绿素含量、Cd含量和青葙根部不同区域实时Cd2+流速的影响。结果表明,提高Mn的供应水平可缓解Cd对青葙生长的抑制效应。在Cd浓度为5 μmol·L-1,施加1 000 μmol·L-1的Mn时,青葙的根、茎、叶干重和总干重分别增加了26.8%、11.8%、22.7%和21.19%。当Cd处理浓度为25 μmol·L-1时,1 000 μmol·L-1的Mn显著增加了青葙的叶绿素a和总叶绿素的含量(P<0.05)。相反地,Mn的添加显著减少了叶片中的丙二醛含量(P<0.05)。在Cd处理为5 μmol·L-1和25 μmol·L-1时,施加Mn使丙二醛含量降低了30%。这表明,Mn浓度的增加能够减少Cd对青葙的脂质过氧化伤害,保护叶绿素。Mn对青葙Cd积累的影响并不是严格的拮抗效应。在低Cd浓度(5 μmol·L-1)处理组中,Mn的添加对青葙Cd累积无显著影响(P>0.05)。在高浓度处理时(25 μmol·L-1 Cd),1 000 μmol·L-1的Mn显著降低了青葙根、茎和叶的Cd含量(P<0.05),较施加5 μmol·L-1 Mn处理分别降低了41.4%、41.5%和23.3%。这可能与Mn2+抑制青葙根系对Cd2+的吸收有关。非损伤微测技术(NMT)分析结果显示,Mn2+的添加显著抑制了根表面Cd2+的内流速率。当加入50 μmol·L-1的Mn时,距根尖200 μm的Cd2+的内流速率下降了71.4%。上述结果表明,施加Mn有效地缓解了Cd对青葙的毒性效应。

English Abstract

参考文献 (34)

返回顶部

目录

/

返回文章
返回