人工纳米颗粒对海洋渔业生物的毒性效应及水产品质量安全影响研究进展

丁怡丹, 黄翠玲, 朱琳, 冯娟, 夏斌, 赵信国, 孙雪梅, 陈碧鹃, 曲克明. 人工纳米颗粒对海洋渔业生物的毒性效应及水产品质量安全影响研究进展[J]. 生态毒理学报, 2020, 15(6): 57-71. doi: 10.7524/AJE.1673-5897.20200803003
引用本文: 丁怡丹, 黄翠玲, 朱琳, 冯娟, 夏斌, 赵信国, 孙雪梅, 陈碧鹃, 曲克明. 人工纳米颗粒对海洋渔业生物的毒性效应及水产品质量安全影响研究进展[J]. 生态毒理学报, 2020, 15(6): 57-71. doi: 10.7524/AJE.1673-5897.20200803003
Ding Yidan, Huang Cuiling, Zhu Lin, Feng Juan, Xia Bin, Zhao Xinguo, Sun Xuemei, Chen Bijuan, Qu Keming. A Review on Toxic Effects of Engineered Nanoparticles on Marine Fishery Organisms and Their Impact on Quality and Safety of Seafood[J]. Asian Journal of Ecotoxicology, 2020, 15(6): 57-71. doi: 10.7524/AJE.1673-5897.20200803003
Citation: Ding Yidan, Huang Cuiling, Zhu Lin, Feng Juan, Xia Bin, Zhao Xinguo, Sun Xuemei, Chen Bijuan, Qu Keming. A Review on Toxic Effects of Engineered Nanoparticles on Marine Fishery Organisms and Their Impact on Quality and Safety of Seafood[J]. Asian Journal of Ecotoxicology, 2020, 15(6): 57-71. doi: 10.7524/AJE.1673-5897.20200803003

人工纳米颗粒对海洋渔业生物的毒性效应及水产品质量安全影响研究进展

    作者简介: 丁怡丹(1996-),女,硕士研究生,研究方向为海洋生态毒理学,E-mail:1132043051@qq.com
    通讯作者: 夏斌, E-mail: xiabin@ysfri.ac.cn
  • 基金项目:

    中国水产科学研究院基本科研业务费资助项目(2020TD12);国家自然科学基金面上项目(41976143);国家自然科学青年基金项目(41706130);山东省重点研发计划资助项目(2020CXGC10703)

  • 中图分类号: X171.5

A Review on Toxic Effects of Engineered Nanoparticles on Marine Fishery Organisms and Their Impact on Quality and Safety of Seafood

    Corresponding author: Xia Bin, xiabin@ysfri.ac.cn
  • Fund Project:
  • 摘要: 纳米科学是20世纪80年代末发展起来的新兴学科,与信息科学、生命科学并列为21世纪最有前途的三大新兴科学技术领域。由于纳米材料特殊的尺寸和物理结构,具有特殊的催化、光电和抗菌等性能,因此广泛应用于医药、工业、建筑、化妆品、能源和环保等领域。纳米材料的大量生产和应用不可避免地导致人工纳米颗粒(engineered nanoparticles,ENPs)进入到海洋环境中,对海洋渔业生物造成潜在威胁。我国是水产品生产、贸易和消费大国,海洋水产品是我国居民粮食供给和优质蛋白质供给的重要保障。因此,ENPs对海洋渔业生物的毒性效应以及对水产品质量安全的影响越来越受到关注。本文总结了海洋中ENPs的来源,归纳了其在海洋中的环境行为,分析其对海洋渔业生物的毒性效应及致毒机制,探讨其在海洋食物链中的传递和生物放大作用以及对水产品质量安全的潜在影响,并对目前所面临的问题做出总结,对未来的研究工作做出展望,以期为客观评价ENPs的海洋渔业环境效应提供科学依据。
  • 加载中
  • Vance M E, Kuiken T, Vejerano E P, et al. Nanotechnology in the real world:Redeveloping the nanomaterial consumer products inventory[J]. Beilstein Journal of Nanotechnology, 2015, 6:1769-1780
    李海燕, 王明秀, 张晓然. 纳米复合材料中纳米颗粒的释放行为及环境残留[J]. 生态环境学报, 2016, 25(7):1244-1252

    Li H Y, Wang M X, Zhang X R. The release of engineered nanoparticles from nanocomposites and their environmental residues:A review[J]. Ecology and Environmental Sciences, 2016, 25(7):1244-1252(in Chinese)

    Johari S A, Sourinejad I, Bärsch N, et al. Does physical production of nanoparticles reduce their ecotoxicity? A case of lower toxicity of AgNPs produced by laser ablation to zebrafish (Danio rerio)[J]. 2014, 2(4):188-192
    Abbas Q, Yousaf B, Ullah H, et al. Environmental transformation and nano-toxicity of engineered nano-particles (ENPs) in aquatic and terrestrial organisms[J]. Critical Reviews in Environmental Science and Technology, 2020, 50(23):2523-2581
    Nowack B, Ranville J F, Diamond S, et al. Potential scenarios for nanomaterial release and subsequent alteration in the environment[J]. Environmental Toxicology and Chemistry, 2012, 31(1):50-59
    Holden P A, Gardea-Torresdey J L, Klaessig F, et al. Considerations of environmentally relevant test conditions for improved evaluation of ecological hazards of engineered nanomaterials[J]. Environmental Science & Technology, 2016, 50(12):6124-6145
    Gottschalk F, Sun T Y, Nowack B. Environmental concentrations of engineered nanomaterials:Review of modeling and analytical studies[J]. Environmental Pollution, 2013, 181:287-300
    Sun T Y, Gottschalk F, Hungerbühler K, et al. Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials[J]. Environmental Pollution, 2014, 185:69-76
    Kahru A, Dubourguier H C. From ecotoxicology to nanoecotoxicology[J]. Toxicology, 2010, 269(2-3):105-119
    翟璐, 孙兆群, 王波, 等. 基于灰色预测模型的我国海洋渔业发展趋势研究[J]. 江苏农业科学, 2019, 47(13):342-346

    Zhai L, Sun Z Q, Wang B, et al. Study on development of China's marine fisheries based on GM(1,1) model[J]. Jiangsu Agricultural Sciences, 2019, 47(13):342-346(in Chinese)

    中华人民共和国农业农村部渔业渔政管理局. 中国渔业统计年鉴2020[M]. 北京:中国农业出版社, 2020:3-17
    Cong Y, Jin F, Wang J Y, et al. The embryotoxicity of ZnO nanoparticles to marine medaka, Oryzias melastigma[J]. Aquatic Toxicology, 2017, 185:11-18
    Muller E B, Hanna S K, Lenihan H S, et al. Impact of engineered zinc oxide nanoparticles on the energy budgets of Mytilus galloprovincialis[J]. Journal of Sea Research, 2014, 94:29-36
    Libralato G, Minetto D, Totaro S, et al. Embryotoxicity of TiO2 nanoparticles to Mytilus galloprovincialis (Lmk)[J]. Marine Environmental Research, 2013, 92:71-78
    Falugi C, Aluigi M G, Chiantore M C, et al. Toxicity of metal oxide nanoparticles in immune cells of the sea urchin[J]. Marine Environmental Research, 2012, 76:114-121
    Raj S, Sumod U S, Jose S, et al. Nanotechnology in cosmetics:Opportunities and challenges[J]. Journal of Pharmacy and Bioallied Sciences, 2012, 4(3):186
    Brand R M, Pike J, Wilson R M, et al. Sunscreens containing physical UV blockers can increase transdermal absorption of pesticides[J]. Toxicology and Industrial Health, 2003, 19(1):9-16
    王江雪, 李炜, 刘颖, 等. 二氧化钛纳米材料的环境健康和生态毒理效应[J]. 生态毒理学报, 2008, 3(2):105-113

    Wang J X, Li W, Liu Y, et al. Environmental health and ecotoxicological effect of titanium dioxide nanomaterials[J]. Asian Journal of Ecotoxicology, 2008, 3(2):105-113(in Chinese)

    Botta C, Labille J, Auffan M, et al. TiO2-based nanoparticles released in water from commercialized sunscreens in a life-cycle perspective:Structures and quantities[J]. Environmental Pollution, 2011, 159(6):1543-1550
    Labille J, Feng J H, Botta C, et al. Aging of TiO2 nanocomposites used in sunscreen. Dispersion and fate of the degradation products in aqueous environment[J]. Environmental Pollution, 2010, 158(12):3482-3489
    Danovaro R, Bongiorni L, Corinaldesi C, et al. Sunscreens cause coral bleaching by promoting viral infections[J]. Environmental Health Perspectives, 2008, 116(4):441-447
    朱小山, 黄静颖, 吕小慧, 等. 防晒剂的海洋环境行为与生物毒性[J]. 环境科学, 2018, 39(6):2991-3002

    Zhu X S, Huang J Y, Lv X H, et al. Fate and toxicity of UV filters in marine environments[J]. Environmental Science, 2018, 39(6):2991-3002(in Chinese)

    Kim B, Park C S, Murayama M, et al. Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products[J]. Environmental Science & Technology, 2010, 44(19):7509-7514
    Li W H, Ma Y M, Guo C S, et al. Occurrence and behavior of four of the most used sunscreen UV filters in a wastewater reclamation plant[J]. Water Research, 2007, 41(15):3506-3512
    Kaegi R, Ulrich A, Sinnet B, et al. Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment[J]. Environmental Pollution, 2008, 156(2):233-239
    Westerhoff P, Song G X, Hristovski K, et al. Occurrence and removal of titanium at full scale wastewater treatment plants:Implications for TiO2 nanomaterials[J]. Journal of Environmental Monitoring, 2011, 13(5):1195-1203
    Kaegi R, Sinnet B, Zuleeg S, et al. Release of silver nanoparticles from outdoor facades[J]. Environmental Pollution, 2010, 158(9):2900-2905
    Mitrano D M, Lesher E K, Bednar A, et al. Detecting nanoparticulate silver using single-particle inductively coupled plasma-mass spectrometry[J]. Environmental Toxicology and Chemistry, 2012, 31(1):115-121
    Majedi S M, Kelly B C, Lee H K. Role of combinatorial environmental factors in the behavior and fate of ZnO nanoparticles in aqueous systems:A multiparametric analysis[J]. Journal of Hazardous Materials, 2014, 264:370-379
    Brar S K, Verma M, Tyagi R D, et al. Engineered nanoparticles in wastewater and wastewater sludge-Evidence and impacts[J]. Waste Management, 2010, 30(3):504-520
    Benn T M, Westerhoff P. Nanoparticle silver released into water from commercially available sock fabrics[J]. Environmental Science & Technology, 2008, 42(11):4133-4139
    王小丹, 铁绍龙. 纳米氧化锌的性能及其在涂料中的应用[J]. 电镀与涂饰, 2005, 24(3):27-30

    Wang X D, Tie S L. Performance of nano-ZnO and its applications in coatings[J]. Electroplating & Finishing, 2005, 24(3):27-30(in Chinese)

    Lin D H, Tian X L, Wu F C, et al. Fate and transport of engineered nanomaterials in the environment[J]. Journal of Environmental Quality, 2010, 39(6):1896-1908
    Gottschalk F, Nowack B. The release of engineered nanomaterials to the environment[J]. Journal of Environmental Monitoring, 2011, 13(5):1145-1155
    Peng C, Zhang W, Gao H P, et al. Behavior and potential impacts of metal-based engineered nanoparticles in aquatic environments[J]. Nanomaterials, 2017, 7(1):21
    Calderón-Garcidueñas L, González-Maciel A, Mukherjee P S, et al. Combustion- and friction-derived magnetic air pollution nanoparticles in human hearts[J]. Environmental Research, 2019, 176:108567
    Ghoshdastidar A J, Ariya P A. The existence of airborne mercury nanoparticles[J]. Scientific Reports, 2019, 9(1):10733
    Maher B A, Ahmed I A, Karloukovski V, et al. Magnetite pollution nanoparticles in the human brain[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(39):10797-10801
    John A, Küpper M, Manders-Groot A, et al. Emissions and possible environmental implication of engineered nanomaterials (ENMs) in the atmosphere[J]. Atmosphere, 2017, 8(12):84
    Gunawardena J, Egodawatta P, Ayoko G A, et al. Atmospheric deposition as a source of heavy metals in urban stormwater[J]. Atmospheric Environment, 2013, 68:235-242
    Domingos R F, Baalousha M A, Ju-Nam Y, et al. Characterizing manufactured nanoparticles in the environment:Multimethod determination of particle sizes[J]. Environmental Science & Technology, 2009, 43(19):7277-7284
    Matranga V, Corsi I. Toxic effects of engineered nanoparticles in the marine environment:Model organisms and molecular approaches[J]. Marine Environmental Research, 2012, 76:32-40
    Baker T J, Tyler C R, Galloway T S. Impacts of metal and metal oxide nanoparticles on marine organisms[J]. Environmental Pollution, 2014, 186:257-271
    Zhang H Y, Ji Z X, Xia T, et al. Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation[J]. ACS Nano, 2012, 6(5):4349-4368
    Bielmyer-Fraser G K, Jarvis T A, Lenihan H S, et al. Cellular partitioning of nanoparticulate versus dissolved metals in marine phytoplankton[J]. Environmental Science & Technology, 2014, 48(22):13443-13450
    Jimeno-Romero A, Bilbao E, Izagirre U, et al. Digestive cell lysosomes as main targets for Ag accumulation and toxicity in marine mussels, Mytilus galloprovincialis, exposed to maltose-stabilised Ag nanoparticles of different sizes[J]. Nanotoxicology, 2017, 11(2):168-183
    Wong S W, Leung P T, Djurisic' A B, et al. Toxicities of nano zinc oxide to five marine organisms:Influences of aggregate size and ion solubility[J]. Analytical and Bioanalytical Chemistry, 2010, 396(2):609-618
    Park J, Kim S, Yoo J, et al. Effect of salinity on acute copper and zinc toxicity to Tigriopus japonicus:The difference between metal ions and nanoparticles[J]. Marine Pollution Bulletin, 2014, 85(2):526-531
    Liu J Y, Hurt R H. Ion release kinetics and particle persistence in aqueous nano-silver colloids[J]. Environmental Science & Technology, 2010, 44(6):2169-2175
    Adeleye A S, Conway J R, Perez T, et al. Influence of extracellular polymeric substances on the long-term fate, dissolution, and speciation of copper-based nanoparticles[J]. Environmental Science & Technology, 2014, 48(21):12561-12568
    Fujiwara K, Sotiriou G A, Pratsinis S E. Enhanced Ag+ ion release from aqueous nanosilver suspensions by absorption of ambient CO2[J]. Langmuir, 2015, 31(19):5284-5290
    侯俊, 次瀚林, 吕博文, 等. 典型人工纳米材料的水环境行为研究进展[J]. 水资源保护, 2017, 33(6):1-8

    , 19 Hou J, Ci H L, Lv B W, et al. Research progress of water environment behavior of typical engineered nanomaterials[J]. Water Resources Protection, 2017, 33(6):1-8, 19(in Chinese)

    Batley G E, Kirby J K, McLaughlin M J. Fate and risks of nanomaterials in aquatic and terrestrial environments[J]. Accounts of Chemical Research, 2013, 46(3):854-862
    Ghosh S, Mashayekhi H, Pan B, et al. Colloidal behavior of aluminum oxide nanoparticles as affected by pH and natural organic matter[J]. Langmuir, 2008, 24(21):12385-12391
    Baalousha M. Aggregation and disaggregation of iron oxide nanoparticles:Influence of particle concentration, pH and natural organic matter[J]. The Science of the Total Environment, 2009, 407(6):2093-2101
    Xiao Y L, Peijnenburg W J, Chen G C, et al. Toxicity of copper nanoparticles to Daphnia magna under different exposure conditions[J]. The Science of the Total Environment, 2016, 563-564:81-88
    Quik J T, Lynch I, van Hoecke K, et al. Effect of natural organic matter on cerium dioxide nanoparticles settling in model fresh water[J]. Chemosphere, 2010, 81(6):711-715
    Bhatt I, Tripathi B N. Interaction of engineered nanoparticles with various components of the environment and possible strategies for their risk assessment[J]. Chemosphere, 2011, 82(3):308-317
    Zhang Y, Chen Y S, Westerhoff P, et al. Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles[J]. Water Research, 2009, 43(17):4249-4257
    陈展明. 纳米氧化锌和二氧化钛对鱼类胚胎的毒性效应及其机理研究[D]. 广州:广东工业大学, 2018:60-67
    Boyle D, Al-Bairuty G A, Ramsden C S, et al. Subtle alterations in swimming speed distributions of rainbow trout exposed to titanium dioxide nanoparticles are associated with gill rather than brain injury[J]. Aquatic Toxicology, 2013, 126:116-127
    Federici G, Shaw B J, Handy R D. Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss):Gill injury, oxidative stress, and other physiological effects[J]. Aquatic Toxicology, 2007, 84(4):415-430
    Ates M, Dugo M A, Demir V, et al. Effect of copper oxide nanoparticles to sheepshead minnow (Cyprinodon variegatus) at different salinities[J]. Digest Journal of Nanomaterials and Biostructures, 2014, 9(1):369-377
    张剑, 朱跃骅, 周妮妮, 等. 纳米氧化锌对美国红鱼单核巨噬细胞的毒性效应[J]. 农业生物技术学报, 2019, 27(6):1081-1089

    Zhang J, Zhu Y H, Zhou N N, et al. Toxic effect of ZnO NPs on monocytes/macrophages from red drum (Sciaenops ocellatus)[J]. Journal of Agricultural Biotechnology, 2019, 27(6):1081-1089(in Chinese)

    Vignardi C P, Hasue F M, Sartório P V, et al. Genotoxicity, potential cytotoxicity and cell uptake of titanium dioxide nanoparticles in the marine fish Trachinotus carolinus (Linnaeus, 1766)[J]. Aquatic Toxicology, 2015, 158:218-229
    Wang J, Wang A L, Wang W X. Evaluation of nano-ZnOs as a novel Zn source for marine fish:Importance of digestive physiology[J]. Nanotoxicology, 2017, 11(8):1026-1039
    Gomes T, Pereira C G, Cardoso C, et al. Effects of silver nanoparticles exposure in the mussel Mytilus galloprovincialis[J]. Marine Environmental Research, 2014, 101:208-214
    Hu W T, Culloty S, Darmody G, et al. Toxicity of copper oxide nanoparticles in the blue mussel, Mytilus edulis:A redox proteomic investigation[J]. Chemosphere, 2014, 108:289-299
    Trevisan R, Delapedra G, Mello D F, et al. Gills are an initial target of zinc oxide nanoparticles in oysters Crassostrea gigas, leading to mitochondrial disruption and oxidative stress[J]. Aquatic Toxicology, 2014, 153:27-38
    Barmo C, Ciacci C, Canonico B, et al. In vivo effects of n-TiO2 on digestive gland and immune function of the marine bivalve Mytilus galloprovincialis[J]. Aquatic Toxicology, 2013, 132-133:9-18
    Canesi L, Fabbri R, Gallo G, et al. Biomarkers in Mytilus galloprovincialis exposed to suspensions of selected nanoparticles (Nano carbon black, C60 fullerene, Nano-TiO2, Nano-SiO2)[J]. Aquatic Toxicology, 2010, 100(2):168-177
    Marisa I, Matozzo V, Munari M, et al. In vivo exposure of the marine clam Ruditapes philippinarum to zinc oxide nanoparticles:Responses in gills, digestive gland and haemolymph[J]. Environmental Science and Pollution Research International, 2016, 23(15):15275-15293
    Xia B, Zhu L, Han Q, et al. Effects of TiO2 nanoparticles at predicted environmental relevant concentration on the marine scallop Chlamys farreri:An integrated biomarker approach[J]. Environmental Toxicology and Pharmacology, 2017, 50:128-135
    李铁军, 胡红美, 薛彬, 等. CuO-ENPs在三疣梭子蟹不同组织中的积累效应研究[J]. 现代农业科技, 2016(19):259-260, 265

    Li T J, Hu H M, Xue B, et al. Accumulation effect research of CuO-ENPs in different tissues of Portuns trituberculatus[J]. Modern Agricultural Science and Technology, 2016(19):259-260, 265(in Chinese)

    尤炬炬, 薛彬, 喻亮, 等. CuO-ENPs对三疣梭子蟹的急性毒性研究[J]. 现代农业科技, 2015(20):226-227 You J J, Xue B, Yu L, et al. Study on acute toxicity of CuO-ENPs on Portuns trituberculatus[J]. Modern Agricultural Science and Technology, 2015

    (20):226-227(in Chinese)

    Rossbach L M, Shaw B J, Piegza D, et al. Sub-lethal effects of waterborne exposure to copper nanoparticles compared to copper sulphate on the shore crab (Carcinus maenas)[J]. Aquatic Toxicology, 2017, 191:245-255
    Ishwarya R, Vaseeharan B, Subbaiah S, et al. Sargassum wightii-synthesized ZnO nanoparticles——From antibacterial and insecticidal activity to immunostimulatory effects on the green tiger shrimp Penaeus semisulcatus[J]. Journal of Photochemistry and Photobiology B, Biology, 2018, 183:318-330
    Juarez-Moreno K, Mejía-Ruiz C H, Díaz F, et al. Effect of silver nanoparticles on the metabolic rate, hematological response, and survival of juvenile white shrimp Litopenaeus vannamei[J]. Chemosphere, 2017, 169:716-724
    Tangaa S R, Selck H, Winther-Nielsen M, et al. Trophic transfer of metal-based nanoparticles in aquatic environments:A review and recommendations for future research focus[J]. Environmental Science:Nano, 2016, 3(5):966-981
    Ferry J L, Craig P, Hexel C, et al. Transfer of gold nanoparticles from the water column to the estuarine food web[J]. Nature Nanotechnology, 2009, 4(7):441-444
    Conway J R, Hanna S K, Lenihan H S, et al. Effects and implications of trophic transfer and accumulation of CeO2 nanoparticles in a marine mussel[J]. Environmental Science & Technology, 2014, 48(3):1517-1524
    Wang Z Y, Xia B, Chen B J, et al. Trophic transfer of TiO2 nanoparticles from marine microalga (Nitzschia closterium) to scallop (Chlamys farreri) and related toxicity[J]. Environmental Science:Nano, 2017, 4(2):415-424
    Wang Z Y, Yin L Y, Zhao J, et al. Trophic transfer and accumulation of TiO2 nanoparticles from clamworm (Perinereis aibuhitensis) to juvenile turbot (Scophthalmus maximus) along a marine benthic food chain[J]. Water Research, 2016, 95:250-259
    Zhao F, Zhao Y, Liu Y, et al. Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials[J]. Small, 2011, 7(10):1322-1337
    Wang Z Y, Li J, Zhao J, et al. Toxicity and internalization of CuO nanoparticles to prokaryotic alga Microcystis aeruginosa as affected by dissolved organic matter[J]. Environmental Science & Technology, 2011, 45(14):6032-6040
    Xia T, Kovochich M, Liong M, et al. Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways[J]. ACS Nano, 2008, 2(1):85-96
    Orr G, Panther D J, Phillips J L, et al. Submicrometer and nanoscale inorganic particles exploit the actin machinery to be propelled along microvilli-like structures into alveolar cells[J]. ACS Nano, 2007, 1(5):463-475
    Verma A, Uzun O, Hu Y H, et al. Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles[J]. Nature Materials, 2008, 7(7):588-595
    Choi O, Clevenger T E, Deng B L, et al. Role of sulfide and ligand strength in controlling nanosilver toxicity[J]. Water Research, 2009, 43(7):1879-1886
    Wang B, Feng W Y, Zhao Y L, et al. Status of study on biological and toxicological effects of nanoscale materials[J]. Science in China Series B:Chemistry, 2005, 48(5):385-394
    Odzak N, Kistler D, Behra R, et al. Dissolution of metal and metal oxide nanoparticles in aqueous media[J]. Environmental Pollution, 2014, 191:132-138
    Handy R D, Owen R, Valsami-Jones E. The ecotoxicology of nanoparticles and nanomaterials:Current status, knowledge gaps, challenges, and future needs[J]. Ecotoxicology, 2008, 17(5):315-325
    Lubick N. Nanosilver toxicity:Ions, nanoparticles——or both?[J]. Environmental Science & Technology, 2008, 42(23):8617
    Brunner T J, Wick P, Manser P, et al. In vitro cytotoxicity of oxide nanoparticles:Comparison to asbestos, silica, and the effect of particle solubility[J]. Environmental Science & Technology, 2006, 40(14):4374-4381
    Karlsson H L, Cronholm P, Gustafsson J, et al. Copper oxide nanoparticles are highly toxic:A comparison between metal oxide nanoparticles and carbon nanotubes[J]. Chemical Research in Toxicology, 2008, 21(9):1726-1732
    Razmara P, Sharpe J, Pyle G G. Rainbow trout (Oncorhynchus mykiss) chemosensory detection of and reactions to copper nanoparticles and copper ions[J]. Environmental Pollution, 2020, 260:113925
    刘林, 赵群芬, 朱帅旗, 等. 纳米氧化锌对斑马鱼肠组织的氧化损伤[J]. 水产学报, 2015, 39(11):1702-1711

    Liu L, Zhao Q F, Zhu S Q, et al. Oxidative damage of zinc oxide nanoparticles to zebrafish intestine[J]. Journal of Fisheries of China, 2015, 39(11):1702-1711(in Chinese)

    Johnston B D, Scown T M, Moger J, et al. Bioavailability of nanoscale metal oxides TiO2, CeO2, and ZnO to fish[J]. Environmental Science & Technology, 2010, 44(3):1144-1151
    王迪. 纳米氧化镍对牡蛎的毒性效应研究[D]. 大连:大连海事大学, 2017:25-38 Wang D. Toxic effect of nickel oxide nanoparticles on oyster[D]. Dalian:Dalian Maritime University, 2017:25

    -38(in Chinese)

    Tedesco S, Doyle H, Blasco J, et al. Exposure of the blue mussel, Mytilus edulis, to gold nanoparticles and the pro-oxidant menadione[J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology, 2010, 151(2):167-174
    Tedesco S, Doyle H, Redmond G, et al. Gold nanoparticles and oxidative stress in Mytilus edulis[J]. Marine Environmental Research, 2008, 66(1):131-133
    Tedesco S, Doyle H, Blasco J, et al. Oxidative stress and toxicity of gold nanoparticles in Mytilus edulis[J]. Aquatic Toxicology, 2010, 100(2):178-186
    Oberdörster E. Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass[J]. Environmental Health Perspectives, 2004, 112(10):1058-1062
    Li J X, Song Y C, Vogt R D, et al. Bioavailability and cytotoxicity of Cerium-(IV), Copper-(Ⅱ), and Zinc oxide nanoparticles to human intestinal and liver cells through food[J]. The Science of the Total Environment, 2020, 702:134700
    Henson T E, Navratilova J, Tennant A H, et al. In vitro intestinal toxicity of copper oxide nanoparticles in rat and human cell models[J]. Nanotoxicology, 2019, 13(6):795-811
    Gliga A R, Skoglund S, Wallinder I O, et al. Size-dependent cytotoxicity of silver nanoparticles in human lung cells:The role of cellular uptake, agglomeration and Ag release[J]. Particle and Fibre Toxicology, 2014, 11:11
    Beer C, Foldbjerg R, Hayashi Y, et al. Toxicity of silver nanoparticles-Nanoparticle or silver ion?[J]. Toxicology Letters, 2012, 208(3):286-292
    Chen R, Huo L L, Shi X F, et al. Endoplasmic Reticulum stress induced by zinc oxide nanoparticles is an earlier biomarker for nanotoxicological evaluation[J]. ACS Nano, 2014, 8(3):2562-2574
    Yu S J, Liu J F, Yin Y G, et al. Interactions between engineered nanoparticles and dissolved organic matter:A review on mechanisms and environmental effects[J]. Journal of Environmental Sciences, 2018, 63:198-217
    Henry T B, Wileman S J, Boran H, et al. Association of Hg2+ with aqueous (C60)n aggregates facilitates increased bioavailability of Hg2+ in Zebrafish (Danio rerio)[J]. Environmental Science & Technology, 2013, 47(17):9997-10004
    Li F H, Yang Z, Weng H Q, et al. High efficient separation of U(VI) and Th(IV) from rare earth elements in strong acidic solution by selective sorption on phenanthroline diamide functionalized graphene oxide[J]. Chemical Engineering Journal, 2018, 332:340-350
    Zhang S, Deng R, Lin D H, et al. Distinct toxic interactions of TiO2 nanoparticles with four coexisting organochlorine contaminants on algae[J]. Nanotoxicology, 2017, 11(9-10):1115-1126
    姚欢, 魏永鹏, 尹双, 等. 碳纳米材料与共存污染物的联合毒性[J]. 中国科学:化学, 2018, 48(5):491-503

    Yao H, Wei Y P, Yin S, et al. Joint toxicity of carbon nanomaterials and coexisting pollutants[J]. Scientia Sinica (Chimica), 2018, 48(5):491-503(in Chinese)

    Wu S M, Zhang S H, Gong Y, et al. Identification and quantification of titanium nanoparticles in surface water:A case study in Lake Taihu, China[J]. Journal of Hazardous Materials, 2020, 382:121045
    Sanchís J, Jiménez-Lamana J, Abad E, et al. Occurrence of cerium-, titanium-, and silver-bearing nanoparticles in the Besòs and Ebro Rivers[J]. Environmental Science & Technology, 2020, 54(7):3969-3978
  • 加载中
计量
  • 文章访问数:  2105
  • HTML全文浏览数:  2105
  • PDF下载数:  78
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-08-03

人工纳米颗粒对海洋渔业生物的毒性效应及水产品质量安全影响研究进展

    通讯作者: 夏斌, E-mail: xiabin@ysfri.ac.cn
    作者简介: 丁怡丹(1996-),女,硕士研究生,研究方向为海洋生态毒理学,E-mail:1132043051@qq.com
  • 1. 青岛大学环境科学与工程学院, 青岛 266071;
  • 2. 中国水产科学研究院黄海水产研究所, 农业农村部极地渔业开发重点实验室, 青岛 266071;
  • 3. 通标标准技术服务(青岛)有限公司, 青岛 266101;
  • 4. 青岛海洋科学与技术试点国家实验室海洋生态与环境科学功能实验室, 青岛 266237
基金项目:

中国水产科学研究院基本科研业务费资助项目(2020TD12);国家自然科学基金面上项目(41976143);国家自然科学青年基金项目(41706130);山东省重点研发计划资助项目(2020CXGC10703)

摘要: 纳米科学是20世纪80年代末发展起来的新兴学科,与信息科学、生命科学并列为21世纪最有前途的三大新兴科学技术领域。由于纳米材料特殊的尺寸和物理结构,具有特殊的催化、光电和抗菌等性能,因此广泛应用于医药、工业、建筑、化妆品、能源和环保等领域。纳米材料的大量生产和应用不可避免地导致人工纳米颗粒(engineered nanoparticles,ENPs)进入到海洋环境中,对海洋渔业生物造成潜在威胁。我国是水产品生产、贸易和消费大国,海洋水产品是我国居民粮食供给和优质蛋白质供给的重要保障。因此,ENPs对海洋渔业生物的毒性效应以及对水产品质量安全的影响越来越受到关注。本文总结了海洋中ENPs的来源,归纳了其在海洋中的环境行为,分析其对海洋渔业生物的毒性效应及致毒机制,探讨其在海洋食物链中的传递和生物放大作用以及对水产品质量安全的潜在影响,并对目前所面临的问题做出总结,对未来的研究工作做出展望,以期为客观评价ENPs的海洋渔业环境效应提供科学依据。

English Abstract

参考文献 (115)

目录

/

返回文章
返回