龙葵(Solanum nigrum L.)超富集镉的生理和分子机制研究进展

杨晓远, 王海娟, 王宏镔. 龙葵(Solanum nigrum L.)超富集镉的生理和分子机制研究进展[J]. 生态毒理学报, 2020, 15(6): 72-81. doi: 10.7524/AJE.1673-5897.20200107003
引用本文: 杨晓远, 王海娟, 王宏镔. 龙葵(Solanum nigrum L.)超富集镉的生理和分子机制研究进展[J]. 生态毒理学报, 2020, 15(6): 72-81. doi: 10.7524/AJE.1673-5897.20200107003
Yang Xiaoyuan, Wang Haijuan, Wang Hongbin. Advances in Physiological and Molecular Mechanisms of Cadmium Hyperaccumulation by Solanum nigrum L.[J]. Asian Journal of Ecotoxicology, 2020, 15(6): 72-81. doi: 10.7524/AJE.1673-5897.20200107003
Citation: Yang Xiaoyuan, Wang Haijuan, Wang Hongbin. Advances in Physiological and Molecular Mechanisms of Cadmium Hyperaccumulation by Solanum nigrum L.[J]. Asian Journal of Ecotoxicology, 2020, 15(6): 72-81. doi: 10.7524/AJE.1673-5897.20200107003

龙葵(Solanum nigrum L.)超富集镉的生理和分子机制研究进展

    作者简介: 杨晓远(1994-),女,硕士研究生,研究方向为污染与恢复生态学,E-mail:534147647@qq.com
    通讯作者: 王宏镔, E-mail: whb1974@126.com
  • 基金项目:

    国家重点研发计划“高背景与矿业活动叠加影响区旱地和果园镉砷污染土壤修复技术研究”(2018YFD0800603-04)

  • 中图分类号: X171.5

Advances in Physiological and Molecular Mechanisms of Cadmium Hyperaccumulation by Solanum nigrum L.

    Corresponding author: Wang Hongbin, whb1974@126.com
  • Fund Project:
  • 摘要: 超富集植物在重金属污染土壤植物修复中具有重要的应用前景,已成为一种重要的生物资源。自2005年发现龙葵(Solanum nigrum L.)能超量富集镉以来,中国国内外围绕其超富集镉的机制和土壤修复应用开展了很多研究。本文从根系对镉的快速吸收、镉从根到地上部的有效转运以及较强的体内解毒功能(如植物细胞的区隔化、抗氧化、有机酸生成、渗透物质调节、光合和呼吸作用的维持以及氮代谢调节等)3个方面,详细综述了龙葵超富集镉的生理和分子机制。在总结相关研究成果的基础上,展望了该领域今后的发展趋势,建议应结合光合生化模型研究龙葵对镉的光合响应机制,并通过基因编辑技术提高修复效率和优化风险评估效果,同时加强镉胁迫下龙葵信号通路的精细调控等方面研究,以期为深入揭示龙葵超富集镉的机制提供参考。
  • 加载中
  • Khan A, Khan S, Khan M A, et al. The uptake and bioaccumulation of heavy metals by food plants, their effects on plants nutrients, and associated health risk:A review[J]. Environmental Science and Pollution Research, 2015, 22(18):13772-13799
    Zeng P, Guo Z, Xiao X, et al. Physiological stress responses, mineral element uptake and phytoremediation potential of Morus alba L. in cadmium-contaminated soil[J]. Ecotoxicology and Environmental Safety, 2019, 189:109973
    Lai J, Liu Z, Luo X. A metabolomic, transcriptomic profiling, and mineral nutrient metabolism study of the phytotoxicity mechanism of uranium[J]. Journal of Hazardous Materials, 2020, 386:121437
    Wei S, Zhou Q, Wang X, et al. A newly-discovered Cd-hyperaccumulator Solanum nigrum L.[J]. Chinese Science Bulletin, 2005, 50(1):33-38
    Peng K J, Luo C L, Chen Y H, et al. Cadmium and other metal uptake by Lobelia chinensis and Solanum nigrum from contaminated soils[J]. Bulletin of Environmental Contamination and Toxicology, 2009, 83(2):260-264
    唐秀梅, 龚春风, 周主贵, 等. 镉对龙葵(Solanum nigrum L.)根系形态及部分生理指标的影响[J]. 生态环境, 2008, 17(4):1462-1465

    Tang X M, Gong C F, Zhou Z G, et al. Effects of cadmium on root morphology and some physiological indexes of Solanum nigrum L.[J]. Ecology and Environment, 2008, 17(4):1462-1465(in Chinese)

    王涛, 郭智, 奥岩松. 镉对龙葵幼苗生长的影响及镉富集特性研究[J]. 上海交通大学学报:农业科学版, 2009, 27(3):200-205

    Wang T, Guo Z, Ao Y S. Effects of Cd stress on growth and Cd-accumulation of Solanum nigrum L. seedlings[J]. Journal of Shanghai Jiaotong University:Agricultural Science, 2009, 27(3):200-205(in Chinese)

    Patra J, Lenka M, Panda B B. Tolerance and co-tolerance of the grass Chloris barbata Sw. to mercury, cadmium and zinc[J]. New Phytologist, 1994, 128(1):165-171
    罗琼, 葛青, 刘小京, 等. 重金属超富集植物龙葵对镉响应的蛋白组学分析[J]. 中国生态农业学报, 2015, 23(11):85-92

    Luo Q, Ge Q, Liu X J, et al. Proteomic analysis of Cd-responsive proteins in hyper-accumulator Solanum nigrum[J]. Chinese Journal of Eco-Agriculture, 2015, 23(11):85-92(in Chinese)

    杨肖娥, 龙新宪, 倪吾钟. 超积累植物吸收重金属的生理及分子机制[J]. 植物营养与肥料学报, 2002, 8(1):8-15

    Yang X E, Long X X, Ni W Z. Physiological and molecular mechanisms of heavy metal uptake by hyperaccumulting plants[J]. Plant Nutrition and Fertilizer Science, 2002, 8(1):8-15(in Chinese)

    Gramss G, Voigt K D, Bergmann H. Plant availability and leaching of (heavy) metals from ammonium-, calcium-, carbohydrate-, and citric acid-treated uraniummine-dump soil[J]. Journal of Plant Nutrition Soil Science, 2004, 167:417-427
    Krishnamurti G S R, Huang P M, Van Rees K C J, et al. Speciation of particulate-bound cadmium of soils and its bioavailability[J]. The Analyst, 1995, 120:659-665
    Rizwan M, Meunier J D, Miche H, et al. Effect of silicon on reducing cadmium toxicity in durum wheat (Triticum turgidum L. cv. Claudio W.) grown in a soil with aged contamination[J]. Journal of Hazardous Materials, 2012, 209:326-334
    Bao T, Sun T, Sun L. Low molecular weight organic acids in root exudates and cadmium accumulation in cadmium hyperaccumulator Solanum nigrum L. and nonhyperaccumulator Solanum lycopersicum L.[J]. African Journal of Biotechnology, 2011, 10(75):17180-17185
    孙月美. 土壤镉污染的龙葵、沸石修复及油葵响应研究[D]. 保定:河北农业大学, 2016:39-43 Sun Y M. Research on remediation by Solanum nigrum and zeolite, and response of oil sunflower of Cd contaminated soil[D]. Baoding:Hebei Agricultural University, 2016:39

    -43(in Chinese)

    Wong C K E, Cobbett C S. HMA P-type ATPases are the major mechanism for root-to-shoot Cd translocation in Arabidopsis thaliana[J]. New Phytologist, 2009, 181(1):71-78
    Xu J, Sun J, Du L, et al. Comparative transcriptome analysis of cadmium responses in Solanum nigrum and Solanum torvum[J]. New Phytologist, 2012, 196(1):110-124
    张腾. 转IRT1基因龙葵毛状根体系的建立及其对镉胁迫响应的初步探讨[D]. 北京:北京交通大学, 2016:52-57 Zhang T. Establishment of IRT1 transgenic hairy roots line of Solanum nigrum L. and preliminary study on its response to cadmium stress[D]. Beijing:Beijing Jiaotong University, 2016

    :52-57(in Chinese)

    Seregin I V, Kozhevnikova A D. Roles of root and shoot tissues in transport and accumulation of cadmium, lead, nickel and strontium[J]. Russian Journal of Plant Physiology, 2008, 55(1):l-22
    仇硕, 张敏, 孙延东, 等. 植物重金属镉(Cd2+)、吸收、运输、积累及耐性机理研究进展[J]. 西北植物学报, 2006, 26(12):2615-2622

    Qiu S, Zhang M, Sun Y D, et al. Research progress on plant heavy metal cadmium (Cd2+), absorption, transportation, accumulation and tolerance mechanism[J]. Acta Botanica Boreali-Occidentalia Sinica, 2006, 26(12):2615-2622(in Chinese)

    李志贤, 冯涛, 陈章, 等. 镉胁迫对龙葵镉的吸收积累及生理响应的影响[J]. 水土保持学报, 2017, 31(5):331-336

    Li Z X, Feng T, Chen Z, et al. Effects of different levels Cd stress on Cd uptake and physiological response of Solanum sigrum L.[J]. Journal of Soil and Water Conservation, 2017, 31(5):331-336(in Chinese)

    张玉秀, 柴团耀. 植物重金属调节基因的分离和功能[M]. 北京:中国农业出版社, 2006:33 Zhang Y X, Chai T Y. Isolation and Function of Heavy Metal Responsive Gene in Plant[M]. Beijing:China Agricultural Press, 2006:33(in Chinese)
    孙正国. 龙葵对镉污染土壤的响应及其修复效应研究[J]. 江苏农业科学, 2015, 43(10):397-401
    Mendoza-Cozatl D G, Moreno-Sanchez R. Control of glutathione and phytochelatin synthesis under cadmium stress. Pathway modeling for plants[J]. Journal of Theoretical Biology, 2006, 238(4):919-936
    Xu J, Yin H, Wang W, et al. Identification of Cd-responsive genes of Solanum nigrum seedlings through differential display[J]. Plant Molecular Biology Reporter, 2009, 27(4):563-569
    张君诚, 孟玉环, 宋育红, 等. 植物Ca2+-CaM信号系统及其调控研究进展[J]. 重庆师范大学学报:自然科学版, 2005, 22(4):49-52

    Zhang J C, Meng Y H, Song Y H, et al. Research developments of Ca2+-CaM signal system and its regulation in plant[J]. Journal of Chongqing Normal University:Natural Science Edition, 2005, 22(4):49-52(in Chinese)

    Belcastro M, Marino T, Russo N, et al. The role of glutathione in cadmium ion detoxification:Coordination modes and binding properties-A density functional study[J]. Journal of Inorganic Biochemistry, 2009, 103(1):50-57
    Mendoza-Cozatl D G, Jobe T O, Hauser F, et al. Long-distance transport, vacuolar sequestration, tolerance, and transcriptional responses induced by cadmium and arsenic[J]. Current Opinion in Plant Biology, 2011, 14(5):554-562
    Huang J, Zhang Y, Peng J S, et al. Fission yeast HMT1 lowers seed cadmium through phytochelatin-dependent vacuolar sequestration in Arabidopsis[J]. Plant Physiology, 2012, 158(4):1779-1788
    Zhu X F, Wang Z W, Dong F, et al. Exogenous auxin alleviates cadmium toxicity in Arabidopsis thaliana by stimulating synthesis of hemicellulose 1 and increasing the cadmium fixation capacity of root cell walls[J]. Journal of Hazardous Materials, 2013, 263:398-403
    王姗姗. 龙葵对镉富集的主要特征研究[D]. 北京:中国科学院研究生院, 2013:58-64 Wang S S. Main characteristics of Solanum nigrum L. accumulating cadmium[D]. Beijing:Graduate School of Chinese Academy of Sciences, 2013:58

    -64(in Chinese)

    Wei S, Zeng X, Wang S, et al. Hyperaccumulative property of Solanum nigrum L. to Cd explored from cell membrane permeability, subcellular distribution, and chemical form[J]. Journal of Soils and Sediments, 2014, 14(3):558-566
    AbdElgawad H, Zinta G, Hamed B A, et al. Maize roots and shoots show distinct profiles of oxidative stress and antioxidant defense under heavy metal toxicity[J]. Environmental Pollution, 2020, 258:113705
    Shahkolaie S S, Baranimotlagh M, Dordipour E, et al. Effects of inorganic and organic amendments on physiological parameters and antioxidant enzymes activities in Zea mays L. from a cadmium-contaminated calcareous soil[J]. South African Journal of Botany, 2020, 128:132-140
    Wang J, Wang H, Chen J, et al. Xylem development, cadmium bioconcentration, and antioxidant defense in Populus×euramericana stems under combined conditions of nitrogen and cadmium[J]. Environmental and Experimental Botany, 2019, 164:1-9
    Rehman M Z U, Rizwan M, Ali S, et al. Remediation of heavy metal contaminated soils by using Solanum nigrum:A review[J]. Ecotoxicology and Environmental Safety, 2017, 143:236-248
    Khan A R, Ullah I, Khan A L, et al. Phytostabilization and physicochemical responses of Korean ecotype Solanum nigrum L. to cadmium contamination[J]. Water, Air, & Soil Pollution, 2014, 225(10):2147
    Xu J, Zhu Y, Ge Q, et al. Comparative physiological responses of Solanum nigrum and Solanum torvum to cadmium stress[J]. New Phytologist, 2012, 196(1):125-138
    Sun R L, Zhou Q X, Sun F H, et al. Antioxidative defense and proline/phytochelatin accumulation in a newly discovered Cd-hyperaccumulator, Solanum nigrum L.[J]. Environmental and Experimental Botany, 2007, 60(3):468-476
    Fidalgo F, Freitas R, Ferreira R, et al. Solanum nigrum L. antioxidant defense system isozymes are regulated transcriptionally and posttranslationally in Cd-induced stress[J]. Environmental and Experimental Botany, 2011, 72(2):312-319
    Thiel J, Rolletschek H, Friedel S, et al. Seed-specific elevation of non-symbiotic hemoglobin AtHb1:Beneficial effects and underlying molecular networks in Arabidopsis thaliana[J]. BMC Plant Biology, 2011, 11(1):48
    Rai P K, Kim K H, Lee S S, et al. Molecular mechanisms in phytoremediation of environmental contaminants and prospects of engineered transgenic plants/microbes[J]. Science of the Total Environment, 2020, 705:135858
    Tao Q, Zhao J, Li J, et al. Unique root exudate tartaric acid enhanced cadmium mobilization and uptake in Cd-hyperaccumulator Sedum alfredii[J]. Journal of Hazardous Materials, 2020, 383:121177
    Hussain A, Amna, Kamran M A, et al. Individual and combinatorial application of Kocuria rhizophila and citric acid on phytoextraction of multi-metal contaminated soils by Glycine max L.[J]. Environmental and Experimental Botany, 2019, 159:23-33
    Rai P K. Heavy metal phytoremediation from aquatic ecosystems with special reference to macrophytes[J]. Critical Reviews in Environmental Science and Technology, 2009, 39(9):697-753
    Sun R, Zhou Q, Jin C. Cadmium accumulation in relation to organic acids in leaves of Solanum nigrum L. as a newly found cadmium hyperaccumulator[J]. Plant and Soil, 2006, 285(1-2):125-134
    UdDin I, Bano A, Masood S. Chromium toxicity tolerance of Solanum nigrum L. and Parthenium hysterophorus L. plants with reference to ion pattern, antioxidation activity and root exudation[J]. Ecotoxicology and Environmental Safety, 2015, 113:271-278
    Al Khateeb W, Al-Qwasemeh H. Cadmium, copper and zinc toxicity effects on growth, proline content and genetic stability of Solanum nigrum L., a crop wild relative for tomato; comparative study[J]. Physiology and Molecular Biology of Plants, 2014, 20(1):31-39
    Xu J, Yin H X, Li X. Protective effects of proline against cadmium toxicity in micropropagated hyperaccumulator, Solanum nigrum L.[J]. Plant Cell Reports, 2009, 28(2):325-333
    汪敦飞, 郑新宇, 肖清铁, 等. 铜绿假单胞菌对镉胁迫苗期水稻根系活力及叶片生理特性的影响[J]. 应用生态学报, 2019, 30(8):2767-2774

    Wang D F, Zheng X Y, Xiao Q T, et al. Effects of Pseudomonas aeruginosa on root activity and leaf physiological characteristics in rice (Oryza sativa L.) seedling under cadmium stress[J]. Chinese Journal of Applied Ecology, 2019, 30(8):2767-2774(in Chinese)

    铁得祥, 胡红玲, 陈洪, 等. 桢楠幼树生长及抗性生理对镉胁迫的响应[J]. 西北农林科技大学学报:自然科学版, 2019, 47(12):104-114

    Tie D X, Hu H L, Chen H, et al. Responses of growth and resistant physiology of Phoebe zhennan saplings to cadmium stress[J]. Journal of Northwest A&F University:Natural Science Edition, 2019, 47(12):104-114(in Chinese)

    郭智, 原海燕, 陈留根, 等. 镉胁迫对龙葵幼苗氮代谢及其相关酶活性的影响[J]. 生态环境学报, 2010, 19(5):1087-1091

    Guo Z, Yuan H Y, Chen L G, et al. Effect of cadmium on nitrogen metabolism and relative enzymes activity in Solanum nigrum L. seedling[J]. Ecology and Environmental Sciences, 2010, 19(5):1087-1091(in Chinese)

    潘瑞炽. 植物生理学[M]. 第5版. 北京:高等教育出版社, 2004:274 Pan R C. Plant Physiology[M]. Fifth Edition. Beijing:Higher Education Press, 2004:274(in Chinese)
    Gao Y, Zhou P, Mao L, et al. Phytoextraction of cadmium and physiological changes in Solanum nigrumas as novel cadmium hyperaccumulator[J]. Russian Journal of Plant Physiology, 2010, 57(4):501-508
    唐星林, 金洪平, 周晨, 等. 镉胁迫对龙葵叶绿素荧光和光合生化特性的影响[J]. 中南林业科技大学学报, 2019, 39(9):102-108

    Tang X L, Jin H P, Zhou C, et al. Effects of cadmium stress on chlorophyll fluorescence and photosynthetic biochemical characteristics in leaves of Solanum nigrum[J]. Journal of Central South University of Forestry & Technology, 2019, 39(9):102-108(in Chinese)

    Clemens S. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants[J]. Biochimie, 2006, 88(11):1707-1719
    Tang L, Yao A, Yuan M, et al. Transcriptional up-regulation of genes involved in photosynthesis of the Zn/Cd hyperaccumulator Sedum alfredii in response to zinc and cadmium[J]. Chemosphere, 2016, 164:190-200
    Yang S, Zu Y, Li B, et al. Response and intraspecific differences in nitrogen metabolism of alfalfa (Medicago sativa L.) under cadmium stress[J]. Chemosphere, 2019, 220:69-76
    Boussama N, Ouariti O, Suzuki A, et al. Cd-Stress on nitrogen assimilation[J]. Journal of Plant Physiology, 1999, 155(3):310-317
    李燕, 路艳艳. 重金属对超富集植物生态毒理和氮代谢影响机制研究进展[J]. 吉林农业:学术版, 2010(10):45, 48
    柴小清, 印莉萍, 刘祥林, 等. 不同浓度的NO3-和NH4+对小麦根谷氨酰胺合成酶及其相关酶的影响[J]. 植物学报, 1996, 38(10):803-808

    Chai X Q, Yin L P, Liu X L, et al. Influence of different concentrations of NO3- and NH4+ on the activity of glutamine synthetase and other relevant enzymes of nitrogen metabolism in wheat roots[J]. Acta Botanica Sinica, 1996, 38(10):803-808(in Chinese)

    Yan Y Y, Yang B, Lan X Y, et al. Cadmium accumulation capacity and resistance strategies of a cadmium-hypertolerant fern-Microsorum fortunei[J]. Science of the Total Environment, 2019, 649:1209-1223
    陈镔, 谭淑端, 董方旭, 等. 重金属对植物的毒害及植物对其毒害的解毒机制[J]. 江苏农业科学, 2019, 47(4):34-38

    Chen B, Tan S D, Dong F X, et al. Toxic effects of heavy metals on plants and detoxification mechanism of plants[J]. Jiangsu Agricultural Sciences, 2019, 47(4):34-38(in Chinese)

    MacNair M R. Tolerance of Higher Plants to Toxic Materials[M]//Bishop J M, Cook L M. (ed.) Genetic Consequences of Man-made Change. London & New York:Academic Press, 1981:177-208
    Farquhar G D, von Caemmerer S, Berry J A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species[J]. Planta, 1980, 149:78-90
  • 加载中
计量
  • 文章访问数:  3019
  • HTML全文浏览数:  3019
  • PDF下载数:  113
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-01-07

龙葵(Solanum nigrum L.)超富集镉的生理和分子机制研究进展

    通讯作者: 王宏镔, E-mail: whb1974@126.com
    作者简介: 杨晓远(1994-),女,硕士研究生,研究方向为污染与恢复生态学,E-mail:534147647@qq.com
  • 1. 昆明理工大学环境科学与工程学院, 昆明 650500;
  • 2. 云南省土壤固碳与污染控制重点实验室, 昆明 650500
基金项目:

国家重点研发计划“高背景与矿业活动叠加影响区旱地和果园镉砷污染土壤修复技术研究”(2018YFD0800603-04)

摘要: 超富集植物在重金属污染土壤植物修复中具有重要的应用前景,已成为一种重要的生物资源。自2005年发现龙葵(Solanum nigrum L.)能超量富集镉以来,中国国内外围绕其超富集镉的机制和土壤修复应用开展了很多研究。本文从根系对镉的快速吸收、镉从根到地上部的有效转运以及较强的体内解毒功能(如植物细胞的区隔化、抗氧化、有机酸生成、渗透物质调节、光合和呼吸作用的维持以及氮代谢调节等)3个方面,详细综述了龙葵超富集镉的生理和分子机制。在总结相关研究成果的基础上,展望了该领域今后的发展趋势,建议应结合光合生化模型研究龙葵对镉的光合响应机制,并通过基因编辑技术提高修复效率和优化风险评估效果,同时加强镉胁迫下龙葵信号通路的精细调控等方面研究,以期为深入揭示龙葵超富集镉的机制提供参考。

English Abstract

参考文献 (65)

目录

/

返回文章
返回