天津市中心城区集中供应管网末梢水的抗生素耐药基因污染特征研究
Profile of Antibiotic Resistance Genes in the Terminal Tap Water from the Center Area of Tianjin
-
摘要: 为了研究天津市中心城区集中供应管网末梢水的抗生素耐药基因(antibiotic resistance genes, ARGs)污染特征,采集了天津市中心城区6个采样点的管网末梢水样,分别采用微孔滤膜正压过滤法及核酸吸附-洗脱法富集水中细菌和胞外核酸后,利用实时定量PCR技术对15种胞内ARGs和胞外ARGs进行定量检测。结果表明,在待检的15种ARGs中,除了耐碳青霉烯类blaKPC未被发现外,其余ARGs(mcr-1、vanA、blaNDM-1、aadA、blaTEM、sul1、tetM、tetA、dfrA1、rpoB1、catA1、ermB、katG和qnrA)均在天津市中心城区所有管网末梢水样中检出,其中,mcr-1、vanA、aadA、blaTEM、sul1、tetM、tetA和dfrA1等8种在细胞内外含量均较高,分别占待检的胞内ARGs和胞外ARGs总量的97.25%和99.18%,以aadA最高,其次为blaTEM和sul1;细胞内ARGs总绝对浓度高于细胞外(P<0.05),前者为后者的3.8倍。天津市中心城区集中供应管网末梢普遍存在胞内ARGs和胞外ARGs污染,且细胞内外超级耐药基因均有检出。Abstract: To study the profile of intracellular and extracellular antibiotic resistant genes (iARGs and eARGs) in the terminal tap water from the six central districts of Tianjin City, tap water samples were collected from each area. After bacteria and free eDNA were collected with filter membrane or adsorption-elution technique, quantitative real-time PCR technology was used to detect 15 types of iARGs and eARGs. We discovered that all the observed ARGs with the exception of blaKPC were found in the terminal tap water. Above all, the contents of mcr-1, vanA, blaNDM-1, aadA, blaTEM, sul1, tetM, tetA and dfrA1 occupied the most, reaching to 97.25% and 99.18% of the total of iARGs and eARGs. Gene aadA was the highest and blaTEM, sul1 came to the next. The absolute abundance of iARGs was 3.8 times higher than that of eARGs. The pollution of iARGs and eARGs occurred in the terminal tap water in Tianjin, especially the super antibiotic resistance genes.
-
Naamala J, Jaiswal S K, Dakora F D. Antibiotics resistance in Rhizobium:Type, process, mechanism and benefit for agriculture[J]. Current Microbiology, 2016, 72(6):804-816 Seal B S, Lillehoj H S, Donovan D M, et al. Alternatives to antibiotics:A symposium on the challenges and solutions for animal production[J]. Animal Health Research Reviews, 2013, 14(1):78-87 Pruden A, Pei R T, Storteboom H, et al. Antibiotic resistance genes as emerging contaminants:Studies in northern Colorado[J]. Environmental Science & Technology, 2006, 40(23):7445-7450 Khan H, Miao X C, Liu M K, et al. Behavior of last resort antibiotic resistance genes (mcr-1 and blaNDM-1) in a drinking water supply system and their possible acquisition by the mouse gut flora[J]. Environmental Pollution, 2020, 259:113818 曹振华, 张媛, 马奔, 等. 南京地区污水厂、自来水厂及长江中抗性基因MCR-1和NDM-1的污染特征[J]. 环境科学研究, 2019, 32(3):406-414 Cao Z H, Zhang Y, Ma B, et al. Pollution characteristics of MCR-1 and NDM-1 in wastewater treatment plants, waterworks and Yangtze River of Nanjing section[J]. Research of Environmental Sciences, 2019, 32(3):406-414(in Chinese)
Wang D N, Liu L, Qiu Z G, et al. A new adsorption-elution technique for the concentration of aquatic extracellular antibiotic resistance genes from large volumes of water[J]. Water Research, 2016, 92:188-198 Jin M, Liu L, Wang D N, et al. Chlorine disinfection promotes the exchange of antibiotic resistance genes across bacterial genera by natural transformation[J]. The ISME Journal, 2020, 14(7):1847-1856 Hao H, Shi D Y, Yang D, et al. Profiling of intracellular and extracellular antibiotic resistance genes in tap water[J]. Journal of Hazardous Materials, 2019, 365:340-345 中华人民共和国卫生部, 中国国家标准化管理委员会. 生活饮用水标准:GB/T 5749-2006[S]. 北京:中国标准出版社,2007 中华人民共和国卫生部, 中国国家标准化管理委员会. 生活饮用水标准检验方法微生物指标:GB/T 5750.12-2006[S]. 北京:中国标准出版社, 2007 Liu S S, Qu H M, Yang D, et al. Chlorine disinfection increases both intracellular and extracellular antibiotic resistance genes in a full-scale wastewater treatment plant[J]. Water Research, 2018, 136:131-136 Volkmann H, Schwartz T, Bischoff P, et al. Detection of clinically relevant antibiotic-resistance genes in municipal wastewater using real-time PCR (TaqMan)[J]. Journal of Microbiological Methods, 2004, 56(2):277-286 Daniels J B, Campbell D, Boyd S, et al. Development and validation of a clinical laboratory improvement amendments-compliant multiplex real-time PCR assay for detection of mcr genes[J]. Microbial Drug Resistance, 2019, 25(7):991-996 Zheng F, Sun J J, Cheng C C, et al. The establishment of a duplex real-time PCR assay for rapid and simultaneous detection of blaNDM and blaKPC genes in bacteria[J]. Annals of Clinical Microbiology and Antimicrobials, 2013, 12:30 董莲华, 隋志伟, 王晶, 等. 数字PCR方法准确测量质粒DNA拷贝浓度[J]. 计量学报, 2017, 38(2):247-251 Dong L H, Sui Z W, Wang J, et al. Accurate plasmid DNA copy concentration quantification by digital PCR[J]. Acta Metrologica Sinica, 2017, 38(2):247-251(in Chinese)
赵明, 姚德贵. 南水北调中线工程通水对天津引滦供水的影响与对策探析[J]. 海河水利, 2016(3):8-10 Zhang G D, Lu S Y, Wang Y Q, et al. Occurrence of antibiotics and antibiotic resistance genes and their correlations in Lower Yangtze River, China[J]. Environmental Pollution, 2020, 257:113365 王若楠, 马奔, 王新宇, 等. 南京地区污水厂、自来水厂及长江水域MCR-1和NDM-1携带菌耐药特征[J]. 生态毒理学报, 2019, 14(2):140-152 Wang R N, Ma B, Wang X Y, et al. The antibiotic resistance profiles of MCR-1 and NDM-1 hosting bacteria in a wastewater treatment plant, drinking water treatment plant and the Yangtze River in Nanjing[J]. Asian Journal of Ecotoxicology, 2019, 14(2):140-152(in Chinese)
Chen J, Jin M, Qiu Z G, et al. A survey of drug resistance bla genes originating from synthetic plasmid vectors in six Chinese rivers[J]. Environmental Science & Technology, 2012, 46(24):13448-13454 张新波, 宋姿, 张丹, 等. 天津供水系统中抗生素分布变化特征与健康风险评价[J]. 环境科学, 2018, 39(1):99-108 Zhang X B, Song Z, Zhang D, et al. Distribution characteristics and health risk assessment of antibiotics in the water supply system in Tianjin[J]. Environmental Science, 2018, 39(1):99-108(in Chinese)
Shi P, Jia S Y, Zhang X X, et al. Metagenomic insights into chlorination effects on microbial antibiotic resistance in drinking water[J]. Water Research, 2013, 47(1):111-120 Hou A M, Yang D, Miao J, et al. Chlorine injury enhances antibiotic resistance in Pseudomonas aeruginosa through over expression of drug efflux pumps[J]. Water Research, 2019, 156:366-371 侯爱明, 刘珊珊, 杨栋, 等. 生活饮用水中损伤性非苛养菌的耐药性分析[J]. 中国消毒学杂志, 2017, 34(8):705-708 Hou A M, Liu S S, Yang D, et al. Analysis on antibiotic resistance of non-fastidous injured bacteria in tap water[J]. Chinese Journal of Disinfection, 2017, 34(8):705-708(in Chinese)
Liang Z W, Li W H, Yang S Y, et al. Extraction and structural characteristics of extracellular polymeric substances (EPS), pellets in autotrophic nitrifying biofilm and activated sludge[J]. Chemosphere, 2010, 81(5):626-632 Xi C W, Zhang Y L, Marrs C F, et al. Prevalence of antibiotic resistance in drinking water treatment and distribution systems[J]. Applied and Environmental Microbiology, 2009, 75(17):5714-5718 Sanganyado E, Gwenzi W. Antibiotic resistance in drinking water systems:Occurrence, removal, and human health risks[J]. The Science of the Total Environment, 2019, 669:785-797 Dodd M C. Potential impacts of disinfection processes on elimination and deactivation of antibiotic resistance genes during water and wastewater treatment[J]. Journal of Environmental Monitoring, 2012, 14(7):1754-1771 He H, Zhou P R, Shimabuku K K, et al. Degradation and deactivation of bacterial antibiotic resistance genes during exposure to free chlorine, monochloramine, chlorine dioxide, ozone, ultraviolet light, and hydroxyl radical[J]. Environmental Science & Technology, 2019, 53(4):2013-2026 Roller S D, Olivieri V P, Kawata K. Mode of bacterial inactivation by chlorine dioxide[J]. Water Research, 1980, 14(6):635-641 程晨, 谭枝微, 刘颖梅, 等. 耐万古霉素肠球菌基因分型及耐药性分析[J]. 临床检验杂志, 2019, 37(7):504-507 Cheng C, Tan Z W, Liu Y M, et al. Genotype and analysis of drug resistance for vancomycin resistant Enterococci[J]. Chinese Journal of Clinical Laboratory Science, 2019, 37(7):504-507(in Chinese)
计量
- 文章访问数: 1851
- HTML全文浏览数: 1851
- PDF下载数: 52
- 施引文献: 0