纳米TiO2对幼年小鼠血浆代谢谱影响的代谢组学研究
Metabonomics Study on the Effect of Nano-TiO2 on the Plasma Metabolism Spectrum of Young Mice
-
摘要: 观察不同染毒剂量的纳米TiO2对ICR幼年小鼠血浆代谢谱变化的影响,寻找潜在的毒性效应的生物标志物。将幼年小鼠随机分为对照组以及10、30、100和300 mg·kg-1不同纳米TiO2染毒组进行28 d短期毒性试验,利用代谢组学技术初步筛选出TiO2毒性作用潜在的生物标志物,运用KEGG数据库对生物标志物进行拓扑分析;并利用靶向定量技术检测血浆胆酸、去氧胆酸、熊去氧胆酸和牛磺胆酸的含量变化,从而探究TiO2毒性作用相对应的生物标志物。从血浆中筛选出49种差异代谢物,发现纳米TiO2染毒后主要导致磷脂类及胆汁酸类化合物的异常。小鼠经过纳米TiO2 28 d染毒后,其毒性作用可能与磷脂代谢及胆汁酸代谢异常相关,血浆中的胆汁酸可以作为纳米TiO2产生肝脏毒性作用的生物标志物。Abstract: Changes in the plasma metabolism of young ICR mice after exposure to nano-TiO2 at different doses were measured to investigate the mechanism of its toxic side-effects and to identify its toxicity-related biological targets. Mice were assigned randomly to control group and nano-TiO2 (10, 30, 100, or 300 mg·kg-1) exposure groups. Plasma data were analyzed using metabonomics technology to identify potential biomarkers. Topology of biomarkers was determined using the KEGG database. Contents of cholic acid, deoxycholic acid, ursodeoxycholic acid and taurocholic acid in plasma were measured by targeted quantitative methods to find the biomarkers corresponding to the toxic effects of TiO2. Forty-nine metabolites were screened from plasma. The toxicity of nano-TiO2 resulted mainly from an abnormality of phospholipids and bile-acid compounds. The toxicity of nano-TiO2 in mice after 28 d exposure may be related to the abnormal metabolism of phospholipids and bile-acid compounds.
-
Key words:
- nano-TiO2 /
- young mice /
- metabonomics /
- plasma /
- bile acid /
- phospholipid metabolism
-
Bouwmeester H, van der Zande M, Jepson M A. Effects of food borne nanomaterials on gastrointestinal tissues and microbiota[J]. WIREs Nanomedicine and Nanobiotechnology, 2018, 10(1):11-15 李英杰, 白明. 二氧化钛的特性及在食品中的应用[J]. 食品安全导刊, 2010(8):58-59 Li Y J, Bai M. The characteristics of titanium dioxide and its application in food[J].China Food Safety Magazine, 2010 (8):58-59(in Chinese)
张永亮, 殷钰欣, 叶艺璇, 等. 不同粒径二氧化钛短期摄入对幼年大鼠小肠铁和葡萄糖吸收的影响[J]. 环境与职业医学, 2017, 34(9):778-784 Zhang Y L, Yin Y X, Ye Y X, et al. Effects of short-term exposure to different sizes of titanium dioxide on iron and glucose absorption in small intestine young rats[J]. Journal of Environmental & Occupational Medicine, 2017, 34(9):778-784(in Chinese)
Bouwmeester H, Dekkers S, Noordam M Y, et al. Review of health safety aspects of nanotechnologies in food production[J]. Regulatory Toxicology and Pharmacology, 2009, 53(1):52-62 Wu J H, Liu W, Xue C B, et al. Toxicity and penetration of TiO2 nanoparticles in hairless mice and porcine skin after subchronic dermal exposure[J]. Toxicology Letters, 2009, 191(1):1-8 Liu D, Hong F S, Zhou J L, et al. Lung inflammation caused by long-term exposure to titanium dioxide in mice involving in NF-κB signaling pathway[J]. Journal of Biomedical Materials Research Part A, 2017, 105(3):720-727 Ze Y G, Zheng L, Zhao X Y, et al. Molecular mechanism of titanium dioxide nanoparticles-induced oxidative injury in the brain of mice[J]. Chemosphere, 2013, 92(9):1183-1189 Meena R, Paulraj R. Oxidative stress mediated cytotoxicity of TiO2 nano anatase in liver and kidney of Wistar rat[J]. Toxicological & Environmental Chemistry, 2012, 94(1):146-163 Song Z M, Chen N, Liu J H, et al. Biological effect of food additive titanium dioxide nanoparticles on intestine:An in vitro study[J]. Journal of Applied Toxicology, 2015, 35(10):1169-1178 MacNicoll A, Kelly M, Aksoy H, et al. A study of the uptake and biodistribution of nano-titanium dioxide using in vitro and in vivo models of oral intake[J]. Journal of Nanoparticle Research, 2015, 17(2):1-20 Geraets L, Oomen A G, Krystek P, et al. Tissue distribution and elimination after oral and intravenous administration of different titanium dioxide nanoparticles in rats[J]. Particle and Fibre Toxicology, 2014, 11:30 Heringa M B, Geraets L, van Eijkeren J C, et al. Risk assessment of titanium dioxide nanoparticles via oral exposure, including toxicokinetic considerations[J]. Nanotoxicology, 2016, 10(10):1515-1525 Wang Y, Chen Z J, Ba T, et al. Susceptibility of young and adult rats to the oral toxicity of titanium dioxide nanoparticles[J]. Small, 2013, 9(9-10):1742-1752 Sanz Y, Olivares M, Moya-Pérez Á, et al. Understanding the role of gut microbiome in metabolic disease risk[J]. Pediatric Research, 2015, 77(1-2):236-244 朱超, 梁琼麟, 王义明, 等. 代谢组学的整合化发展及其新进展[J]. 分析化学, 2010, 38(7):1060-1068 Zhu C, Liang Q L, Wang Y M, et al. Integrated development of metabonomics and its new progress[J]. Chinese Journal of Analytical Chemistry, 2010, 38(7):1060-1068(in Chinese)
Ji H N, Song N N, Ren J, et al. Metabonomics reveals bisphenol A affects fatty acid and glucose metabolism through activation of LXR in the liver of male mice[J]. Science of the Total Environment, 2020, 703:134681 Ji H N, Song N N, Ren J, et al. Systems toxicology approaches reveal the mechanisms of hepatotoxicity induced by diosbulbin B in male mice[J]. Chemical Research in Toxicology, 2020, 33(6):1389-1402 王朋倩, 吴茵, 戴丽, 等. 基于UHPLC-MS的吴茱萸汤影响虚寒呕吐大鼠尿液代谢谱的研究[J]. 中草药, 2019, 50(18):4352-4363 Wang P Q, Wu Y, Dai L, et al. Effect of Wuzhuyu Decoction on urine metabolic spectrum in rats with deficiency cold and vomit based on UPLC-MS.[J]Chinese Traditional and Herbal Drugs, 2019, 50(18):4352-4363(in Chinese)
Cui Y, Han J Y, Ren J, et al. Untargeted LC-MS-based metabonomics revealed that aristolochic acid I induces testicular toxicity by inhibiting amino acids metabolism, glucose metabolism,β-oxidation of fatty acids and the TCA cycle in male mice[J]. Toxicology and Applied Pharmacology, 2019, 373:26-38 李海山, 姬海南, 宋乃宁, 等. 不同种间、性别和年龄小鼠肝脏代谢谱的差异研究[J]. 中国药物警戒, 2020, 17(1):6-16 Li H S, Ji H N, Song N N, et al. Study on the difference of liver metabolism spectrum among different species, sexes and ages of mice[J]. Chinese Journal of Pharmacovigilance, 2020, 17(1):6-16(in Chinese)
Li W T, Zhang W P, Chang M Y, et al. Quadrupole orbitrap mass spectrometer-based metabonomic elucidation of influences of short-term di(2-ethylhexyl) phthalate exposure on cardiac metabolism in male mice[J]. Chemical Research in Toxicology, 2018, 31(11):1185-1194 Vance J E, Vance D E. Phospholipid biosynthesis in mammalian cells[J]. Biochemistry and Cell Biology, 2004, 82(1):113-128 Weltzien H U. Cytolytic and membrane-perturbing properties of lysophosphatidylcholine[J]. Biochimica et Biophysica Acta, 1979, 559(2-3):259-287 Canty D J, Zeisel S H. Lecithin and choline in human health and disease[J]. Nutrition Reviews, 1994, 52(10):327-339 Chiang J Y L. Bile acid metabolism and signaling[J]. Comprehensive Physiology, 2013, 3(3):1191-1212 Jaeschke H, Gores G J, Cederbaum A I, et al. Mechanisms of hepatotoxicity[J]. Toxicological Sciences, 2002, 65(2):166-176 Nunes de Paiva M J, Pereira Bastos de Siqueira M E. Increased serum bile acids as a possible biomarker of hepatotoxicity in Brazilian workers exposed to solvents in car repainting shops[J]. Biomarkers:Biochemical Indicators of Exposure, Response, and Susceptibility to Chemicals, 2005, 10(6):456-463
计量
- 文章访问数: 1929
- HTML全文浏览数: 1929
- PDF下载数: 100
- 施引文献: 0