焦化场地典型多环芳烃类污染物精细化风险评估

郭晓欣, 范婧婧, 周友亚, 张超艳, 王淑萍, 闫珂, 熊杰. 焦化场地典型多环芳烃类污染物精细化风险评估[J]. 生态毒理学报, 2021, 16(1): 155-164. doi: 10.7524/AJE.1673-5897.20200930003
引用本文: 郭晓欣, 范婧婧, 周友亚, 张超艳, 王淑萍, 闫珂, 熊杰. 焦化场地典型多环芳烃类污染物精细化风险评估[J]. 生态毒理学报, 2021, 16(1): 155-164. doi: 10.7524/AJE.1673-5897.20200930003
Guo Xiaoxin, Fan Jingjing, Zhou Youya, Zhang Chaoyan, Wang Shuping, Yan Ke, Xiong Jie. Refined Risk Assessment of Typical Polycyclic Aromatic Hydrocarbons in a Coking Site[J]. Asian journal of ecotoxicology, 2021, 16(1): 155-164. doi: 10.7524/AJE.1673-5897.20200930003
Citation: Guo Xiaoxin, Fan Jingjing, Zhou Youya, Zhang Chaoyan, Wang Shuping, Yan Ke, Xiong Jie. Refined Risk Assessment of Typical Polycyclic Aromatic Hydrocarbons in a Coking Site[J]. Asian journal of ecotoxicology, 2021, 16(1): 155-164. doi: 10.7524/AJE.1673-5897.20200930003

焦化场地典型多环芳烃类污染物精细化风险评估

    作者简介: 郭晓欣(1992-),女,硕士,研究方向为污染场地健康风险评估,E-mail:guoxx2017@126.com
    通讯作者: 周友亚, E-mail: zhouyy@craes.org.cn 张超艳, E-mail: chaoyanzhang@126.com
  • 基金项目:

    国家重点研发计划(土壤专项)项目(2018YFC1803001);国家自然科学基金资助项目(41977377)

  • 中图分类号: X171.5

Refined Risk Assessment of Typical Polycyclic Aromatic Hydrocarbons in a Coking Site

    Corresponding authors: Zhou Youya, zhouyy@craes.org.cn ;  Zhang Chaoyan, chaoyanzhang@126.com
  • Fund Project:
  • 摘要: 为准确评估多环芳烃(PAHs)污染土壤对人体的健康风险,解决目前基于总量风险评估导致土壤PAHs修复目标值过严的问题,采用德国标准研究院颁布的生物可给性测试方式研究了石家庄某焦化厂土壤中苯并荧蒽(BBF)、苯并荧蒽(BKF)、苯并芘(BAP)、茚并芘(IPY)和二苯并蒽(DBA)共5种PAHs的生物可给性,并基于考虑和不考虑生物可给性计算了场地PAHs经口摄入途径下的人体健康致癌风险及修复目标值。结果表明,(1)调查研究区域BBF、BAP、IPY和DBA浓度超出《土壤环境质量建设用地土壤污染风险管控标准(试行)》(GB36600-2018)规定的第一类用地筛选值;(2)土壤中PAHs的生物可给性范围为14.71%~56.42%;(3)在考虑生物可给性后,4种超标PAHs的健康风险均有所降低,其中BBF的风险值已低于国家导则规定的人体可接受水平;(4)引入生物可给性后BAP、IPY和DBA的修复目标值(95% UCL)为2.83、34.63和1.95 mg·kg-1,分别提高了2.6倍、3.4倍和1.5倍。对焦化场地典型污染物PAHs进行精细化健康风险评估,可以在一定程度上克服现有技术导则计算土壤PAHs修复目标值过于严格的问题。
  • 加载中
  • 贾晓洋, 姜林, 夏天翔, 等. 焦化厂土壤中PAHs的累积、垂向分布特征及来源分析[J]. 化工学报, 2011, 62(12):3525-3531

    Jia X Y, Jiang L, Xia T X, et al. Analysis on accumulation, distribution and origin of polycyclic aromatic hydrocarbons in soils under a coking plant[J]. CIESC Journal, 2011, 62(12):3525-3531(in Chinese)

    黄嵘, 尹君, 李春华. 土壤对多环芳烃吸附的研究进展[J]. 上海农业科技, 2009(4):26-28
    Huang Q, Li F S, Xiao R, et al. Characterization of organo-mineral aggregates of chernozem in northeast China and their adsorption behavior to phenanthrene[J]. Soil Science Society of America Journal, 2008, 72(2):362-369
    Christian G, Lizzi A. Human bioaccessibility of heavy metals and PAH from soil[R]. Odense:Danish Environmental Protection Agency, 2003
    中华人民共和国生态环境部. 建设用地土壤污染风险评估技术导则:HJ 25.3-2019[S]. 北京:中国环境科学出版社, 2019
    中华人民共和国生态环境部.土壤环境质量建设用地土壤污染风险管控标准(试行):GB36600-2018[S]. 北京:中国环境科学出版社, 2018
    Alexander M. Aging, bioavailability, and overestimation of risk from environmental pollutants[J]. Environmental Science & Technology, 2000, 34(20):4259-4265
    Ounnas F, Jurjanz S, Dziurla M A, et al. Relative bioavailability of soil-bound polycyclic aromatic hydrocarbons in goats[J]. Chemosphere, 2009, 77(1):115-122
    Jurjanz S, Rychen G. In vitro bioaccessibility of soil-bound polycyclic aromatic hydrocarbons in successive digestive compartments in cows[J]. Journal of Agricultural and Food Chemistry, 2007, 55(21):8800-8805
    Eom I C, Rast C, Veber A M, et al. Ecotoxicity of a polycyclic aromatic hydrocarbon (PAH)-contaminated soil[J]. Ecotoxicology and Environmental Safety, 2007, 67(2):190-205
    姜林, 钟茂生, 张丹, 等. 污染场地土壤多环芳烃(PAHs)生物可利用浓度的健康风险评价方法[J]. 生态环境学报, 2011, 20(Z1):1168-1175

    Jiang L, Zhong M S, Zhang D, et al. Health risk assessment based on the bioaccessibile concentration of PAHs in soil[J]. Ecology and Environmental Sciences, 2011, 20(Z1):1168-1175(in Chinese)

    Adetunde O T, Mills G A, Olayinka K O, et al. Bioaccessibility-based risk assessment of PAHs in soils from sites of different anthropogenic activities in Lagos, Nigeria using the fed organic estimation human simulation test method[J]. Soil and Sediment Contamination, 2018, 27(6):501-512
    Tao S, Zhang D Y, Lu Y, et al. Mobility of polycyclic aromatic hydrocarbons in the gastrointestinal tract assessed using an in vitro digestion model with sorption rectification[J]. Environmental Science & Technology, 2010, 44(14):5608-5612
    Tarafdar A, Sinha A. Public health risk assessment with bioaccessibility considerations for soil PAHs at oil refinery vicinity areas in India[J]. Science of the Total Environment, 2018, 616-617:1477-1484
    United States Environmental Protection Agency (US EPA). Standard operating procedure for an in vitro bioaccessibility assay for lead and arsenic in soil[R]. Washington DC:US EPA, 2017
    United States Environmental Protection Agency (US EPA). Guidance for evaluating the oral bioavailability of metals in soils for use in human health risk assessment[R]. Washington DC:US EPA, 2007
    United States Environmental Protection Agency (US EPA). Soil dioxin relative bioavailability assay evaluation framework[R]. Washington DC:US EPA, 2017
    Deutsches Institut für Normung. DIN 19738-2017-06 Soil quality-bioaccessibility of organic and inorganic pollutants from contaminated soil material[S]. Berlin:Deutsches Institut für Normung, 2017
    United Kingdom Environment Agency. Measurement of the bioaccessibility of arsenic in UK soils[R]. Rotherham:United Kingdom Environment Agency, 2003
    范婧婧, 周友亚, 王淑萍, 等. 基于DIN测试的场地土壤PAHs生物可给性及健康风险研究[J]. 环境科学研究, 2020, 33(11):2629-2638

    Fan J J, Zhou Y Y, Wang S P, et al. Bioaccessibility and health risk of PAHs in site soil based on DIN test[J]. Research of Environmental Sciences, 2020, 33(11):2629-2638(in Chinese)

    Zhang R H, Han D, Jiang L, et al. Derivation of site-specific remediation goals by incorporating the bioaccessibility of polycyclic aromatic hydrocarbons with the probabilistic analysis method[J]. Journal of Hazardous Materials, 2020, 384:121239
    陈奕. 基于生物可给性分析工业场地土壤重金属污染的人体健康风险[J]. 生态毒理学报, 2020, 15(5):319-326

    Chen Y. Bioaccessibility and human health risk assessment of heavy metals in industrial sites[J]. Asian Journal of Ecotoxicology, 2020, 15(5):319-326(in Chinese)

    牟世芬, 刘勇建. 加速溶剂萃取的原理及应用[J]. 现代科学仪器, 2001(3):18-20 Mou S F, Liu Y J. The principle and application of accelerated solvent extraction[J]. Modern Scientific Instruments, 2001

    (3):18-20(in Chinese)

    王伟. 多环芳烃测定中净化方法的研究[J]. 干旱环境监测, 2009, 23(4):200-204

    ,208 Wang W. Research of the purification method in the determination of Polyaromatic hydrocarbons[J]. Arid Environmental Monitoring, 2009, 23(4):200-204,208(in Chinese)

    Lu M, Yuan D X, Lin Q M, et al. Assessment of the bioaccessibility of polycyclic aromatic hydrocarbons in topsoils from different urban functional areas using an in vitro gastrointestinal test[J]. Environmental Monitoring and Assessment, 2010, 166(1-4):29-39
    陈静, 王学军, 胡俊栋, 等. 多环芳烃(PAHs)在砂质土壤中的吸附行为[J]. 农业环境科学学报, 2005, 24(1):69-73

    Chen J, Wang X J, Hu J D, et al. Adsorption of polycyclic aromatic hydrocarbons (PAHs) in sand soils[J]. Journal of Agro-Environmental Science, 2005, 24(1):69-73(in Chinese)

    吕正勇, 杨兴伦, 王芳, 等. 温和溶剂提取预测土壤中多环芳烃的生物有效性[J]. 环境科学, 2011, 32(8):2462-2469

    Lv Z Y, Yang X L, Wang F, et al. Mild solvent extraction technique for the evaluation of PAHs bioavailability[J]. Environmental Science, 2011, 32(8):2462-2469(in Chinese)

    吕正勇, 杨兴伦, 王芳, 等. Tenax提取预测老化土壤中多环芳烃的生物有效性[J]. 中国环境科学, 2011, 31(4):647-656

    Lv Z Y, Yang X L, Wang F, et al. The tenax extraction technique to predict the bioavailability of aged PAHs in soil[J]. China Environmental Science, 2011, 31(4):647-656(in Chinese)

  • 加载中
计量
  • 文章访问数:  2819
  • HTML全文浏览数:  2819
  • PDF下载数:  114
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-09-30
郭晓欣, 范婧婧, 周友亚, 张超艳, 王淑萍, 闫珂, 熊杰. 焦化场地典型多环芳烃类污染物精细化风险评估[J]. 生态毒理学报, 2021, 16(1): 155-164. doi: 10.7524/AJE.1673-5897.20200930003
引用本文: 郭晓欣, 范婧婧, 周友亚, 张超艳, 王淑萍, 闫珂, 熊杰. 焦化场地典型多环芳烃类污染物精细化风险评估[J]. 生态毒理学报, 2021, 16(1): 155-164. doi: 10.7524/AJE.1673-5897.20200930003
Guo Xiaoxin, Fan Jingjing, Zhou Youya, Zhang Chaoyan, Wang Shuping, Yan Ke, Xiong Jie. Refined Risk Assessment of Typical Polycyclic Aromatic Hydrocarbons in a Coking Site[J]. Asian journal of ecotoxicology, 2021, 16(1): 155-164. doi: 10.7524/AJE.1673-5897.20200930003
Citation: Guo Xiaoxin, Fan Jingjing, Zhou Youya, Zhang Chaoyan, Wang Shuping, Yan Ke, Xiong Jie. Refined Risk Assessment of Typical Polycyclic Aromatic Hydrocarbons in a Coking Site[J]. Asian journal of ecotoxicology, 2021, 16(1): 155-164. doi: 10.7524/AJE.1673-5897.20200930003

焦化场地典型多环芳烃类污染物精细化风险评估

    通讯作者: 周友亚, E-mail: zhouyy@craes.org.cn ;  张超艳, E-mail: chaoyanzhang@126.com
    作者简介: 郭晓欣(1992-),女,硕士,研究方向为污染场地健康风险评估,E-mail:guoxx2017@126.com
  • 1. 生态环境部土壤与农业农村生态环境监管技术中心, 北京 100012;
  • 2. 河北师范大学化学与材料科学学院, 石家庄 050024;
  • 3. 河北大美环境修复科技股份有限公司, 石家庄 050000
基金项目:

国家重点研发计划(土壤专项)项目(2018YFC1803001);国家自然科学基金资助项目(41977377)

摘要: 为准确评估多环芳烃(PAHs)污染土壤对人体的健康风险,解决目前基于总量风险评估导致土壤PAHs修复目标值过严的问题,采用德国标准研究院颁布的生物可给性测试方式研究了石家庄某焦化厂土壤中苯并荧蒽(BBF)、苯并荧蒽(BKF)、苯并芘(BAP)、茚并芘(IPY)和二苯并蒽(DBA)共5种PAHs的生物可给性,并基于考虑和不考虑生物可给性计算了场地PAHs经口摄入途径下的人体健康致癌风险及修复目标值。结果表明,(1)调查研究区域BBF、BAP、IPY和DBA浓度超出《土壤环境质量建设用地土壤污染风险管控标准(试行)》(GB36600-2018)规定的第一类用地筛选值;(2)土壤中PAHs的生物可给性范围为14.71%~56.42%;(3)在考虑生物可给性后,4种超标PAHs的健康风险均有所降低,其中BBF的风险值已低于国家导则规定的人体可接受水平;(4)引入生物可给性后BAP、IPY和DBA的修复目标值(95% UCL)为2.83、34.63和1.95 mg·kg-1,分别提高了2.6倍、3.4倍和1.5倍。对焦化场地典型污染物PAHs进行精细化健康风险评估,可以在一定程度上克服现有技术导则计算土壤PAHs修复目标值过于严格的问题。

English Abstract

参考文献 (28)

返回顶部

目录

/

返回文章
返回