不同钝化剂对土壤环境中重金属有效性和微生物群落的影响

梁妮, 净婷菲, 李中文, 曾沛艺, 王晨璇, 徐雨菲, 李芳芳, 陈异晖. 不同钝化剂对土壤环境中重金属有效性和微生物群落的影响[J]. 生态毒理学报, 2021, 16(1): 177-187. doi: 10.7524/AJE.1673-5897.20200930005
引用本文: 梁妮, 净婷菲, 李中文, 曾沛艺, 王晨璇, 徐雨菲, 李芳芳, 陈异晖. 不同钝化剂对土壤环境中重金属有效性和微生物群落的影响[J]. 生态毒理学报, 2021, 16(1): 177-187. doi: 10.7524/AJE.1673-5897.20200930005
Liang Ni, Jing Tingfei, Li Zhongwen, Zeng Peiyi, Wang Chenxuan, Xu Yufei, Li Fangfang, Chen Yihui. Effects of Different Amendments on the Availability of Heavy Metals and Microbial Communities in Contaminated Soils[J]. Asian journal of ecotoxicology, 2021, 16(1): 177-187. doi: 10.7524/AJE.1673-5897.20200930005
Citation: Liang Ni, Jing Tingfei, Li Zhongwen, Zeng Peiyi, Wang Chenxuan, Xu Yufei, Li Fangfang, Chen Yihui. Effects of Different Amendments on the Availability of Heavy Metals and Microbial Communities in Contaminated Soils[J]. Asian journal of ecotoxicology, 2021, 16(1): 177-187. doi: 10.7524/AJE.1673-5897.20200930005

不同钝化剂对土壤环境中重金属有效性和微生物群落的影响

    作者简介: 梁妮(1979-),女,博士,讲师,研究方向为天然有机质与有机污染物相互作用,E-mail:751047048@qq.com
    通讯作者: 陈异晖, E-mail: chenyh101@hotmail.com
  • 基金项目:

    国家自然科学基金青年基金资助项目(41907300);云南省重点研发计划资助项目(2018BC004)

  • 中图分类号: X171.5

Effects of Different Amendments on the Availability of Heavy Metals and Microbial Communities in Contaminated Soils

    Corresponding author: Chen Yihui, chenyh101@hotmail.com
  • Fund Project:
  • 摘要: 以云南省澜沧拉祜族自治县铅矿区农田污染土壤为研究对象,采用土培实验的方法,研究生物炭、腐殖土和海泡石单施及配施条件下,土壤Pb、Zn和Cd有效态含量、重金属形态分布及微生物群落的变化。结果表明,腐殖土和生物炭改良剂均能有效地降低生物有效态Pb、Zn和Cd的含量,低剂量海泡石的添加修复效果不明显。其中,腐殖土的施入使土壤中有效态Pb、Zn和Cd含量降低了42.27%、45.38%和21.99%;腐殖土和生物炭复合修复使有效态Pb平均降低了60.30%。土壤重金属各赋存形态的分级提取结果表明,生物炭和腐殖土会使Pb和Zn向趋于较稳定的形态转化,果木生物炭的单施和与腐殖土混施均增加了Pb和Zn残渣态所占比例。5%复合剂(秸秆生物炭与海泡石)、2%复合剂(秸秆生物炭与腐殖土)修复后土壤微生物总量分别增加了80.29%和68.52%;丛枝菌根真菌数量分别增加了92.39%和59.78%。因此,对于酸性土壤而言,生物炭与腐殖土复合改良剂更有利于土壤环境的修复。
  • 加载中
  • Xiao R, Wang P, Mi S S, et al. Effects of crop straw and its derived biochar on the mobility and bioavailability in Cd and Zn in two smelter-contaminated alkaline soils[J]. Ecotoxicology and Environmental Safety, 2019, 181:155-163
    宋伟, 陈百明, 刘琳. 中国耕地土壤重金属污染概况[J]. 水土保持研究, 2013, 20(2):293-298

    Song W, Chen B M, Liu L. Soil heavy metal pollution of cultivated land in China[J]. Research of Soil and Water Conservation, 2013, 20(2):293-298(in Chinese)

    李琦, 韩亚芬. 煤矿区农田土壤重金属的空间分布及污染评价[J]. 山东农业工程学院学报, 2016, 33(3):4-8

    Li Q, Han Y F. Distribution and pollution assessment of heavy metals in farmland soil form coal mine area[J]. The Journal of Shandong Agriculture and Engineering University, 2016, 33(3):4-8(in Chinese)

    殷飞, 王海娟, 李燕燕, 等. 不同钝化剂对重金属复合污染土壤的修复效应研究[J]. 农业环境科学学报, 2015, 34(3):438-448

    Yin F, Wang H J, Li Y Y, et al. Remediation of multiple heavy metal polluted soil using different immobilizing agents[J]. Journal of Agro-Environment Science, 2015, 34(3):438-448(in Chinese)

    Gray C W, Dunham S J, Dennis P G, et al. Field evaluation of in situ remediation of a heavy metal contaminated soil using lime and red-mud[J]. Environmental Pollution, 2006, 142(3):530-539
    李良忠, 张丽娟, 胡国成, 等. 西南某矿区家庭灰尘中重金属的暴露及其健康风险评价[J]. 生态毒理学报, 2017, 12(5):235-242

    Li L Z, Zhang L J, Hu G C, et al. The exposure and health risk assessment of the heavy metals in house dust from mineral areas, southwest of China[J]. Asian Journal of Ecotoxicology, 2017, 12(5):235-242(in Chinese)

    Fan T, Ye W, Chen H, et al. Review on contamination and remediation technology of heavy metal in agricultural soil[J]. Ecology and Environmental Sciences, 2013, 22(10):1727-1736
    Jia W L, Wang B L, Wang C P, et al. Tourmaline and biochar for the remediation of acid soil polluted with heavy metals[J]. Journal of Environmental Chemical Engineering, 2017, 5(3):2107-2114
    曹梦华, 祝玺, 刘黄诚, 等. 无机稳定剂对重金属污染土壤的化学稳定修复研究[J]. 环境科学, 2013, 34(9):3722-3726

    Cao M H, Zhu X, Liu H C, et al. Effect of inorganic amendments on the stabilization of heavy metals in contaminated soils[J]. Environmental Science, 2013, 34(9):3722-3726(in Chinese)

    Bian R J, Chen D, Liu X Y, et al. Biochar soil amendment as a solution to prevent Cd-tainted rice from China:Results from a cross-site field experiment[J]. Ecological Engineering, 2013, 58:378-383
    Bian R J, Joseph S, Cui L Q, et al. A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment[J]. Journal of Hazardous Materials, 2014, 272:121-128
    Li B, Yang J X, Wei D P, et al. Field evidence of cadmium phytoavailability decreased effectively by rape straw and/or red mud with zinc sulphate in a Cd-contaminated calcareous soil[J]. PLoS One, 2014, 9(10):e109967
    Zhu Q H, Huang D Y, Zhu G X, et al. Sepiolite is recommended for the remediation of Cd-contaminated paddy soil[J]. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 2010, 60(2):110-116
    宋正国, 唐世荣, 丁永祯, 等. 田间条件下不同钝化材料对玉米吸收镉的影响研究[J]. 农业环境科学学报, 2011, 30(11):2152-2159

    Song Z G, Tang S R, Ding Y Z, et al. Effects of different amendments on cadmium uptake by maize under field conditions[J]. Journal of Agro-Environment Science, 2011, 30(11):2152-2159(in Chinese)

    刘高云, 柏宏成, 叶碧莹, 等. 三种有机物料组成性质及其对土壤Cd形态与水稻Cd含量的影响[J]. 农业环境科学学报, 2019, 38(8):1844-1854

    Liu G Y, Bai H C, Ye B Y, et al. Composition and properties of three organic materials and their effects on soil Cd speciation and Cd content in rice[J]. Journal of Agro-Environment Science, 2019, 38(8):1844-1854(in Chinese)

    Bolan N S, Adriano D C, Duraisamy P, et al. Immobilization and phytoavailability of cadmium in variable charge soils. Ⅲ. Effect of biosolid compost addition[J]. Plant and Soil, 2003, 256(1):231-241
    Ahmad M, Rajapaksha A U, Lim J E, et al. Biochar as a sorbent for contaminant management in soil and water:A review[J]. Chemosphere, 2014, 99:19-33
    Beesley L, Moreno-Jiménez E, Gomez-Eyles J L, et al. A review of biochars's potential role in the remediation, revegetation and restoration of contaminated soils[J]. Environmental Pollution, 2011, 159(12):3269-3282
    袁兴超, 李博, 朱仁凤, 等. 不同钝化剂对铅锌矿区周边农田镉铅污染钝化修复研究[J]. 农业环境科学学报, 2019, 38(4):807-817

    Yuan X C, Li B, Zhu R F, et al. Immobilization of Cd and Pb using different amendments of cultivated soils around lead-zinc mines[J]. Journal of Agro-Environment Science, 2019, 38(4):807-817(in Chinese)

    王俊楠, 程珊珊, 展文豪, 等. 磁性生物炭的合成及对土壤重金属污染的钝化效果[J]. 环境科学, 2020, 41(5):2381-2389

    Wang J N, Cheng S S, Zhan W H, et al. Synthesis of magnetic biochar and its application in the remediation of heavy-metal-contaminated soils[J]. Environmental Science, 2020, 41(5):2381-2389(in Chinese)

    Carrasco L, Caravaca F, Alvarez-Rogel J, et al. Microbial processes in the rhizosphere soil of a heavy metals-contaminated Mediterranean salt marsh:A facilitating role of AM fungi[J]. Chemosphere, 2006, 64(1):104-111
    罗巧玉, 王晓娟, 林双双, 等. AM真菌对重金属污染土壤生物修复的应用与机理[J]. 生态学报, 2013, 33(13):3898-3906

    Luo Q Y, Wang X J, Lin S S, et al. Mechanism and application of bioremediation to heavy metal polluted soil using arbuscular mycorrhizal fungi[J]. Acta Ecologica Sinica, 2013, 33(13):3898-3906(in Chinese)

    Meier S, Curaqueo G, Khan N, et al. Effects of biochar on copper immobilization and soil microbial communities in a metal-contaminated soil[J]. Journal of Soils and Sediments, 2017, 17(5):1237-1250
    鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社, 2000:1-9
    中华人民共和国生态环境部. 土壤环境质量农用地土壤污染风险管控标准:GB 15618-2018[S]. 北京:中国标准出版社, 2018
    鲍士旦. 土壤农化分析[M]. 3版. 北京:中国农业出版社, 2000:29-79
    中华人民共和国国家环境保护局. 土壤质量铅、镉的测定石墨炉原子吸收分光光度法:GB/T 17141-1997[S]. 北京:中国标准出版社, 1997
    中华人民共和国生态环境部. 土壤和沉积物铜、锌、铅、镍、铬的测定火焰原子吸收分光光度法:HJ 491-2019[S]. 北京:中国标准出版社, 2019
    Maiz I, Arambarri I, Garcia R, et al. Evaluation of heavy metal availability in polluted soils by two sequential extraction procedures using factor analysis[J]. Environmental Pollution, 2000, 110(1):3-9
    李非里, 刘丛强, 宋照亮. 土壤中重金属形态的化学分析综述[J]. 中国环境监测, 2005, 21(4):21-27

    Li F L, Liu C Q, Song Z L, et al. A review of fractionation of heavy metals in soils[J]. Environmental Monitoring in China, 2005, 21(4):21-27(in Chinese)

    宋功保, 彭同江, 董发勤, 等. 海泡石的红外光谱研究[J]. 矿物学报, 1998, 18(4):525-532

    Song G B, Peng T J, Dong F Q, et al. Infrared spectrometric study of sepiolite[J]. Acta Mineralogica Sinica, 1998, 18(4):525-532(in Chinese)

    Cheng C H, Lehmann J, Engelhard M H. Natural oxidation of black carbon in soils:Changes in molecular form and surface charge along a climosequence[J]. Geochimica et Cosmochimica Acta, 2008, 72(6):1598-1610
    Zheng R L, Chen Z, Cai C, et al. Mitigating heavy metal accumulation into rice (Oryza sativa L.) using biochar amendment-A field experiment in Hunan, China[J]. Environmental Science and Pollution Research International, 2015, 22(14):11097-11108
    O'Connor D, Peng T Y, Zhang J L, et al. Biochar application for the remediation of heavy metal polluted land:A review of in situ field trials[J]. Science of the Total Environment, 2018, 619-620:815-826
    Tang J Y, Zhang L H, Zhang J C, et al. Physicochemical features, metal availability and enzyme activity in heavy metal-polluted soil remediated by biochar and compost[J]. Science of the Total Environment, 2020, 701:134751
    Uchimiya M, Lima I M, Klasson K T, et al. Contaminant immobilization and nutrient release by biochar soil amendment:Roles of natural organic matter[J]. Chemosphere, 2010, 80(8):935-940
    Zhang X K, Wang H L, He L Z, et al. Using biochar for remediation of soils contaminated with heavy metals and organic pollutants[J]. Environmental Science and Pollution Research International, 2013, 20(12):8472-8483
    王林, 徐应明, 孙国红, 等. 海泡石和磷酸盐对镉铅污染稻田土壤的钝化修复效应与机理研究[J]. 生态环境学报, 2012, 21(2):314-320

    Wang L, Xu Y M, Sun G H, et al. Effect and mechanism of immobilization of paddy soil contaminated by cadmium and lead using sepiolite and phosphate[J]. Ecology and Environmental Sciences, 2012, 21(2):314-320(in Chinese)

    郝金才, 李柱, 吴龙华, 等. 铅镉高污染土壤的钝化材料筛选及其修复效果初探[J]. 土壤, 2019, 51(4):752-759

    Hao J C, Li Z, Wu L H, et al. Preliminary study on cadmium and lead stabilization in soil highly polluted with heavy metals using different stabilizing agents[J]. Soils, 2019, 51(4):752-759(in Chinese)

    Beesley L, Inneh O S, Norton G J, et al. Assessing the influence of compost and biochar amendments on the mobility and toxicity of metals and arsenic in a naturally contaminated mine soil[J]. Environmental Pollution, 2014, 186:195-202
    Zhou H B, Meng H B, Zhao L X, et al. Effect of biochar and humic acid on the copper, lead, and cadmium passivation during composting[J]. Bioresource Technology, 2018, 258:279-286
    Powell H K J, Fenton E. Size fractionation of humic substances:Effect on protonation and metal binding properties[J]. Analytica Chimica Acta, 1996, 334(1-2):27-38
    栾润宇, 高珊, 徐应明, 等. 不同钝化剂对鸡粪堆肥重金属钝化效果及其腐熟度指标的影响[J]. 环境科学, 2020, 41(1):469-478

    Luan R Y, Gao S, Xu Y M, et al. Effect of different passivating agents on the stabilization of heavy metals in chicken manure compost and its maturity evaluating indexes[J]. Environmental Science, 2020, 41(1):469-478(in Chinese)

    Sun Y B, Zhao D, Xu Y M, et al. Effects of sepiolite on stabilization remediation of heavy metal-contaminated soil and its ecological evaluation[J]. Frontiers of Environmental Science & Engineering, 2016, 10(1):85-92
  • 加载中
计量
  • 文章访问数:  2266
  • HTML全文浏览数:  2266
  • PDF下载数:  75
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-09-30
梁妮, 净婷菲, 李中文, 曾沛艺, 王晨璇, 徐雨菲, 李芳芳, 陈异晖. 不同钝化剂对土壤环境中重金属有效性和微生物群落的影响[J]. 生态毒理学报, 2021, 16(1): 177-187. doi: 10.7524/AJE.1673-5897.20200930005
引用本文: 梁妮, 净婷菲, 李中文, 曾沛艺, 王晨璇, 徐雨菲, 李芳芳, 陈异晖. 不同钝化剂对土壤环境中重金属有效性和微生物群落的影响[J]. 生态毒理学报, 2021, 16(1): 177-187. doi: 10.7524/AJE.1673-5897.20200930005
Liang Ni, Jing Tingfei, Li Zhongwen, Zeng Peiyi, Wang Chenxuan, Xu Yufei, Li Fangfang, Chen Yihui. Effects of Different Amendments on the Availability of Heavy Metals and Microbial Communities in Contaminated Soils[J]. Asian journal of ecotoxicology, 2021, 16(1): 177-187. doi: 10.7524/AJE.1673-5897.20200930005
Citation: Liang Ni, Jing Tingfei, Li Zhongwen, Zeng Peiyi, Wang Chenxuan, Xu Yufei, Li Fangfang, Chen Yihui. Effects of Different Amendments on the Availability of Heavy Metals and Microbial Communities in Contaminated Soils[J]. Asian journal of ecotoxicology, 2021, 16(1): 177-187. doi: 10.7524/AJE.1673-5897.20200930005

不同钝化剂对土壤环境中重金属有效性和微生物群落的影响

    通讯作者: 陈异晖, E-mail: chenyh101@hotmail.com
    作者简介: 梁妮(1979-),女,博士,讲师,研究方向为天然有机质与有机污染物相互作用,E-mail:751047048@qq.com
  • 1. 昆明理工大学环境科学与工程学院, 昆明 650500;
  • 2. 云南省生态环境科学研究院, 昆明 650034
基金项目:

国家自然科学基金青年基金资助项目(41907300);云南省重点研发计划资助项目(2018BC004)

摘要: 以云南省澜沧拉祜族自治县铅矿区农田污染土壤为研究对象,采用土培实验的方法,研究生物炭、腐殖土和海泡石单施及配施条件下,土壤Pb、Zn和Cd有效态含量、重金属形态分布及微生物群落的变化。结果表明,腐殖土和生物炭改良剂均能有效地降低生物有效态Pb、Zn和Cd的含量,低剂量海泡石的添加修复效果不明显。其中,腐殖土的施入使土壤中有效态Pb、Zn和Cd含量降低了42.27%、45.38%和21.99%;腐殖土和生物炭复合修复使有效态Pb平均降低了60.30%。土壤重金属各赋存形态的分级提取结果表明,生物炭和腐殖土会使Pb和Zn向趋于较稳定的形态转化,果木生物炭的单施和与腐殖土混施均增加了Pb和Zn残渣态所占比例。5%复合剂(秸秆生物炭与海泡石)、2%复合剂(秸秆生物炭与腐殖土)修复后土壤微生物总量分别增加了80.29%和68.52%;丛枝菌根真菌数量分别增加了92.39%和59.78%。因此,对于酸性土壤而言,生物炭与腐殖土复合改良剂更有利于土壤环境的修复。

English Abstract

参考文献 (44)

返回顶部

目录

/

返回文章
返回