氨基糖苷类抗生素与抗菌剂不同毒性比混合对大肠杆菌的联合效应研究
Combined Toxicity of Aminoglycosides and Antimicrobials with Different Ratios on Escherichia coli
-
摘要: 抗菌剂的长期滥用导致细菌耐药性问题不断加剧,对人类健康以及生态环境造成了巨大威胁。由于氨基糖苷类抗生素(aminoglycosides, AGs)在临床上应用的广泛性,其与传统抗菌剂和新型抗菌剂在环境中的联合暴露均存在潜在风险。此外,抗菌剂结构、作用机制以及其在混合体系中的占比,都能够影响其与AGs的联合毒性效应。因此,有必要研究AGs与传统抗菌剂和新型抗菌剂以不同毒性比混合的联合毒性效应。本文以大肠杆菌(Escherichia coli, E. coli)为模式生物,以磺胺类(磺胺甲恶唑, SMX)、四环素类(盐酸金霉素, CTC)、大环内酯类(红霉素, ERY)、糖肽类(盐酸万古霉素, VA)和β-内酰胺类(氨苄青霉素, AMP)作为传统抗菌剂的代表,以唑啉类(甲基异噻唑啉酮, MIT)、表面活性剂类(十二烷基三甲基溴化铵, DTAB)和群体感应抑制剂类(3,4-溴2(5H)呋喃酮, DFR)作为新型抗菌剂的代表,测定AGs与抗菌剂在等毒性比时的联合毒性效应。结果表明,AGs与传统抗菌剂中的CTC和VA,以及新型抗菌剂中的DTAB和DFR呈现拮抗的联合毒性作用;AGs与传统抗菌剂中的SMX、ERY和AMP,以及新型抗菌剂中的MIT呈现协同的联合毒性作用。此外,还测试了AGs与产生协同效果的抗菌剂(SMX、ERY、AMP和MIT)在毒性比为1∶5和5∶1下的联合毒性效应。结果显示,AGs与SMX、AMP和MIT在不同毒性比下的联合毒性效应均呈现协同作用,且AGs与抗菌剂的毒性比为1∶5时的协同效果最好,联合暴露的环境风险最大。我们推测,当AGs和能够与其产生协同作用的抗菌剂混合暴露时,混合体系中这种抗菌剂相对于AGs比例的增加,可能使得AGs更容易进入细胞并增强AGs对细菌的毒性作用。本研究能够为今后探索AGs与抗菌剂联合暴露的环境风险评估提供参考。Abstract: The chronically abuse of antibacterial agents has led to a growing problem of bacterial resistance, posing a huge threat to human health and ecological environment. Due to the widely clinical application of aminoglycosides (AGs), the environmental exposure of AGs with traditional antibacterial agents or new antibacterial agents may trigger potential risks on organisms. Furthermore, the structure, the toxic action, and the toxicity ratio of these traditional or new antibacterial agents could all influence their combined effects with AGs. Therefore, it is necessary to investigate the combined toxicity of AGs with traditional or new antibacterial agents at different toxicity ratios. In this study, Escherichia coli (E. coli) was set as the model organism. While sulfonamides (sulfamethoxazole, SMX), tetracyclines (chlorotetracycline hydrochloride, CTC), macrolides (erythromycin, ERY), glycopeptides (vancomycin hydrochloride, VA), and β-lactams (ampicillin, AMP) are representatives of traditional antibacterial agents, azolines (methylisothiazolinone, MIT), surfactants (dodecyl trimethyl ammonium bromide, DTAB) and quorum sensing inhibitors (3,4-dibromo-2-hydroxy-2H-furan-5-one, DFR) are representatives of new antibacterial agents. The combined toxicity of AGs and these agents were tested at equal toxicity ratios. The results showed that AGs exhibited an antagonistic effect with CTC or VA (traditional antibacterial agents), and DTAB or DFR (new antibacterial agents). AGs induced a synergistic effect with SMX, ERY and AMP (traditional antibacterial agents). Meanwhile, there was synergism between AGs and MIT (new antibacterial agents). Because SMX, ERY, AMP and MIT had synergistic effects with AGs on E. coli at 1∶1 toxicity ratio, these agents were chosen to investigate their combined toxicity with AGs at a toxicity ratio of 1∶5 and 5∶1. The results showed that the combined toxicity of AGs with these agents were all synergism at test toxicity ratios. In addition, when the toxicity ratio of AGs with the agents were 1∶5, there exhibited the greatest synergistic effects of the mixtures, indicating the greatest environmental risk. Therefore, it could be speculated that when AGs are exposed with the antibacterial agent that can induce synergistic effects with AGs, the increase of the ratio of this agent in the mixture may make AGs enter cells more easily to enhance their toxic effect on bacteria. This study can provide a reference for future exploring the environmental risk assessment of the combined exposure of AGs and antibacterial agents.
-
-
El-Saber Batiha G, Hussein D E, Algammal A M, et al. Application of natural antimicrobials in food preservation: Recent views [J]. Food Control, 2021, 126: 108066 Luu Q H, Nguyen T L A, Pham T N, et al. Antimicrobial use in household, semi-industrialized, and industrialized pig and poultry farms in Viet Nam [J]. Preventive Veterinary Medicine, 2021, 189: 105292 Nitzan O, Suponitzky U, Kennes Y, et al. Is chloramphenicol making a comeback? [J]. The Israel Medical Association Journal, 2010, 12(6): 371-374 Bollenbach T. Antimicrobial interactions: Mechanisms and implications for drug discovery and resistance evolution [J]. Current Opinion in Microbiology, 2015, 27: 1-9 Böttger E C, Crich D. Aminoglycosides: Time for the resurrection of a neglected class of antibacterials? [J]. ACS Infectious Diseases, 2020, 6(2): 168-172 Zembower T R, Noskin G A, Postelnick M J, et al. The utility of aminoglycosides in an era of emerging drug resistance [J]. International Journal of Antimicrobial Agents, 1998, 10(2): 95-105 许桓, 唐春雷, 范为正. 氨基糖苷类抗生素的研究进展[J]. 中国新药杂志, 2019, 28(15): 1828-1835 Xu H, Tang C L, Fan W Z. Research progress in aminoglycoside antibiotics [J]. Chinese Journal of New Drugs, 2019, 28(15): 1828-1835 (in Chinese)
李秀银, 王月兵, 李明川. 抗生素的分类及治疗原则[J]. 临床合理用药杂志, 2012, 5(28): 12 曾庆军. 抗生素在生态环境中的污染转归以及应对措施[J]. 湖南畜牧兽医, 2017(5): 49-52 Giamarellou H, Zissis N P, Tagari G, et al. In vitro synergistic activities of aminoglycosides and new beta-lactams against multiresistant Pseudomonas aeruginosa [J]. Antimicrobial Agents and Chemotherapy, 1984, 25(4): 534-536 崔洁, 李志光. 甲氧苄啶与氨基糖苷类抗生素联用的抗生素后效应[J]. 中国药房, 2000, 11(1): 14-15 Cui J, Li Z G. Post-antibiotic effect of trimethoprim in combination with three aminoglycosides [J]. China Pharmacy, 2000, 11(1): 14-15 (in Chinese)
Maeder V, Escher B I, Scheringer M, et al. Toxic ratio as an indicator of the intrinsic toxicity in the assessment of persistent, bioaccumulative, and toxic chemicals [J]. Environmental Science & Technology, 2004, 38(13): 3659-3666 Tian D Y, Lin Z F, Yu J Q, et al. Influence factors of multicomponent mixtures containing reactive chemicals and their joint effects [J]. Chemosphere, 2012, 88(8): 994-1000 Liu Y, Zhang J, Gao B Y, et al. Combined effects of two antibiotic contaminants on Microcystis aeruginosa [J]. Journal of Hazardous Materials, 2014, 279: 148-155 Broderius S J, Kahl M D, Hoglund M D. Use of joint toxic response to define the primary mode of toxic action for diverse industrial organic chemicals [J]. Environmental Toxicology and Chemistry, 1995, 14(9): 1591-1605 Ban Y H, Song M C, Park J W, et al. Minor components of aminoglycosides: Recent advances in their biosynthesis and therapeutic potential [J]. Natural Product Reports, 2020, 37(3): 301-311 Vanhoof R, Sonck P, Hannecart-Pokorni E. The role of lipopolysaccharide anionic binding sites in aminoglycoside uptake in Stenotrophomonas (Xanthomonas) maltophilia [J]. The Journal of Antimicrobial Chemotherapy, 1995, 35(1): 167-171 Hancock R E. Aminoglycoside uptake and mode of action: With special reference to streptomycin and gentamicin. Ⅰ. Antagonists and mutants [J]. The Journal of Antimicrobial Chemotherapy, 1981, 8(4): 249-276 刘海燕, 殷瑜. 氨基糖苷类抗生素作用机制研究进展[J]. 中国抗生素杂志, 2019, 44(11): 1283-1287 Liu H Y, Yin Y. Advances in research on the mechanism of aminoglycoside antibiotics [J]. Chinese Journal of Antibiotics, 2019, 44(11): 1283-1287 (in Chinese)
Walsh C. Molecular mechanisms that confer antibacterial drug resistance [J]. Nature, 2000, 406(6797): 775-781 Yocum R R, Waxman D J, Rasmussen J R, et al. Mechanism of penicillin action: Penicillin and substrate bind covalently to the same active site serine in two bacterial D-alanine carboxypeptidases [J]. Proceedings of the National Academy of Sciences of the United States of America, 1979, 76(6): 2730-2734 董玉瑛, 王壮, 马静, 等. DDBAC与取代芳烃对发光菌联合毒性作用[J]. 化工学报, 2008, 59(9): 2351-2355 Dong Y Y, Wang Z, Ma J, et al. Joint toxicity of DDBAC and substituted aromatic compounds to Photobacterium phosphoreum [J]. Journal of Chemical Industry and Engineering (China), 2008, 59(9): 2351-2355 (in Chinese)
Tacic A, Nikolic V, Nikolic L, et al. Antimicrobial sulfonamide drugs [J]. Advanced Technologies, 2017, 6(1): 58-71 刘玉勇, 高琴文, 朱泉, 等. 反应性异噻唑啉酮类抗菌整理剂的制备及应用[J]. 纺织科技进展, 2008(6): 17-19 Liu Y Y, Gao Q W, Zhu Q, et al. Synthesis and application of reactive isothiazolone antibacterial agent [J]. Progress in Textile Science & Technology, 2008 (6): 17-19 (in Chinese)
Manefield M, Rasmussen T B, Henzter M, et al. Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover [J]. Microbiology, 2002, 148(Pt 4): 1119-1127 Kadota J, Sakito O, Kohno S, et al. A mechanism of erythromycin treatment in patients with diffuse panbronchiolitis [J]. The American Review of Respiratory Disease, 1993, 147(1): 153-159 吕浩, 张也. 四环素类抗生素概述[J]. 中西医结合心血管病电子杂志, 2017, 5(34): 15 Nikaido H. Outer membrane barrier as a mechanism of antimicrobial resistance [J]. Antimicrobial Agents and Chemotherapy, 1989, 33(11): 1831-1836 Delis G A,Siarkou V I, Vingopoulou E I, et al. Pharmacodynamic interactions of amikacin with selected β-lactams and fluoroquinolones against canine Escherichia coli isolates [J]. Research in Veterinary Science, 2018, 117: 187-195 Nøhr-Meldgaard K, Ovsepian A, Ingmer H, et al. Resveratrol enhances the efficacy of aminoglycosides against Staphylococcus aureus [J]. International Journal of Antimicrobial Agents, 2018, 52(3): 390-396 Mitchell G, Lafrance M, Boulanger S, et al. Tomatidine acts in synergy with aminoglycoside antibiotics against multiresistant Staphylococcus aureus and prevents virulence gene expression [J]. The Journal of Antimicrobial Chemotherapy, 2012, 67(3): 559-568 -

计量
- 文章访问数: 2749
- HTML全文浏览数: 2749
- PDF下载数: 66
- 施引文献: 0