传粉蜜蜂介导的细菌耐药性传播及其生态与健康风险

黄渝岚, 史晶亮, 刘芮芮, 罗义. 传粉蜜蜂介导的细菌耐药性传播及其生态与健康风险[J]. 生态毒理学报, 2022, 17(1): 18-31. doi: 10.7524/AJE.1673-5897.20210706001
引用本文: 黄渝岚, 史晶亮, 刘芮芮, 罗义. 传粉蜜蜂介导的细菌耐药性传播及其生态与健康风险[J]. 生态毒理学报, 2022, 17(1): 18-31. doi: 10.7524/AJE.1673-5897.20210706001
Huang Yulan, Shi Jingliang, Liu Ruirui, Luo Yi. Dissemination of Antimicrobial Resistance Mediated by Pollinating Honeybees and Its Ecological and Health Risks[J]. Asian Journal of Ecotoxicology, 2022, 17(1): 18-31. doi: 10.7524/AJE.1673-5897.20210706001
Citation: Huang Yulan, Shi Jingliang, Liu Ruirui, Luo Yi. Dissemination of Antimicrobial Resistance Mediated by Pollinating Honeybees and Its Ecological and Health Risks[J]. Asian Journal of Ecotoxicology, 2022, 17(1): 18-31. doi: 10.7524/AJE.1673-5897.20210706001

传粉蜜蜂介导的细菌耐药性传播及其生态与健康风险

    作者简介: 黄渝岚(1998-),女,硕士研究生,研究方向为环境微生物,E-mail:2120200539@mail.nankai.edu.cn
    通讯作者: 罗义, E-mail: luoy@nankai.edu.cn
  • 基金项目:

    国家自然科学基金重点项目(41831287)

    国家重点研发计划资助项目(2020YFC1806904)

  • 中图分类号: X171.5

Dissemination of Antimicrobial Resistance Mediated by Pollinating Honeybees and Its Ecological and Health Risks

    Corresponding author: Luo Yi, luoy@nankai.edu.cn
  • Fund Project:
  • 摘要: 目前,抗菌药物的滥用造成了临床和环境中普遍存在的细菌耐药性问题,而细菌耐药性在环境中不断富集和传播扩散会通过食物网对生态安全及人体健康构成威胁。蜜蜂作为最重要的传粉昆虫,在世界各地广泛分布。然而,蜜蜂近年来频繁暴露于抗生素、杀虫剂和杀螨剂等药物,而野外杀虫剂的大量使用被认为是导致世界各地蜜蜂种群数量下降的关键因素。蜜蜂传花授粉的生物学特性使得蜂群与周围环境之间发生频繁的交流,可能导致蜜蜂传粉过程中蜂群与周围环境的交叉污染并发生细菌耐药性的传递。因此,蜜蜂可能成为生态系统中细菌耐药性传播的潜在“帮凶”。传粉蜜蜂介导下的细菌耐药性传播也将对蜂群健康、食品安全乃至生态系统安全构成威胁。本文综合国内外相关研究进展,系统分析了环境污染物暴露对蜜蜂以及蜜蜂肠道耐药基因组的潜在影响,并详细阐述了传粉蜜蜂介导下的细菌耐药性的传播,总结了蜜蜂主要通过蜜蜂-蜜蜂、蜜蜂-植物以及蜜蜂-环境的途径促进细菌耐药性的传播。最后,探讨了蜜蜂介导的细菌耐药性传播对蜂群健康、生态环境以及人体健康的潜在影响。
  • 加载中
  • World Health Organization (WHO). Antimicrobial resistance:Global report on surveillance[J]. Australasian Medical Journal, 2014, 7:237
    O'Neill J. Tackling drug-resistant infections globally:Final report and recommendations, the review on antimicrobial resistance[R]. London:HM Government and the Wellcome Trust, 2016
    Loncaric I, Kübber-Heiss A, Posautz A, et al. Characterization of methicillin-resistant Staphylococcus spp. carrying the mecC gene, isolated from wildlife[J]. The Journal of Antimicrobial Chemotherapy, 2013, 68(10):2222-2225
    Drobni M, Bonnedahl J, Hernandez J, et al. Vancomycin-resistant Enterococci, point barrow, Alaska, USA[J]. Emerging Infectious Diseases, 2009, 15(5):838-839
    Weis A M, Storey D B, Taff C C, et al. Genomic comparison of Campylobacter spp. and their potential for zoonotic transmission between birds, primates, and livestock[J]. Applied and Environmental Microbiology, 2016, 82(24):7165-7175
    Wang X M, Wang Y, Wang Y, et al. Emergence of the colistin resistance gene mcr-1 and its variant in several uncommon species of Enterobacteriaceae from commercial poultry farm surrounding environments[J]. Veterinary Microbiology, 2018, 219:161-164
    Wannigama D L, Dwivedi R, Zahraei-Ramazani A. Prevalence and antibiotic resistance of Gram-negative pathogenic bacteria species isolated from Periplaneta americana and Blattella germanica in Varanasi, India[J]. Journal of Arthropod-Borne Diseases, 2013, 8(1):10-20
    Zhu G B, Wang X M, Yang T, et al. Air pollution could drive global dissemination of antibiotic resistance genes[J]. The ISME Journal, 2021, 15(1):270-281
    Wang F H, Qiao M, Su J Q, et al. High throughput profiling of antibiotic resistance genes in urban park soils with reclaimed water irrigation[J]. Environmental Science&Technology, 2014, 48(16):9079-9085
    Kampouris I D, Klümper U, Agrawal S, et al. Treated wastewater irrigation promotes the spread of antibiotic resistance into subsoil pore-water[J]. Environment International, 2021, 146:106190
    Udikovic-Kolic N, Wichmann F, Broderick N A, et al. Bloom of resident antibiotic-resistant bacteria in soil following manure fertilization[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(42):15202-15207
    Zhang Y J, Hu H W, Chen Q L, et al. Transfer of antibiotic resistance from manure-amended soils to vegetable microbiomes[J]. Environment International, 2019, 130:104912
    Verraes C, van Boxstael S, van Meervenne E, et al. Antimicrobial resistance in the food chain:A review[J]. International Journal of Environmental Research and Public Health, 2013, 10(7):2643-2669
    Rossi F, Rizzotti L, Felis G E, et al. Horizontal gene transfer among microorganisms in food:Current knowledge and future perspectives[J]. Food Microbiology, 2014, 42:232-243
    Zurek L, Ghosh A. Insects represent a link between food animal farms and the urban environment for antibiotic resistance traits[J]. Applied and Environmental Microbiology, 2014, 80(12):3562-3567
    Milanovic V, Osimani A, Pasquini M, et al. Getting insight into the prevalence of antibiotic resistance genes in specimens of marketed edible insects[J]. International Journal of Food Microbiology, 2016, 227:22-28
    Roncolini A, Cardinali F, Aquilanti L, et al. Investigating antibiotic resistance genes in marketed ready-to-eat small crickets ( Acheta domesticus )[J]. Journal of Food Science, 2019, 84(11):3222-3232
    Potts S G, Imperatriz-Fonseca V, Ngo H T, et al. Safeguarding pollinators and their values to human well-being[J]. Nature, 2016, 540(7632):220-229
    Powney G D, Carvell C, Edwards M, et al. Widespread losses of pollinating insects in Britain[J]. Nature Communications, 2019, 10(1):1018
    Kemper N. Veterinary antibiotics in the aquatic and terrestrial environment[J]. Ecological Indicators, 2008, 8(1):1-13
    El-Nahhal Y, El-Dahdouh N, Hamdona N, et al. Toxicological data of some antibiotics and pesticides to fish, mosquitoes, cyanobacterial mats and to plants[J]. Data in Brief, 2016, 6:871-880
    Pan L X, Feng X X, Cao M, et al. Determination and distribution of pesticides and antibiotics in agricultural soils from Northern China[J]. RSC Advances, 2019, 9(28):15686-15693
    Hakami B A. Impacts of soil and water pollution on food safety and health risks[J]. International Journal of Civil Engineering and Technology, 2015, 6(11):32-38
    Xie H J, Wang X P, Chen J W, et al. Occurrence, distribution and ecological risks of antibiotics and pesticides in coastal waters around Liaodong Peninsula, China[J]. The Science of the Total Environment, 2019, 656:946-951
    Mullin C A, Frazier M, Frazier J L, et al. High levels of miticides and agrochemicals in North American apiaries:Implications for honey bee health[J]. PLoS One, 2010, 5(3):e9754
    Pruden A, Pei R T, Storteboom H, et al. Antibiotic resistance genes as emerging contaminants:Studies in northern Colorado[J]. Environmental Science&Technology, 2006, 40(23):7445-7450
    段宇婧,吴新颜,陈则友,等.人体肠道耐药基因组的研究进展[J].生态毒理学报, 2020, 15(4):1-10

    Duan Y J, Wu X Y, Chen Z Y, et al. Advances in human gut resistome[J]. Asian Journal of Ecotoxicology, 2020, 15(4):1-10(in Chinese)

    Nadeem S F, Gohar U F, Tahir S F, et al. Antimicrobial resistance:More than 70 years of war between humans and bacteria[J]. Critical Reviews in Microbiology, 2020, 46(5):578-599
    Dantas G, Sommer M. How to fight back against antibiotic resistance[J]. American Scientist, 2014, 102(1):42
    Waite R, Jackson S, Thompson H. Preliminary investigations into possible resistance to oxytetracycline in Melissococcus plutonius , a pathogen of honeybee larvae[J]. Letters in Applied Microbiology, 2003, 36(1):20-24
    Alippi A M. Characterization of isolates of Paenibacillus larvae with biochemical type and oxytetracycline resistance[J]. Revista Argentina De Microbiologia, 1996, 28(4):197-203
    Miyagi T, Peng C Y, Chuang R Y, et al. Verification of oxytetracycline-resistant American foulbrood pathogen Paenibacillus larvae in the United States[J]. Journal of Invertebrate Pathology, 2000, 75(1):95-96
    Murray K D, Aronstein K A. Oxytetracycline-resistance in the honey bee pathogen Paenibacillus larvae is encoded on novel plasmid pMA67[J]. Journal of Apicultural Research, 2006, 45(4):207-214
    Murray K D, Aronstein K A, de León J H. Analysis of pMA67, a predicted rolling-circle replicating, mobilizable, tetracycline-resistance plasmid from the honey bee pathogen, Paenibacillus larvae[J]. Plasmid, 2007, 58(2):89-100
    Ebrahimi A, Lotfalian S. Isolation and antibiotic resistance patterns of Escherichia coli and coagulase positive Staphylococcus aureus from the digestive tract of honey bees[J]. Iranian Journal of Veterinary Research, 2005, 6:51-97
    Kacániová M, Gasper J, Brindza J, et al. Bacteria of Apis mellifera Gastrointestinal Tract:Counts, Identification and Their Antibiotic Resistance[M]//Agrobiodiversity for Improving Nutrition, Health and Life Quality. Slovak University of Agriculture in Nitra, Slovakia, 2017:210-215
    Kacániová M, Gasper J, Terentjeva M, et al. Antibacterial activity of bees gut Lactobacilli against Paenibacillus larvae in vitro [J]. Advanced Research in Life Sciences, 2018, 2(1):7-10
    Ludvigsen J, Amdam G V, Rudi K, et al. Detection and characterization of streptomycin resistance (strA-strB) in a honeybee gut symbiont ( Snodgrassella alvi ) and the associated risk of antibiotic resistance transfer[J]. Microbial Ecology, 2018, 76(3):588-591
    郭艾云,鲍艳宇,周启星.土壤农药污染与细菌农药-抗生素交叉抗性研究进展[J].微生物学通报, 2020, 47(9):2984-2995

    Guo A Y, Bao Y Y, Zhou Q X. Advances in soil pesticide contamination and bacterial pesticide-antibiotic cross-resistance[J]. Microbiology China, 2020, 47(9):2984-2995(in Chinese)

    Arismendi N L, Reyes M, Miller S A, et al. Infection of' Candidatus Phytoplasma ulmi'reduces the protein content and alters the activity of detoxifying enzymes in Amplicephalus curtulus [J]. Entomologia Experimentalis et Applicata, 2015, 157(3):334-345
    Soltani A, Vatandoost H, Oshaghi M A, et al. The role of midgut symbiotic bacteria in resistance of Anopheles stephensi (Diptera:Culicidae) to organophosphate insecticides[J]. Pathogens and Global Health, 2017, 111(6):289-296
    Pietri J E, Liang D S. The links between insect symbionts and insecticide resistance:Causal relationships and physiological tradeoffs[J]. Annals of the Entomological Society of America, 2018, 111(3):92-97
    Wu Y Q, Zheng Y F, Chen Y N, et al. Honey bee ( Apis mellifera ) gut microbiota promotes host endogenous detoxification capability via regulation of P450 gene expression in the digestive tract[J]. Microbial Biotechnology, 2020, 13(4):1201-1212
    Zheng H, Steele M I, Leonard S P, et al. Honey bees as models for gut microbiota research[J]. Lab Animal, 2018, 47(11):317-325
    Guo M T, Yuan Q B, Yang J. Distinguishing effects of ultraviolet exposure and chlorination on the horizontal transfer of antibiotic resistance genes in municipal wastewater[J]. Environmental Science&Technology, 2015, 49(9):5771-5778
    Zhang Y, Gu A Z, He M, et al. Subinhibitory concentrations of disinfectants promote the horizontal transfer of multidrug resistance genes within and across genera[J]. Environmental Science&Technology, 2017, 51(1):570-580
    Berendonk T U, Manaia C M, Merlin C, et al. Tackling antibiotic resistance:The environmental framework[J]. Nature Reviews Microbiology, 2015, 13(5):310-317
    Jun H, Kurenbach B, Aitken J, et al. Effects of sub-lethal concentrations of copper ammonium acetate, pyrethrins and atrazine on the response of Escherichia coli to antibiotics[J]. F1000Research, 2019, 8:32
    Rangasamy K, Athiappan M, Devarajan N, et al. Emergence of multi drug resistance among soil bacteria exposing to insecticides[J]. Microbial Pathogenesis, 2017, 105:153-165
    Kurenbach B, Marjoshi D, Amábile-Cuevas C F, et al. Sublethal exposure to commercial formulations of the herbicides dicamba, 2,4-dichlorophenoxyacetic acid, and glyphosate cause changes in antibiotic susceptibility in Escherichia coli and Salmonella enterica serovar Typhimurium[J]. mBio, 2015, 6(2):e00009-e00015
    Lau C H, van Engelen K, Gordon S, et al. Novel antibiotic resistance determinants from agricultural soil exposed to antibiotics widely used in human medicine and animal farming[J]. Applied and Environmental Microbiology, 2017, 83(16):e00989-e00917
    Anjum R, Grohmann E, Malik A. Molecular characterization of conjugative plasmids in pesticide tolerant and multi-resistant bacterial isolates from contaminated alluvial soil[J]. Chemosphere, 2011, 84(1):175-181
    Motta E V S, Raymann K, Moran N A. Glyphosate perturbs the gut microbiota of honey bees[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(41):10305-10310
    Raymann K, Shaffer Z, Moran N A. Antibiotic exposure perturbs the gut microbiota and elevates mortality in honeybees[J]. PLoS Biology, 2017, 15(3):e2001861
    Raymann K, Bobay L M, Moran N A. Antibiotics reduce genetic diversity of core species in the honeybee gut microbiome[J]. Molecular Ecology, 2018, 27(8):2057-2066
    Kakumanu M L, Reeves A M, Anderson T D, et al. Honey bee gut microbiome is altered by in-hive pesticide exposures[J]. Frontiers in Microbiology, 2016, 7:1255
    Liu Y J, Qiao N H, Diao Q Y, et al. Thiacloprid exposure perturbs the gut microbiota and reduces the survival status in honeybees[J]. Journal of Hazardous Materials, 2020, 389:121818
    Ji X L, Shen Q H, Liu F, et al. Antibiotic resistance gene abundances associated with antibiotics and heavy metals in animal manures and agricultural soils adjacent to feedlots in Shanghai; China[J]. Journal of Hazardous Materials, 2012, 235-236:178-185
    Wang Q, Mao D Q, Mu Q H, et al. Enhanced horizontal transfer of antibiotic resistance genes in freshwater microcosms induced by an ionic liquid[J]. PLoS One, 2015, 10(5):e0126784
    Xu Y, Xu J, Mao D Q, et al. Effect of the selective pressure of sub-lethal level of heavy metals on the fate and distribution of ARGs in the catchment scale[J]. Environmental Pollution, 2017, 220(Pt B):900-908
    Lu J, Jin M, Nguyen S H, et al. Non-antibiotic antimicrobial triclosan induces multiple antibiotic resistance through genetic mutation[J]. Environment International, 2018, 118:257-265
    Zhang H P, Chen S Y, Zhang Q K, et al. Fungicides enhanced the abundance of antibiotic resistance genes in greenhouse soil[J]. Environmental Pollution, 2020, 259:113877
    Penesyan A, Nagy S S, Kjelleberg S, et al. Rapid microevolution of biofilm cells in response to antibiotics[J]. NPJ Biofilms and Microbiomes, 2019, 5(1):34
    Kwong W K, Moran N A. Gut microbial communities of social bees[J]. Nature Reviews Microbiology, 2016, 14(6):374-384
    Ludvigsen J, Porcellato D, L'Abée-Lund T M, et al. Geographically widespread honeybee-gut symbiont subgroups show locally distinct antibiotic-resistant patterns[J]. Molecular Ecology, 2017, 26(23):6590-6607
    Takamatsu D, Yoshida E, Watando E, et al. A frameshift mutation in the rRNA large subunit methyltransferase gene rlmA determines the susceptibility of a honey bee pathogen Melissococcus plutonius to mirosamicin[J]. Environmental Microbiology, 2018, 20(12):4431-4443
    Hughes D, Andersson D I. Evolutionary trajectories to antibiotic resistance[J]. Annual Review of Microbiology, 2017, 71:579-596
    Tian B Y, Fadhil N H, Powell J E, et al. Long-term exposure to antibiotics has caused accumulation of resistance determinants in the gut microbiota of honeybees[J]. mBio, 2012, 3(6):e00377-e00312
    Gullberg E, Cao S, Berg O G, et al. Selection of resistant bacteria at very low antibiotic concentrations[J]. PLoS Pathogens, 2011, 7(7):e1002158
    Gao Q, Dong Q, Wu L W, et al. Environmental antibiotics drives the genetic functions of resistome dynamics[J]. Environment International, 2020, 135:105398
    Jutkina J, Rutgersson C, Flach C F, et al. An assay for determining minimal concentrations of antibiotics that drive horizontal transfer of resistance[J]. The Science of the Total Environment, 2016, 548-549:131-138
    Twiss E, Coros A M, Tavakoli N P, et al. Transposition is modulated by a diverse set of host factors in Escherichia coli and is stimulated by nutritional stress[J]. Molecular Microbiology, 2005, 57(6):1593-1607
    Hinnebusch B J, Rosso M L, Schwan T G, et al. High-frequency conjugative transfer of antibiotic resistance genes to Yersinia pestis in the flea midgut[J]. Molecular Microbiology, 2002, 46(2):349-354
    Zhang Y, Gu A Z, Cen T Y, et al. Sub-inhibitory concentrations of heavy metals facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes in water environment[J]. Environmental Pollution, 2018, 237:74-82
    Qiu Z G, Yu Y M, Chen Z L, et al. Nanoalumina promotes the horizontal transfer of multiresistance genes mediated by plasmids across genera[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(13):4944-4949
    Dong H, Chen Y L, Wang J, et al. Interactions of microplastics and antibiotic resistance genes and their effects on the aquaculture environments[J]. Journal of Hazardous Materials, 2021, 403:123961
    Wang K, Li J H, Zhao L W, et al. Gut microbiota protects honey bees ( Apis mellifera L.) against polystyrene microplastics exposure risks[J]. Journal of Hazardous Materials, 2021, 402:123828
    Li J, Zhang K N, Zhang H. Adsorption of antibiotics on microplastics[J]. Environmental Pollution, 2018, 237:460-467
    Pei R T, Cha J, Carlson K H, et al. Response of antibiotic resistance genes (ARG) to biological treatment in dairy lagoon water[J]. Environmental Science&Technology, 2007, 41(14):5108-5113
    Lin H, Zhang J, Chen H J, et al. Effect of temperature on sulfonamide antibiotics degradation, and on antibiotic resistance determinants and hosts in animal manures[J]. The Science of the Total Environment, 2017, 607-608:725-732
    Sun W, Qian X, Gu J, et al. Mechanism and effect of temperature on variations in antibiotic resistance genes during anaerobic digestion of dairy manure[J]. Scientific Reports, 2016, 6:30237
    Ma Z, Wu H H, Zhang K S, et al. Long-term low dissolved oxygen accelerates the removal of antibiotics and antibiotic resistance genes in swine wastewater treatment[J]. Chemical Engineering Journal, 2018, 334:630-637
    Xue G, Diao R Q, Jiang M J, et al. Significant effect of pH on tetracycline resistance genes reduction during sludge thermal hydrolysis treatment[J]. Waste Management, 2021, 124:36-45
    钱燕云,徐莉柯,苏超,等.初始pH对厌氧环境下污泥中抗生素抗性基因行为特征的影响[J].生态毒理学报, 2015, 10(5):47-55

    Qian Y Y, Xu L K, Su C, et al. Effect of initial pH on antibiotic resistance genes behavior during anaerobic treatment of sludge[J]. Asian Journal of Ecotoxicology, 2015, 10(5):47-55(in Chinese)

    MacFadden D R, McGough S F, Fisman D, et al. Antibiotic resistance increases with local temperature[J]. Nature Climate Change, 2018, 8(6):510-514
    Burnham J P. Climate change and antibiotic resistance:A deadly combination[J]. Therapeutic Advances in Infectious Disease, 2021, 8:2049936121991374
    Li X D, Chen Y H, Liu C, et al. Eutrophication and related antibiotic resistance of Enterococci in the Minjiang River, China[J]. Microbial Ecology, 2020, 80(1):1-13
    Garner E, Wallace J S, Argoty G A, et al. Metagenomic profiling of historic Colorado Front Range flood impact on distribution of riverine antibiotic resistance genes[J]. Scientific Reports, 2016, 6:38432
    Zhang P Y, Xu P P, Xia Z J, et al. Combined treatment with the antibiotics kanamycin and streptomycin promotes the conjugation of Escherichia coli [J]. FEMS Microbiology Letters, 2013, 348(2):149-156
    Xiang Q, Chen Q L, Zhu D, et al. Spatial and temporal distribution of antibiotic resistomes in a peri-urban area is associated significantly with anthropogenic activities[J]. Environmental Pollution, 2018, 235:525-533
    Ludvigsen J, Rangberg A, Avershina E, et al. Shifts in the midgut/pyloric microbiota composition within a honey bee apiary throughout a season[J]. Microbes and Environments, 2015, 30(3):235-244
    Clark T B. Spiroplasmas:Diversity of arthropod reservoirs and host-parasite relationships[J]. Science, 1982, 217(4554):57-59
    Kešnerová L, Emery O, Troilo M, et al. Gut microbiota structure differs between honeybees in winter and summer[J]. The ISME Journal, 2020, 14(3):801-814
    Cenci-Goga B T, Sechi P, Karama M, et al. Cross-sectional study to identify risk factors associated with the occurrence of antimicrobial resistance genes in honey bees Apis mellifera in Umbria , Central Italy[J]. Environmental Science and Pollution Research International, 2020, 27(9):9637-9645
    David A, Botías C, Abdul-Sada A, et al. Widespread contamination of wildflower and bee-collected pollen with complex mixtures of neonicotinoids and fungicides commonly applied to crops[J]. Environment International, 2016, 88:169-178
    Mitchell E A D, Mulhauser B, Mulot M, et al. A worldwide survey of neonicotinoids in honey[J]. Science, 2017, 358(6359):109-111
    Wang X R, Goulson D, Chen L Z, et al. Occurrence of neonicotinoids in Chinese apiculture and a corresponding risk exposure assessment[J]. Environmental Science&Technology, 2020, 54(8):5021-5030
    Rundl f M, Andersson G K, Bommarco R, et al. Seed coating with a neonicotinoid insecticide negatively affects wild bees[J]. Nature, 2015, 521(7550):77-80
    Doughty S W, Goodman R, Luck J. Evaluating alternative antibiotics for control of European Foulbrood Disease[R]. Rural Industries Research and Development Corporation, 2004
    Sanchez-Bayo F, Goka K. Pesticide residues and bees:A risk assessment[J]. PLoS One, 2014, 9(4):e94482
    Jabot C, Fieu M, Giroud B, et al. Trace-level determination of pyrethroid, neonicotinoid and carboxamide pesticides in beeswax using dispersive solid-phase extraction followed by ultra-high-performance liquid chromatography-tandem mass spectrometry[J]. International Journal of Environmental Analytical Chemistry, 2015, 95(3):240-257
    Tsvetkov N, Samson-Robert O, Sood K, et al. Chronic exposure to neonicotinoids reduces honey bee health near corn crops[J]. Science, 2017, 356(6345):1395-1397
    Edo C, Fernández-Alba A R, Vejsnæs F, et al. Honeybees as active samplers for microplastics[J]. The Science of the Total Environment, 2021, 767:144481
    Federici E, Petroselli C, Montalbani E, et al. Airborne bacteria and persistent organic pollutants associated with an intense Saharan dust event in the Central Mediterranean[J]. The Science of the Total Environment, 2018, 645:401-410
    Roberts T L. Cadmium and phosphorous fertilizers:The issues and the science[J]. Procedia Engineering, 2014, 83:52-59
    Zaric N M, Ilijevic K, Stanisavljevic L, et al. Metal concentrations around thermal power plants, rural and urban areas using honeybees ( Apis mellifera L.) as bioindicators[J]. International Journal of Environmental Science and Technology, 2016, 13(2):413-422
    Milivojevic T, Glavan G, Božic J, et al. Neurotoxic potential of ingested ZnO nanomaterials on bees[J]. Chemosphere, 2015, 120:547-554
    Maxim L, Arnold G. Pesticides and bees[J]. EMBO Reports, 2014, 15(1):4
    Djordjevic S P, Stokes H W, Roy Chowdhury P. Mobile elements, zoonotic pathogens and commensal bacteria:Conduits for the delivery of resistance genes into humans, production animals and soil microbiota[J]. Frontiers in Microbiology, 2013, 4:86
    Fürst M A, McMahon D P, Osborne J L, et al. Disease associations between honeybees and bumblebees as a threat to wild pollinators[J]. Nature, 2014, 506(7488):364-366
    Alger S A, Burnham P A, Boncristiani H F, et al. RNA virus spillover from managed honeybees ( Apis mellifera ) to wild bumblebees ( Bombus spp.)[J]. PLoS One, 2019, 14(6):e0217822
    Card S D, Pearson M N, Clover G R G. Plant pathogens transmitted by pollen[J]. Australasian Plant Pathology, 2007, 36(5):455
    Kim D R, Cho G, Jeon C W, et al. A mutualistic interaction between Streptomyces bacteria, strawberry plants and pollinating bees[J]. Nature Communications, 2019, 10:4802
    Chen Q L, Cui H L, Su J Q, et al. Antibiotic resistomes in plant microbiomes[J]. Trends in Plant Science, 2019, 24(6):530-541
    Zhang Z J, Huang M F, Qiu L F, et al. Diversity and functional analysis of Chinese bumblebee gut microbiota reveal the metabolic niche and antibiotic resistance variation of Gilliamella [J]. Insect Science, 2021, 28(2):302-314
    Li S S, Wei R J, Lin Y Z, et al. A preliminary study of antibiotic resistance genes in domestic honey produced in China[J]. Foodborne Pathogens and Disease, 2021, 18(12):859-866
    Aleklett K, Hart M, Shade A. The microbial ecology of flowers:An emerging frontier in phyllosphere research[J]. Botany, 2014, 92(4):253-266
    Jacoby R, Peukert M, Succurro A, et al. The role of soil microorganisms in plant mineral nutrition-current knowledge and future directions[J]. Frontiers in Plant Science, 2017, 8:1617
    Schweitzer J A, Bailey J K, Fischer D G, et al. Plant-soil-microorganism interactions:Heritable relationship between plant genotype and associated soil microorganisms[J]. Ecology, 2008, 89(3):773-781
    Cerqueira F, Matamoros V, Bayona J, et al. Antibiotic resistance genes distribution in microbiomes from the soil-plant-fruit continuum in commercial Lycopersicon esculentum fields under different agricultural practices[J]. The Science of the Total Environment, 2019, 652:660-670
    Zhou S Y, Zhu D, Giles M, et al. Phyllosphere of staple crops under pig manure fertilization, a reservoir of antibiotic resistance genes[J]. Environmental Pollution, 2019, 252(Pt A):227-235
    Hannula S E, Zhu F, Heinen R, et al. Foliar-feeding insects acquire microbiomes from the soil rather than the host plant[J]. Nature Communications, 2019, 10:1254
    Luo Y, Mao D Q, Rysz M, et al. Trends in antibiotic resistance genes occurrence in the Haihe River, China[J]. Environmental Science&Technology, 2010, 44(19):7220-7225
    Yang F, Mao D, Zhou H, et al. Propagation of new delhi metallo-β -lactamase genes (blaNDM-1) from a wastewater treatment plant to its receiving river[J]. Environmental Science&Technology Letters, 2016,
    Thimmegowda G G, Mullen S, Sottilare K, et al. A field-based quantitative analysis of sublethal effects of air pollution on pollinators[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(34):20653-20661
    Okamoto M, Kumagai M, Kanamori H, et al. Antimicrobial resistance genes in bacteria isolated from Japanese honey, and their potential for conferring macrolide and lincosamide resistance in the American foulbrood pathogen Paenibacillus larvae [J]. Frontiers in Microbiology, 2021, 12:667096
    Bezirtzoglou E. Emerging antibiotic resistance in honey as a hazard for human health[J]. Journal of Bacteriology&Mycology:Open Access, 2016, 2(1):6-12
    Tsekoura F, Alexopoulos A, Stefanis C, et al. Aerobic and anaerobic bacteriology of Greek honeys[C]. Patra, Greece:2nd International Congress on Bioprocesses in Food Industries (ICBF 2006), 2006
    Kim D W, Cha C J. Antibiotic resistome from the One-Health perspective:Understanding and controlling antimicrobial resistance transmission[J]. Experimental&Molecular Medicine, 2021, 53(3):301-309
    Orr M C, Hughes A C, Chesters D, et al. Global patterns and drivers of bee distribution[J]. Current Biology, 2021, 31(3):451-458
    Goretti E, Pallottini M, Rossi R, et al. Heavy metal bioaccumulation in honey bee matrix, an indicator to assess the contamination level in terrestrial environments[J]. Environmental Pollution, 2020, 256:113388
    Celli G, Maccagnani B. Honey bees as bioindicators of environmental pollution[J]. Bulletin of Insectology, 2003, 56(1):137-139
    Dornhaus A, Klügl F, Oechslein C, et al. Benefits of recruitment in honey bees:Effects of ecology and colony size in an individual-based model[J]. Behavioral Ecology, 2006, 17(3):336-344
  • 加载中
计量
  • 文章访问数:  2373
  • HTML全文浏览数:  2373
  • PDF下载数:  93
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-07-06

传粉蜜蜂介导的细菌耐药性传播及其生态与健康风险

    通讯作者: 罗义, E-mail: luoy@nankai.edu.cn
    作者简介: 黄渝岚(1998-),女,硕士研究生,研究方向为环境微生物,E-mail:2120200539@mail.nankai.edu.cn
  • 1. 南开大学环境科学与工程学院, 环境污染过程与基准教育部重点实验室, 天津 300350;
  • 2. 南京大学环境学院, 污染控制与资源化研究国家重点实验室, 南京 210093
基金项目:

国家自然科学基金重点项目(41831287)

国家重点研发计划资助项目(2020YFC1806904)

摘要: 目前,抗菌药物的滥用造成了临床和环境中普遍存在的细菌耐药性问题,而细菌耐药性在环境中不断富集和传播扩散会通过食物网对生态安全及人体健康构成威胁。蜜蜂作为最重要的传粉昆虫,在世界各地广泛分布。然而,蜜蜂近年来频繁暴露于抗生素、杀虫剂和杀螨剂等药物,而野外杀虫剂的大量使用被认为是导致世界各地蜜蜂种群数量下降的关键因素。蜜蜂传花授粉的生物学特性使得蜂群与周围环境之间发生频繁的交流,可能导致蜜蜂传粉过程中蜂群与周围环境的交叉污染并发生细菌耐药性的传递。因此,蜜蜂可能成为生态系统中细菌耐药性传播的潜在“帮凶”。传粉蜜蜂介导下的细菌耐药性传播也将对蜂群健康、食品安全乃至生态系统安全构成威胁。本文综合国内外相关研究进展,系统分析了环境污染物暴露对蜜蜂以及蜜蜂肠道耐药基因组的潜在影响,并详细阐述了传粉蜜蜂介导下的细菌耐药性的传播,总结了蜜蜂主要通过蜜蜂-蜜蜂、蜜蜂-植物以及蜜蜂-环境的途径促进细菌耐药性的传播。最后,探讨了蜜蜂介导的细菌耐药性传播对蜂群健康、生态环境以及人体健康的潜在影响。

English Abstract

参考文献 (133)

目录

/

返回文章
返回