典型杀虫剂类内分泌干扰物对水生溞类的毒性效应研究进展
Research Progress on Toxic Effects of Typical Pesticides Endocrine Disruptor on Aquatic Flea
-
摘要: 内分泌干扰物(endocrine disrupting chemicals,EDCs),尤其是具有内分泌干扰效应的杀虫剂,因能显著影响水生生物的生长发育和生殖系统,其潜在生态毒性效应引起了人们的广泛关注。溞类在水生生态系统食物链中起着重要的连接作用,更易受到水体中残留的杀虫剂类EDCs的影响,其毒性效应在水生生态系统毒理学研究中有着重要的意义。本文重点综述了杀虫剂类EDCs对溞类产生的生长发育毒性和生殖毒性,从酶活性变化角度分析由此产生的氧化应激和神经毒性,并在基因表达水平上揭示其毒性作用机制,发现杀虫剂类EDCs通过扰乱神经系统和内分泌系统发挥作用,并展望了杀虫剂EDCs在联合毒性、多代效应的研究前景,旨在为研究杀虫剂类EDCs对大型溞的毒性作用和生态环境风险评估提供依据。Abstract: Endocrine disrupting chemicals (EDCs), especially pesticides with endocrine disrupting effects, have attracted extensive attention for their potential ecotoxic effects because they can significantly affect the growth, development and reproductive systems of aquatic organisms. Daphnia magna plays an important linkage role in the food chain of aquatic ecosystem, and is more vulnerable to the effects of residual pesticides EDCs in the water column. Their toxic effects are of great significance in the study of aquatic ecosystem toxicology. In this paper, we focus on the growth and developmental toxicity and reproductive toxicity of pesticide EDCs to Daphnia magna, analyze the resulting oxidative stress and neurotoxicity from the perspective of enzyme activity changes, and reveal the mechanism of their toxic effects at the level of gene expression. We find that pesticide EDCs act through disrupting the nervous system and endocrine system. Besides, the research prospects of the combined toxicity and multi-generation effect of the pesticides EDCs were proposed, which providing a basis for further-exploring the toxicity of pesticides EDCs to Daphnia magna and assessing the ecological environment risk.
-
Key words:
- pesticides EDCs /
- Daphnia magna /
- acute toxicity /
- chronic toxicity /
- test endpoint
-
方琪,马彦博,张思远,等.农药内分泌干扰效应研究进展[J].生态毒理学报, 2017, 12(1):98-110 Fang Q, Ma Y B, Zhang S Y, et al. Research progress in endocrine disrupting effects of pesticides[J]. Asian Journal of Ecotoxicology, 2017, 12(1):98-110(in Chinese)
Gore A C, Chappell V A, Fenton S E, et al. EDC-2:The endocrine society's second scientific statement on endocrine-disrupting chemicals[J]. Endocrine Reviews, 2015, 36(6):E1-E150 杨会会.湖北省地表水中有机磷农药的分布和健康风险评价[D].武汉:华中师范大学, 2014, 12(2):13-36 吕潇,李慧冬,杜红霞,等.农药类内分泌干扰物的研究进展[J].华中农业大学学报, 2006, 25(1):94-100 Lv X, Li H D, Du H X, et al. Advances in endocrine disrupting pesticides[J]. Journal of Huazhong Agricultural University:Natural Science Edition, 2006, 25(1):94-100(in Chinese)
Juberg D R, Borghoff S J, Becker R A, et al. Lessons learned, challenges, and opportunities:The US endocrine disruptor screening program[J]. ALTEX, 2014, 31(1):63-78 Jordão R, Casas J, Fabrias G, et al. Obesogens beyond vertebrates:Lipid perturbation by tributyltin in the crustacean Daphnia magna [J]. Environmental Health Perspectives, 2015, 123(8):813-819 Jeong T Y, Simpson M J. Reproduction stage specific dysregulation of Daphnia magna metabolites as an early indicator of reproductive endocrine disruption[J]. Water Research, 2020, 184:116107 Han S, Choi K, Kim J, et al. Endocrine disruption and consequences of chronic exposure to ibuprofen in Japanese medaka ( Oryzias latipes ) and freshwater cladocerans Daphnia magna and Moina macrocopa [J]. Aquatic Toxicology, 2010, 98(3):256-264 Printes L B, Fellowes M D E, Callaghan A. Clonal variation in acetylcholinesterase biomarkers and life history traits following OP exposure in Daphnia magna [J]. Ecotoxicology and Environmental Safety, 2008, 71(2):519-526 Ivorra L, Cardoso P G, Chan S K, et al. Environmental characterization of 4,4'-dichlorobenzophenone in surface waters from Macao and Hong Kong coastal areas (Pearl River Delta) and its toxicity on two biological models: Artemia salina and Daphnia magna [J]. Ecotoxicology and Environmental Safety, 2019, 171:1-11 Organization for Economic Co-Operation and Development (OECD). Test No. 202: Daphnia sp. Acute immobilisation test[R]. Paris:OECD, 2004 Organization for Economic Co-Operation and Development (OECD). Test No. 211: Daphnia magna reproduction test[R]. Paris:OECD, 2012 Toumi H, Boumaiza M, Millet M, et al. Effects of deltamethrin (pyrethroid insecticide) on growth, reproduction, embryonic development and sex differentiation in two strains of Daphnia magna (Crustacea, Cladocera)[J]. Science of the Total Environment, 2013, 458-460:47-53 Kim Y, Jung J, Oh S, et al. Aquatic toxicity of cartap and cypermethrin to different life stages of Daphnia magna and Oryzias latipes [J]. Journal of Environmental Science and Health, Part B, 2008, 43(1):56-64 Mokry L E, Hoagland K D. Acute toxicities of five synthetic pyrethroid insecticides to Daphnia magna and Ceriodaphnia dubia [J]. Environmental Toxicology and Chemistry, 1990, 9(8):1045 Toyota K, Williams T D, Sato T, et al. Comparative ovarian microarray analysis of juvenile hormone-responsive genes in water flea Daphnia magna :Potential targets for toxicity[J]. Journal of Applied Toxicology, 2017, 37(3):374-381 Villarroel M J, Sancho E, Ferrando M D, et al. Effect of an acaricide on the reproduction and survival of Daphnia magna [J]. Bulletin of Environmental Contamination and Toxicology, 1999, 63(2):167-173 Haeba M H, Hilscherová K, Mazurová E, et al. Selected endocrine disrupting compounds (vinclozolin, flutamide, ketoconazole and dicofol):Effects on survival, occurrence of males, growth, molting and reproduction of Daphnia magna [J]. Environmental Science and Pollution Research International, 2008, 15(3):222-227 Hernando M D, Ejerhoon M, Fernández-Alba A R, et al. Combined toxicity effects of MTBE and pesticides measured with Vibrio fischeri and Daphnia magna bioassays[J]. Water Research, 2003, 37(17):4091-4098 Palma P, Palma V L, Fernandes R M, et al. Acute toxicity of atrazine, endosulfan sulphate and chlorpyrifos to Vibrio fischeri , Thamnocephalus platyurus and Daphnia magna , relative to their concentrations in surface waters from the Alentejo Region of Portugal[J]. Bulletin of Environmental Contamination and Toxicology, 2008, 81(5):485-489 Ren Z M, Li Z L, Zha J M, et al. The avoidance responses of Daphnia magna to the exposure of organophosphorus pesticides in an on-line biomonitoring system[J]. Environmental Modeling&Assessment, 2009, 14(3):405-410 Hartgers E M, Heugens E H, Deneer J W. Effect of lindane on the clearance rate of Daphnia magna [J]. Archives of Environmental Contamination and Toxicology, 1999, 36(4):399-404 Bettinetti R, Croce V, Noè F, et al. Ecotoxicity of p,p'-DDE to Daphnia magna [J]. Ecotoxicology, 2013, 22(8):1255-1263 Manar R, Bessi H, Vasseur P. Reproductive effects and bioaccumulation of chlordane in Daphnia magna [J]. Environmental Toxicology and Chemistry, 2009, 28(10):2150-2159 Qiu X C, Tanoue W, Kawaguchi A, et al. Interaction patterns and toxicities of binary and ternary pesticide mixtures to Daphnia magna estimated by an accelerated failure time model[J]. Science of the Total Environment, 2017, 607-608:367-374 Trac L N, Andersen O, Palmqvist A. Deciphering mechanisms of malathion toxicity under pulse exposure of the freshwater cladoceran Daphnia magna [J]. Environmental Toxicology and Chemistry, 2016, 35(2):394-404 Andersen T H, Tjørnhøj R, Wollenberger L, et al. Acute and chronic effects of pulse exposure of Daphnia magna to dimethoate and pirimicarb[J]. Environmental Toxicology and Chemistry, 2006, 25(5):1187-1195 Liess M, von der Ohe P C. Analyzing effects of pesticides on invertebrate communities in streams[J]. Environmental Toxicology and Chemistry, 2005, 24(4):954-965 Demetrio P M, Bonetto C, Ronco A E. The effect of cypermethrin, chlorpyrifos, and glyphosate active ingredients and formulations on Daphnia magna (Straus)[J]. Bulletin of Environmental Contamination and Toxicology, 2014, 93(3):268-273 George T K, Liber K. Laboratory investigation of the toxicity and interaction of pesticide mixtures in Daphnia magna [J]. Archives of Environmental Contamination and Toxicology, 2007, 52(1):64-72 Matsumoto T, Ikuno E, Itoi S, et al. Chemical sensitivity of the male daphnid, Daphnia magna , induced by exposure to juvenile hormone and its analogs[J]. Chemosphere, 2008, 72(3):451-456 Coors A, Vanoverbeke J, de Bie T, et al. Land use, genetic diversity and toxicant tolerance in natural populations of Daphnia magna [J]. Aquatic Toxicology, 2009, 95(1):71-79 Wilsont P C, Foos J F. Survey of carbamate and organophosphorous pesticide export from a South Florida (U.S.A.) agricultural watershed:Implications of sampling frequency on ecological risk estimation[J]. Environmental Toxicology and Chemistry, 2006, 25(11):2847-2852 Pfaff J, Reinwald H, Ayobahan S U, et al. Toxicogenomic differentiation of functional responses to fipronil and imidacloprid in Daphnia magna [J]. Aquatic Toxicology, 2021, 238:105927 Gauthier J R, Mabury S A. The sulfoximine insecticide sulfoxaflor and its photodegradate demonstrate acute toxicity to the nontarget invertebrate species Daphnia magna [J]. Environmental Toxicology and Chemistry, 2021, 40(8):2156-2164 Ginjupalli G K, Baldwin W S. The time-and age-dependent effects of the juvenile hormone analog pesticide, pyriproxyfen on Daphnia magna reproduction[J]. Chemosphere, 2013, 92(9):1260-1266 Barata C, Solayan A, Porte C. Role of B-esterases in assessing toxicity of organophosphorus (chlorpyrifos, malathion) and carbamate (carbofuran) pesticides to Daphnia magna [J]. Aquatic Toxicology, 2004, 66(2):125-139 Xuereb B, Noury P, Felten V, et al. Cholinesterase activity in Gammarus pulex (Crustacea Amphipoda):Characterization and effects of chlorpyrifos[J]. Toxicology, 2007, 236(3):178-189 Oda S, Tatarazako N, Watanabe H, et al. Genetic differences in the production of male neonates in Daphnia magna exposed to juvenile hormone analogs[J]. Chemosphere, 2006, 63(9):1477-1484 Abe R, Toyota K, Miyakawa H, et al. Diofenolan induces male offspring production through binding to the juvenile hormone receptor in Daphnia magna [J]. Aquatic Toxicology, 2015, 159:44-51 Goto T, Hiromi J. Toxicity of 17alpha-ethynylestradiol and norethindrone, constituents of an oral contraceptive pill to the swimming and reproduction of cladoceran Daphnia magna , with special reference to their synergetic effect[J]. Marine Pollution Bulletin, 2003, 47(1-6):139-142 Baer K N, Owens K D. Evaluation of selected endocrine disrupting compounds on sex determination in Daphnia magna using reduced photoperiod and different feeding rates[J]. Bulletin of Environmental Contamination and Toxicology, 1999, 62(2):214-221 Palma P, Palma V L, Matos C, et al. Assessment of the pesticides atrazine, endosulfan sulphate and chlorpyrifos for juvenoid-related endocrine activity using Daphnia magna [J]. Chemosphere, 2009, 76(3):335-340 Kim J, Kim Y, Lee S, et al. Determination of mRNA expression of DMRT93B, vitellogenin, and cuticle 12 in Daphnia magna and their biomarker potential for endocrine disruption[J]. Ecotoxicology, 2011, 20(8):1741-1748 Navis S, Waterkeyn A, Voet T, et al. Pesticide exposure impacts not only hatching of dormant eggs, but also hatchling survival and performance in the water flea Daphnia magna [J]. Ecotoxicology, 2013, 22(5):803-814 Religia P, Kato Y, Fukushima E O, et al. Atrazine exposed phytoplankton causes the production of non-viable offspring on Daphnia magna [J]. Marine Environmental Research, 2019, 145:177-183 Lampert W, Lampert K P, Larsson P. Induction of male production in clones of Daphnia pulex by the juvenoid hormone methyl farnesoate under short photoperiod[J]. Comparative Biochemistry and Physiology Toxicology&Pharmacology, 2012, 156(2):130-133 Oda S, Tatarazako N, Watanabe H, et al. Production of male neonates in Daphnia magna (Cladocera, Crustacea) exposed to juvenile hormones and their analogs[J]. Chemosphere, 2005, 61(8):1168-1174 Kopp A. Dmrt genes in the development and evolution of sexual dimorphism[J]. Trends in Genetics, 2012, 28(4):175-184 Marín I, Baker B S. The evolutionary dynamics of sex determination[J]. Science, 1998, 281(5385):1990-1994 Palma P, Palma V L, Fernandes R M, et al. Endosulfan sulphate interferes with reproduction, embryonic development and sex differentiation in Daphnia magna [J]. Ecotoxicology and Environmental Safety, 2009, 72(2):344-350 Olmstead A W, LeBlanc G A. Insecticidal juvenile hormone analogs stimulate the production of male offspring in the crustacean Daphnia magna [J]. Environmental Health Perspectives, 2003, 111(7):919-924 de Souza Machado A A, Zarfl C, Rehse S, et al. Low-dose effects:Nonmonotonic responses for the toxicity of a Bacillus thuringiensis biocide to Daphnia magna [J]. Environmental Science&Technology, 2017, 51(3):1679-1686 Tatarazako N, Oda S. The water flea Daphnia magna (Crustacea, Cladocera) as a test species for screening and evaluation of chemicals with endocrine disrupting effects on crustaceans[J]. Ecotoxicology, 2007, 16(1):197-203 Navis S, Waterkeyn A, de Meester L, et al. Acute and chronic effects of exposure to the juvenile hormone analog fenoxycarb during sexual reproduction in Daphnia magna [J]. Ecotoxicology, 2018, 27(5):627-634 Tatarazako N, Oda S, Watanabe H, et al. Juvenile hormone agonists affect the occurrence of male Daphnia [J]. Chemosphere, 2003, 53(8):827-833 Davies R, Zou E M. Polybrominated diphenyl ethers disrupt molting in neonatal Daphnia magna [J]. Ecotoxicology, 2012, 21(5):1371-1380 Watanabe H, Oda S, Abe R, et al. Comparison of the effects of constant and pulsed exposure with equivalent time-weighted average concentrations of the juvenile hormone analog pyriproxyfen on the reproduction of Daphnia magna [J]. Chemosphere, 2018, 195:810-816 Hassold E, Backhaus T. Chronic toxicity of five structurally diverse demethylase-inhibiting fungicides to the crustacean Daphnia magna :A comparative assessment[J]. Environmental Toxicology and Chemistry, 2009, 28(6):1218-1226 Song Y, Evenseth L M, Iguchi T, et al. Release of chitobiase as an indicator of potential molting disruption in juvenile Daphnia magna exposed to the ecdysone receptor agonist 20-hydroxyecdysone[J]. Journal of Toxicology and Environmental Health, Part A, 2017, 80(16-18):954-962 Zou E M, Fingerman M. Effects of estrogenic xenobiotics on molting of the water flea, Daphnia magna [J]. Ecotoxicology and Environmental Safety, 1997, 38(3):281-285 Masteling R P, Castro B B, Antunes S C, et al. Whole-organism and biomarker endpoints in Daphnia magna show uncoupling of oxidative stress and endocrine disruption in phenolic derivatives[J]. Ecotoxicology and Environmental Safety, 2016, 134:64-71 Liu T, He Z R. Vessel segmentation using principal component based threshold algorithm[C]. Nanchang:2019 Chinese Control and Decision Conference (CCDC), 2019:2739-2741 Hassold E, Backhaus T. Chronic toxicity of five structurally diverse demethylase-inhibiting fungicides to the crustacean Daphnia magna :A comparative assessment[J]. Environmental Toxicology and Chemistry, 2009, 28(6):1218-1226 Scott G R, Sloman K A. The effects of environmental pollutants on complex fish behaviour:Integrating behavioural and physiological indicators of toxicity[J]. Aquatic Toxicology, 2004, 68(4):369-392 Toumi H, Boumaiza M, Millet M, et al. Is acetylcholinesterase a biomarker of susceptibility in Daphnia magna (Crustacea, Cladocera) after deltamethrin exposure?[J]. Chemosphere, 2015, 120:351-356 Kotikova E A, Raikova O I, Flyatchinskaya L P, et al. Rotifer muscles as revealed by phalloidin-TRITC staining and confocal scanning laser microscopy[J]. Acta Zoologica, 2001, 82(1):1-9 Fukuto T R. Mechanism of action of organophosphorus and carbamate insecticides[J]. Environmental Health Perspectives, 1990, 87:245-254 Ubaid ur Rahman H, Asghar W, Nazir W, et al. A comprehensive review on chlorpyrifos toxicity with special reference to endocrine disruption:Evidence of mechanisms, exposures and mitigation strategies[J]. Science of the Total Environment, 2021, 755:142649 Venkatalaxmi A, Padmavathi B S, Amaranath T. A general solution of unsteady Stokes equations[J]. Fluid Dynamics Research, 2004, 35(3):229-236 Casida J E. Esterase inhibitors as pesticides:Because of favorable biological properties they are displacing other types of established compounds[J]. Science, 1964, 146(3647):1011-1017 Ren Z M, Zhang X, Wang X G, et al. AChE inhibition:One dominant factor for swimming behavior changes of Daphnia magna under DDVP exposure[J]. Chemosphere, 2015, 120:252-257 Crivellente F, Hart A. Establishment of cumulative assessment groups of pesticides for their effects on the nervous system[J]. EFSA Journal, 2019, 17(9):e05800 巩宁,孟紫强,邵魁双,等.水蚤分子生态毒理学研究进展[J].生态毒理学报, 2020, 15(2):11-18 Gong N, Meng Z Q, Shao K S, et al. Advances in ecotoxicogenomics with water fleas[J]. Asian Journal of Ecotoxicology, 2020, 15(2):11-18(in Chinese)
Masteling R P, Castro B B, Antunes S C, et al. Whole-organism and biomarker endpoints in Daphnia magna show uncoupling of oxidative stress and endocrine disruption in phenolic derivatives[J]. Ecotoxicology and Environmental Safety, 2016, 134:64-71 Baldwin W S, Graham S E, Shea D M, et al. Metabolic androgenization of female Daphnia magna by the xenoestrogen 4-nonylphenol[J]. Environmental Toxicology and Chemistry, 1997, 16(9):1905 Toyota K, Kato Y, Sato M, et al. Molecular cloning of doublesex genes of four Cladocera (water flea) species[J]. BMC Genomics, 2013, 14:239 Ignace D D, Dodson S I, Kashian D R. Identification of the critical timing of sex determination in Daphnia magna (Crustacea, Branchiopoda) for use in toxicological studies[J]. Hydrobiologia, 2011, 668(1):117-123 Kato Y, Kobayashi K, Watanabe H, et al. Environmental sex determination in the branchiopod crustacean Daphnia magna :Deep conservation of a doublesex gene in the sex-determining pathway[J]. PLoS Genetics, 2011, 7(3):e1001345 Toyota K, Miyakawa H, Yamaguchi K, et al. NMDA receptor activation upstream of methyl farnesoate signaling for short day-induced male offspring production in the water flea, Daphnia pulex [J]. BMC Genomics, 2015, 16(1):186 Wuerz M, Whyard S, Loadman N L, et al. Sex determination and gene expression in Daphnia magna exposed to juvenile hormone[J]. Journal of Plankton Research, 2019, 41(4):393-406 Puckowski A, Stolte S, Wagil M, et al. Mixture toxicity of flubendazole and fenbendazole to Daphnia magna [J]. International Journal of Hygiene and Environmental Health, 2017, 220(3):575-582
计量
- 文章访问数: 2508
- HTML全文浏览数: 2508
- PDF下载数: 100
- 施引文献: 0