水产养殖环境中抗生素与重金属耐药共选择机制研究

谢家莹, 江梦琪, 张红敏, 潘迎捷, 刘海泉, 谢庆超, 赵勇. 水产养殖环境中抗生素与重金属耐药共选择机制研究[J]. 生态毒理学报, 2022, 17(6): 213-224. doi: 10.7524/AJE.1673-5897.20211014001
引用本文: 谢家莹, 江梦琪, 张红敏, 潘迎捷, 刘海泉, 谢庆超, 赵勇. 水产养殖环境中抗生素与重金属耐药共选择机制研究[J]. 生态毒理学报, 2022, 17(6): 213-224. doi: 10.7524/AJE.1673-5897.20211014001
Xie Jiaying, Jiang Mengqi, Zhang Hongmin, Pan Yingjie, Liu Haiquan, Xie Qingchao, Zhao Yong. Co-selection Mechanism of Antibiotics and Heavy Metal Resistance in Aquaculture Environment[J]. Asian journal of ecotoxicology, 2022, 17(6): 213-224. doi: 10.7524/AJE.1673-5897.20211014001
Citation: Xie Jiaying, Jiang Mengqi, Zhang Hongmin, Pan Yingjie, Liu Haiquan, Xie Qingchao, Zhao Yong. Co-selection Mechanism of Antibiotics and Heavy Metal Resistance in Aquaculture Environment[J]. Asian journal of ecotoxicology, 2022, 17(6): 213-224. doi: 10.7524/AJE.1673-5897.20211014001

水产养殖环境中抗生素与重金属耐药共选择机制研究

    作者简介: 谢家莹(1997-),女,硕士研究生,研究方向为食品质量安全风险评估,E-mail:jying_xie@163.com
    通讯作者: 张红敏, E-mail: qcxie@shou.edu.cn 谢庆超, E-mail: hmzhang@shou.edu.cn 赵勇, E-mail: yzhao@shou.edu.cn
  • 基金项目:

    国家自然科学基金面上项目(31972188);上海市优秀学术带头人项目(21XD1401200);上海市教育委员会科研创新计划资助项目(2017-01-07-00-10-E00056)

  • 中图分类号: X171.5

Co-selection Mechanism of Antibiotics and Heavy Metal Resistance in Aquaculture Environment

    Corresponding authors: Zhang Hongmin, qcxie@shou.edu.cn ;  Xie Qingchao, hmzhang@shou.edu.cn ;  Zhao Yong, yzhao@shou.edu.cn
  • Fund Project:
  • 摘要: 抗生素耐药性是公认的公共卫生挑战,它的出现不仅限制了用药的选择范围,同时耐药性的传播对人体健康存在着潜在的危害。而水产养殖中常用的另一类制剂是各种金属阳离子,它们可作为营养补充剂加入饲料中以支持和保护水产品生长。而许多种类的抗生素可与金属阳离子形成复合物,这可以降低或增强抗生素活性。重要的是,越来越多的证据表明重金属驱动了细菌抗生素耐药性的发展,由于重金属可以在环境中长期稳定存在,它作为一种选择压力在抗生素耐药性的共选择和抗生素抗性基因(antibiotic resistance genes, ARGs)的传播中的作用也受到越来越多的关注。本文综述了水产养殖环境中重金属和抗生素的污染现状,重金属对抗生素活性和耐药性的影响,并总结了重金属和抗生素在细菌耐药产生过程中潜在的耐药共选择机制,最后讨论了现今研究中的不足,并对抗生素与重金属的复合污染研究进行了展望,阐明了今后水产养殖环境中耐药性综合防控治理的发展方向。
  • 加载中
  • Zhu D, An X L, Chen Q L, et al. Antibiotics disturb the microbiome and increase the incidence of resistance genes in the gut of a common soil collembolan[J]. Environmental Science & Technology, 2018, 52(5):3081-3090
    Shah I, Poojari V, Meshram H. Multi-drug resistant and extensively-drug resistant tuberculosis[J]. Indian Journal of Pediatrics, 2020, 87(10):833-839
    罗长健, 栗帅, 王琳. 基于WoS文献计量分析的抗生素污染研究进展[J]. 中国社会医学杂志, 2020, 37(4):433-437

    Luo C J, Li S, Wang L. Research progress of antibiotics pollution based on WoS bibliometric analysis[J]. Chinese Journal of Social Medicine, 2020, 37(4):433-437(in Chinese)

    Roberts S C, Zembower T R. Global increases in antibiotic consumption:A concerning trend for WHO targets[J]. The Lancet Infectious Diseases, 2021, 21(1):10-11
    Clancy C J, Nguyen M H. Buying time:The AMR action fund and the state of antibiotic development in the United States 2020[J]. Open Forum Infectious Diseases, 2020, 7(11):464
    宋永刚, 吴金浩, 邵泽伟, 等. 辽东湾近岸表层海水重金属污染分析与评价[J]. 渔业科学进展, 2016, 37(3):14-19

    Song Y G, Wu J H, Shao Z W, et al. Evaluation of heavy metal pollution in the offshore surface seawater of the Liaodong Bay[J]. Progress in Fishery Sciences, 2016, 37(3):14-19(in Chinese)

    田琳, 陈洪涛, 杜俊涛, 等. 北黄海表层海水溶解态重金属的分布特征及其影响因素[J]. 中国海洋大学学报(自然科学版), 2009, 39(4):617-621 Tian L, Chen H T, Du J T, et al. Factors influencing distribution of soluble heavy metals in north Yellow Sea surface seawaters[J]. Periodical of Ocean University of China, 2009, 39(4):617-621(in Chinese)
    李娟英, 崔昱, 范清平, 等. 洋山港海域表层海水中重金属及石油烃污染周年监测与评价[J]. 上海海洋大学学报, 2014, 23(1):95-101

    Li J Y, Cui Y, Fan Q P, et al. Annual monitoring and analysis of pollution characters of heavy metal and petroleum hydrocarbon in surface seawater from Yangshan Port[J]. Journal of Shanghai Ocean University, 2014, 23(1):95-101(in Chinese)

    莫小荣, 管超毅, 罗良娟, 等. 广西沿海牡蛎养殖区及牡蛎重金属污染研究进展[J]. 钦州学院学报, 2019, 34(3):8-12

    , 60 Mo X R, Guan C Y, Luo L J, et al. A study of heavy metal pollution in oyster culture areas and oysters Guangxi[J]. Journal of Qinzhou University, 2019, 34(3):8-12, 60(in Chinese)

    Li L G, Xia Y, Zhang T. Co-occurrence of antibiotic and metal resistance genes revealed in complete genome collection[J]. The ISME Journal, 2017, 11(3):651-662
    Acharya K P, Wilson R T. Antimicrobial resistance in Nepal[J]. Frontiers in Medicine, 2019, 6((4):105
    李兆新, 董晓, 孙晓杰, 等. 渔业养殖环境中抗生素残留检测与控制技术研究进展[J]. 食品安全质量检测学报, 2017, 8(7):2678-2686

    Li Z X, Dong X, Sun X J, et al. Advances in the detection and control of antibiotic residues in aquaculture environments[J]. Journal of Food Safety & Quality, 2017, 8(7):2678-2686(in Chinese)

    Kraemer S A, Ramachandran A, Perron G G. Antibiotic pollution in the environment:From microbial ecology to public policy[J]. Microorganisms, 2019, 7(6):180
    Chen C Q, Zheng L, Zhou J L, et al. Persistence and risk of antibiotic residues and antibiotic resistance genes in major mariculture sites in Southeast China[J]. The Science of the Total Environment, 2017, 580:1175-1184
    Gu J, Zhang L, Wang X J, et al. High-throughput analysis of the effects of different fish culture methods on antibiotic resistance gene abundances in a lake[J]. Environmental Science and Pollution Research International, 2019, 26(6):5445-5453
    Han J E, Kim J H, Cheresca C H Jr, et al. First description of the qnrS-like (qnrS5) gene and analysis of quinolone resistance-determining regions in motile Aeromonas spp. from diseased fish and water[J]. Research in Microbiology, 2012, 163(1):73-79
    Kim M, Kwon T H, Jung S M, et al. Antibiotic resistance of bacteria isolated from the internal organs of edible snow crabs[J]. PLoS One, 2013, 8(8):e70887
    娄阳, 张昭寰, 肖莉莉, 等. 食品源抗生素抗性基因的来源与分布状况研究进展[J]. 食品工业科技, 2015, 36(12):368-374

    Lou Y, Zhang Z H, Xiao L L, et al. Research progress of source and distribution of antibiotic resistance genes in food[J]. Science and Technology of Food Industry, 2015, 36(12):368-374(in Chinese)

    Gao P P, Mao D, Luo Y, et al. Occurrence of sulfonamide and tetracycline-resistant bacteria and resistance genes in aquaculture environment[J]. Water Research, 2012, 46(7):2355-2364
    Hoa P T P, Managaki S, Nakada N, et al. Antibiotic contamination and occurrence of antibiotic-resistant bacteria in aquatic environments of northern Vietnam[J]. Science of the Total Environment, 2011, 409(15):2894-2901
    Zhao Y T, Zhang X, Zhao Z, et al. Metagenomic analysis revealed the prevalence of antibiotic resistance genes in the gut and living environment of freshwater shrimp[J]. Journal of Hazardous Materials, 2018, 350:10-18
    Su H C, Liu S, Hu X J, et al. Occurrence and temporal variation of antibiotic resistance genes (ARGs) in shrimp aquaculture:ARGs dissemination from farming source to reared organisms[J]. The Science of the Total Environment, 2017, 607-608:357-366
    Jang H M, Kim Y B, Choi S, et al. Prevalence of antibiotic resistance genes from effluent of coastal aquaculture, South Korea[J]. Environmental Pollution, 2018, 233:1049-1057
    Su H C, Hu X J, Wang L L, et al. Contamination of antibiotic resistance genes (ARGs) in a typical marine aquaculture farm:Source tracking of ARGs in reared aquatic organisms[J]. Journal of Environmental Science and Health Part B, Pesticides, Food Contaminants, and Agricultural Wastes, 2020, 55(3):220-229
    Yuan J L, Ni M, Liu M, et al. Occurrence of antibiotics and antibiotic resistance genes in a typical estuary aquaculture region of Hangzhou Bay, China[J]. Marine Pollution Bulletin, 2019, 138:376-384
    Pham T T H, Rossi R, Dinh H D K, et al. Analysis of antibiotic multi-resistant bacteria and resistance genes in the effluent of an intensive shrimp farm (Long An, Vietnam)[J]. Journal of Environmental Management, 2018, 214:149-156
    中国农业农村部渔业渔政管理局, 中国全国水产技术推广总站, 中国水产学会编制. 中国渔业统计年鉴-2020[M]. 北京:中国农业出版社, 2020:21-23
    Dietrich M, Ayers J. Geochemical partitioning and possible heavy metal(loid) bioaccumulation within aquaculture shrimp ponds[J]. The Science of the Total Environment, 2021, 788:147777
    El Bahgy H E K, Elabd H, Elkorashey R M. Heavy metals bioaccumulation in marine cultured fish and its probabilistic health hazard[J]. Environmental Science and Pollution Research, 2021, 28(30):41431-41438
    吴烨飞, 陈火荣, 吴镇, 等. 福建省中北部海域捕捞水产品中4种重金属含量与风险评价[J]. 渔业研究, 2018, 40(6):478-489

    Wu Y F, Chen H R, Wu Z, et al. Concentrations and risk evaluation of four kinds of heavy metals in fishing aquatic products of the central and northern sea areas of Fujian Province[J]. Journal of Fisheries Research, 2018, 40(6):478-489(in Chinese)

    李响. 吉林省4个城市市售海产品中重金属含量的调查研究[D]. 长春:吉林大学, 2019:18-27 Li X. Investigation and study on the content of heavy metals in commercial products of four cities in Jilin Province[D]. Changchun:Jilin University, 2019:18

    -27(in Chinese)

    施沁璇. 钱塘江流域杭州段水产动物中重金属分布特征及安全性评价[D]. 杭州:浙江大学, 2017:23-31
    荣飚, 洪华荣. 厦门市售水产品中重金属污染分析与评价[J]. 海峡预防医学杂志, 2015, 21(3):52-54
    姜兆刚, 闫兆凤. 威海市售海产品重金属污染情况及食用安全性评价[J]. 中国卫生产业, 2019, 16(20):11-13

    Jiang Z G, Yan Z F. Heavy metal pollution and food safety evaluation of seafood sold in Weihai[J]. China Health Industry, 2019, 16(20):11-13(in Chinese)

    霍苗苗. 沿海地区居民摄入水产品中重金属安全风险评估[D]. 天津:天津科技大学, 2016:17-29 Huo M M. Risk assessment of heavy metals in aquatic products consumption by coastal areas residents[D]. Tianjin:Tianjin University of Science & Technology, 2016:17

    -29(in Chinese)

    谢文平, 陈昆慈, 朱新平, 等. 珠江三角洲河网区水体及鱼体内重金属含量分析与评价[J]. 农业环境科学学报, 2010, 29(10):1917-1923

    Xie W P, Chen K C, Zhu X P, et al. Evaluation on heavy metal contents in water and fishes collected from the waterway in the Pearl River Delta, South China[J]. Journal of Agro-Environment Science, 2010, 29(10):1917-1923(in Chinese)

    和庆. 长三角地区池塘养殖水产品重金属和多环芳烃污染评价及其生物有效性研究[D]. 上海:上海海洋大学, 2018:24-29 He Q. Pollution evaluation and bioavailability of heavy metals and polycyclic aromatic hydrocarbons in pond aquaculture products in the Yangtze River Delta[D]. Shanghai:Shanghai Ocean University, 2018:24

    -29(in Chinese)

    庞洋洋, 罗伟, 李文红, 等. 淡水养殖池塘表层沉积物中重金属Cu、Zn含量积累及污染分析[J]. 水产科技情报, 2016, 43(1):45-49
    Ferreira M, Gameiro P. Ciprofloxacin metalloantibiotic:An effective antibiotic with an influx route strongly dependent on lipid interaction?[J]. The Journal of Membrane Biology, 2015, 248(1):125-136
    Ma Y, Zhou Q, Zhou S, et al. A bifunctional adsorbent with high surface area and cation exchange property for synergistic removal of tetracycline and Cu2+[J]. Chemical Engineering Journal, 2014, 258:26-33
    Lu L H, Liu J, Li Z, et al. Antibiotic resistance gene abundances associated with heavy metals and antibiotics in the sediments of Changshou Lake in the three Gorges Reservoir area, China[J]. Ecological Indicators, 2020, 113:106275
    Zhang Y, Cai X, Lang X, et al. Insights into aquatic toxicities of the antibiotics oxytetracycline and ciprofloxacin in the presence of metal:Complexation versus mixture[J]. Environmental Pollution, 2012, 166:48-56
    Zarkan A, Macklyne H R, Truman A W, et al. The frontline antibiotic vancomycin induces a zinc starvation response in bacteria by binding to Zn(Ⅱ)[J]. Scientific Reports, 2016, 6:19602
    Uivarosi V. Metal complexes of quinolone antibiotics and their applications:An update[J]. Molecules, 2013, 18(9):11153-11197
    El-Gamel N E A. Metal chelates of ampicillin versus amoxicillin:Synthesis, structural investigation, and biological studies[J]. Journal of Coordination Chemistry, 2010, 63(3):534-543
    Hsu L C, Liu Y T, Syu C H, et al. Adsorption of tetracycline on Fe (hydr)oxides:Effects of pH and metal cation (Cu2+, Zn2+ and Al3+) addition in various molar ratios[J]. Royal Society Open Science, 2018, 5(3):171941
    Brillault J, Tewes F, Couet W, et al. In vitro biopharmaceutical evaluation of ciprofloxacin/metal cation complexes for pulmonary administration[J]. European Journal of Pharmaceutical Sciences, 2017, 97:92-98
    Pulicharla R, Das R K, Brar S K, et al. Toxicity of chlortetracycline and its metal complexes to model microorganisms in wastewater sludge[J]. The Science of the Total Environment, 2015, 532:669-675
    Lu L, Wu Y X, Ding H J, et al. The combined and second exposure effect of copper (Ⅱ) and chlortetracycline on fresh water algae, Chlorella pyrenoidosa and Microcystis aeruginosa[J]. Environmental Toxicology and Pharmacology, 2015, 40(1):140-148
    汪晨. 水中典型药物与重金属的络合行为[D]. 南京:东南大学, 2016:2-9 Wang C. Complexation behavior of typical pharmaceutical antibiotics and heavy metals in water[D]. Nanjing:Southeast University, 2016:2

    -9(in Chinese)

    Jin X, Qiu S S, Wu K, et al. The effect of Cu2+ chelation on the direct photolysis of oxytetracycline:A study assisted by spectroscopy analysis and DFT calculation[J]. Environmental Pollution, 2016, 214:831-839
    李孟涵, 贺子琪, 苗家赫, 等. 重金属Pb与抗生素对发光菌的联合毒性研究[J]. 农业环境科学学报, 2020, 39(9):1925-1936

    Li M H, He Z Q, Miao J H, et al. Joint toxicity of heavy metal Pb and antibiotics to photobacterium[J]. Journal of Agro-Environment Science, 2020, 39(9):1925-1936(in Chinese)

    Chan A N, Shiver A L, Wever W J, et al. Role for dithiolopyrrolones in disrupting bacterial metal homeostasis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(10):2717-2722
    Bayroodi E, Jalal R. Modulation of antibiotic resistance in Pseudomonas aeruginosa by ZnO nanoparticles[J]. Iranian Journal of Microbiology, 2016, 8(2):85-92
    邱文婕, 秦艳, 高品. 环境中重金属暴露对抗生素抗性基因演变影响研究进展[J]. 环境工程技术学报, 2021, 11(6):1226-1231

    Qiu W J, Qin Y, Gao P. Research progress on the effect of heavy metal exposure on the evolution of antibiotic resistance genes in the environment[J]. Journal of Environmental Engineering Technology, 2021, 11(6):1226-1231(in Chinese)

    王小垒, 李凤姿, 何家乐, 等. 环境微生物抗生素与重金属抗性研究进展[J]. 环境科技, 2019, 32(1):59-62

    Wang X L, Li F Z, He J L, et al. The research progress of environmental microbial antibiotic and heavy metal resistance[J]. Environmental Science and Technology, 2019, 32(1):59-62(in Chinese)

    Zhang M L, Wan K, Zeng J, et al. Co-selection and stability of bacterial antibiotic resistance by arsenic pollution accidents in source water[J]. Environment International, 2020, 135:105351
    Zhou Q, Wang M Z, Zhong X X, et al. Dissemination of resistance genes in duck/fish polyculture ponds in Guangdong Province:Correlations between Cu and Zn and antibiotic resistance genes[J]. Environmental Science and Pollution Research International, 2019, 26(8):8182-8193
    Li Y Z, Chen H Y, Song L T, et al. Effects on microbiomes and resistomes and the source-specific ecological risks of heavy metals in the sediments of an urban river[J]. Journal of Hazardous Materials, 2021, 409:124472
    Lu J, Wang Y, Jin M, et al. Both silver ions and silver nanoparticles facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes[J]. Water Research, 2020, 169:115229
    Devarajan N, Laffite A, Graham N D, et al. Accumulation of clinically relevant antibiotic-resistance genes, bacterial load, and metals in freshwater lake sediments in Central Europe[J]. Environmental Science & Technology, 2015, 49(11):6528-6537
    Zhong Q M, Cruz-Paredes C, Zhang S R, et al. Can heavy metal pollution induce bacterial resistance to heavy metals and antibiotics in soils from an ancient land-mine?[J]. Journal of Hazardous Materials, 2021, 411:124962
    Kurniawan A, Sukandar, Satriya C, et al. Biofilm as a bioindicator of Cr Ⅵ pollution in the lotic ecosystems[J]. IOP Conference Series:Earth and Environmental Science, 2018, 137:012062
    Xu S Z, Xing Y H, Liu S, et al. Co-effect of minerals and Cd(Ⅱ) promoted the formation of bacterial biofilm and consequently enhanced the sorption of Cd(Ⅱ)[J]. Environmental Pollution, 2020, 258:113774
    陈朝彦, 秦志丹, 蒋良艳, 等. 双组分系统调控肺炎克雷伯菌碳青霉烯耐药机制的研究进展[J]. 中华危重病急救医学, 2021(6):761-764 Chen Z Y, Qin Z D, Jiang L Y, et al. Research progress on the mechanism of two-component systems in regulating carbapenem resistance of Klebsiella pneumonia[J]. Chinese Critical Care Medicine, 2021

    (6):761-764(in Chinese)

    张佳奇, 徐艳, 罗义, 等. 重金属协同选择环境细菌抗生素抗性及其机制研究进展[J]. 农业环境科学学报, 2016, 35(3):409-418

    Zhang J Q, Xu Y, Luo Y, et al. Co-selection mechanisms of bacterial resistance to heavy metals and antibiotics[J]. Journal of Agro-Environment Science, 2016, 35(3):409-418(in Chinese)

    Crabbé A, Ostyn L, Staelens S, et al. Host metabolites stimulate the bacterial proton motive force to enhance the activity of aminoglycoside antibiotics[J]. PLoS Pathogens, 2019, 15(4):e1007697
    朱光平, 薛晨晨, 范宏亮, 等. 环境中抗生素抗性基因研究进展[J]. 预防医学, 2020, 32(11):1121-1125

    , 1129 Zhu G P, Xue C C, Fan H L, et al. Research progress of antibiotic resistance genes in environment[J]. Preventive Medicine, 2020, 32(11):1121-1125, 1129(in Chinese)

    Baker-Austin C, Wright M S, Stepanauskas R, et al. Co-selection of antibiotic and metal resistance[J]. Trends in Microbiology, 2006, 14(4):176-182
    Wang D, Chen W Z, Huang S Q, et al. Structural basis of Zn(Ⅱ) induced metal detoxification and antibiotic resistance by histidine kinase CzcS in Pseudomonas aeruginosa[J]. PLoS Pathogens, 2017, 13(7):e1006533
    张赫. 一株分离自黄河污泥的金黄色葡萄球菌菌株LZ-01的抗生素和重金属共抗性研究[D]. 兰州:兰州大学, 2016:8-14 Zhang H. Co-resistance study of a Staphylococcus aureus strain LZ-01 isolated from contaminated sludge of the Yellow River to antibiotics and heavy metals[D]. Lanzhou:Lanzhou University, 2016

    :8-14(in Chinese)

    Hasman H, Aarestrup F M. tcrB, a gene conferring transferable copper resistance in Enterococcus faecium:Occurrence, transferability, and linkage to macrolide and glycopeptide resistance[J]. Antimicrobial Agents and Chemotherapy, 2002, 46(5):1410-1416
    Calero-Cáceres W, Méndez J, Martín-Díaz J, et al. The occurrence of antibiotic resistance genes in a Mediterranean River and their persistence in the riverbed sediment[J]. Environmental Pollution, 2017, 223:384-394
    di Cesare A, Eckert E M, D'Urso S, et al. Co-occurrence of integrase 1, antibiotic and heavy metal resistance genes in municipal wastewater treatment plants[J]. Water Research, 2016, 94:208-214
    Cao J Y, Yang G Q, Mai Q J, et al. Co-selection of antibiotic-resistant bacteria in a paddy soil exposed to As(Ⅲ) contamination with an emphasis on potential pathogens[J]. The Science of the Total Environment, 2020, 725:138367
    Berg J, Thorsen M K, Holm P E, et al. Cu exposure under field conditions coselects for antibiotic resistance as determined by a novel cultivation-independent bacterial community tolerance assay[J]. Environmental Science & Technology, 2010, 44(22):8724-8728
    Jo S, Shin C, Shin Y, et al. Heavy metal and antibiotic co-resistance in Vibrio parahaemolyticus isolated from shellfish[J]. Marine Pollution Bulletin, 2020, 156:111246
    Siddiqui M T, Mondal A H, Gogry F A, et al. Plasmid-mediated ampicillin, quinolone, and heavy metal Co-resistance among ESBL-producing isolates from the Yamuna River, New Delhi, India[J]. Antibiotics, 2020, 9(11):826
    Kang C H, Shin Y, Yu H, et al. Antibiotic and heavy-metal resistance of Vibrio parahaemolyticus isolated from oysters in Korea[J]. Marine Pollution Bulletin, 2018, 135:69-74
    Lloyd N A, Nazaret S, Barkay T. Whole genome sequences to assess the link between antibiotic and metal resistance in three coastal marine bacteria isolated from the mummichog gastrointestinal tract[J]. Marine Pollution Bulletin, 2018, 135:514-520
    Mandal M, Das S N, Mandal S. Principal component analysis exploring the association between antibiotic resistance and heavy metal tolerance of plasmid-bearing sewage wastewater bacteria of clinical relevance[J]. Access Microbiology, 2020, 2(3):95
    Xu Y, Xu J, Mao D, et al. Effect of the selective pressure of sub-lethal level of heavy metals on the fate and distribution of ARGs in the catchment scale[J]. Environmental Pollution, 2017, 220:900-908
    Ali N M, Mazhar S A, Mazhar B, et al. Antibacterial activity of different plant extracts and antibiotics on pathogenic bacterial isolates from wheat field water[J]. Pakistan Journal of Pharmaceutical Sciences, 2017, 30(4):1321-1325
    Vignaroli C, Pasquaroli S, Citterio B, et al. Antibiotic and heavy metal resistance in enterococci from coastal marine sediment[J]. Environmental Pollution, 2018, 237:406-413
  • 加载中
计量
  • 文章访问数:  2641
  • HTML全文浏览数:  2641
  • PDF下载数:  96
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-10-14
谢家莹, 江梦琪, 张红敏, 潘迎捷, 刘海泉, 谢庆超, 赵勇. 水产养殖环境中抗生素与重金属耐药共选择机制研究[J]. 生态毒理学报, 2022, 17(6): 213-224. doi: 10.7524/AJE.1673-5897.20211014001
引用本文: 谢家莹, 江梦琪, 张红敏, 潘迎捷, 刘海泉, 谢庆超, 赵勇. 水产养殖环境中抗生素与重金属耐药共选择机制研究[J]. 生态毒理学报, 2022, 17(6): 213-224. doi: 10.7524/AJE.1673-5897.20211014001
Xie Jiaying, Jiang Mengqi, Zhang Hongmin, Pan Yingjie, Liu Haiquan, Xie Qingchao, Zhao Yong. Co-selection Mechanism of Antibiotics and Heavy Metal Resistance in Aquaculture Environment[J]. Asian journal of ecotoxicology, 2022, 17(6): 213-224. doi: 10.7524/AJE.1673-5897.20211014001
Citation: Xie Jiaying, Jiang Mengqi, Zhang Hongmin, Pan Yingjie, Liu Haiquan, Xie Qingchao, Zhao Yong. Co-selection Mechanism of Antibiotics and Heavy Metal Resistance in Aquaculture Environment[J]. Asian journal of ecotoxicology, 2022, 17(6): 213-224. doi: 10.7524/AJE.1673-5897.20211014001

水产养殖环境中抗生素与重金属耐药共选择机制研究

    通讯作者: 张红敏, E-mail: qcxie@shou.edu.cn ;  谢庆超, E-mail: hmzhang@shou.edu.cn ;  赵勇, E-mail: yzhao@shou.edu.cn
    作者简介: 谢家莹(1997-),女,硕士研究生,研究方向为食品质量安全风险评估,E-mail:jying_xie@163.com
  • 1. 上海海洋大学食品学院,上海 201306;
  • 2. 农业农村部水产品贮藏保鲜质量安全风险评估实验室(上海),上海 201306;
  • 3. 上海水产品加工及贮藏工程技术研究中心,上海 201306
基金项目:

国家自然科学基金面上项目(31972188);上海市优秀学术带头人项目(21XD1401200);上海市教育委员会科研创新计划资助项目(2017-01-07-00-10-E00056)

摘要: 抗生素耐药性是公认的公共卫生挑战,它的出现不仅限制了用药的选择范围,同时耐药性的传播对人体健康存在着潜在的危害。而水产养殖中常用的另一类制剂是各种金属阳离子,它们可作为营养补充剂加入饲料中以支持和保护水产品生长。而许多种类的抗生素可与金属阳离子形成复合物,这可以降低或增强抗生素活性。重要的是,越来越多的证据表明重金属驱动了细菌抗生素耐药性的发展,由于重金属可以在环境中长期稳定存在,它作为一种选择压力在抗生素耐药性的共选择和抗生素抗性基因(antibiotic resistance genes, ARGs)的传播中的作用也受到越来越多的关注。本文综述了水产养殖环境中重金属和抗生素的污染现状,重金属对抗生素活性和耐药性的影响,并总结了重金属和抗生素在细菌耐药产生过程中潜在的耐药共选择机制,最后讨论了现今研究中的不足,并对抗生素与重金属的复合污染研究进行了展望,阐明了今后水产养殖环境中耐药性综合防控治理的发展方向。

English Abstract

参考文献 (84)

返回顶部

目录

/

返回文章
返回