eDNA宏条形码监测沉积物原生生物群落多样性

薛棋文, 杨江华, 张丽娟, 张效伟, 雷春生. eDNA宏条形码监测沉积物原生生物群落多样性[J]. 生态毒理学报, 2022, 17(4): 175-186. doi: 10.7524/AJE.1673-5897.20211101003
引用本文: 薛棋文, 杨江华, 张丽娟, 张效伟, 雷春生. eDNA宏条形码监测沉积物原生生物群落多样性[J]. 生态毒理学报, 2022, 17(4): 175-186. doi: 10.7524/AJE.1673-5897.20211101003
Xue Qiwen, Yang Jianghua, Zhang Lijuan, Zhang Xiaowei, Lei Chunsheng. Using Environmental DNA Metabarcoding to Monitor Community Diversity of Protist in Sediments[J]. Asian journal of ecotoxicology, 2022, 17(4): 175-186. doi: 10.7524/AJE.1673-5897.20211101003
Citation: Xue Qiwen, Yang Jianghua, Zhang Lijuan, Zhang Xiaowei, Lei Chunsheng. Using Environmental DNA Metabarcoding to Monitor Community Diversity of Protist in Sediments[J]. Asian journal of ecotoxicology, 2022, 17(4): 175-186. doi: 10.7524/AJE.1673-5897.20211101003

eDNA宏条形码监测沉积物原生生物群落多样性

    作者简介: 薛棋文(1992—),男,硕士研究生,研究方向为生态毒理学,E-mail:286229926@qq.com
    通讯作者: 张效伟, E-mail: zhangxw@nju.edu.cn
  • 基金项目:

    国家自然科学基金青年基金资助项目(41807482);江苏省自然科学基金青年基金资助项目(BK20180331);国家重大“水专项”(2018ZX0720801004)

  • 中图分类号: X171.5

Using Environmental DNA Metabarcoding to Monitor Community Diversity of Protist in Sediments

    Corresponding author: Zhang Xiaowei, zhangxw@nju.edu.cn
  • Fund Project:
  • 摘要: 原生生物个体小、繁殖快,对污染物敏感,是沉积物环境污染重要指示类群。传统基于形态学的方法难以快速准确地反映沉积物中原生生物的群落组成和物种多样性,严重制约了其在水生态评估中的应用。本研究采用环境DNA宏条形码方法,基于真核18S rRNA基因片段分析了太湖流域沉积物原生生物的群落结构及其时空差异,筛选了可用于太湖流域沉积物生态评估的原生生物指标,建立了基于原生生物的水生态评估方法。结果显示,利用环境DNA技术在太湖流域沉积物共检出原生生物群落有2 468个分类单元(OTU),属于13门44纲,至少在2个平行样本出现的OTU占总OTU的84.25%,春季(3月)与秋季(8月)原生生物群落组成差异明显。评价结果表明,目前太湖流域原生生物群落完整性整体处于亚健康和一般水平。
  • 加载中
  • Geisen S. Thorough high-throughput sequencing analyses unravels huge diversities of soil parasitic protists[J]. Environmental Microbiology, 2016, 18(6):1669-1672
    Titeux N, Henle K, Mihoub J B, et al. Biodiversity scenarios neglect future land-use changes[J]. Global Change Biology, 2016, 22(7):2505-2515
    Plutzer J, Karanis P. Neglected waterborne parasitic protozoa and their detection in water[J]. Water Research, 2016, 101:318-332
    李静, 卢文轩, 张雷燕, 等. 夏季蓝藻水华期间太湖河口区和敞水区纤毛虫群落组成及水平分布[J]. 水生生物学报, 2014, 38(5):860-867

    Li J, Lu W X, Zhang L Y, et al. Community compositions and horizontal distribution of ciliates in Lake Taihu during the cyanobacterial bloom in summer[J]. Acta Hydrobiologica Sinica, 2014, 38(5):860-867(in Chinese)

    沈韫芬, 顾曼如, 龚循矩, 等. 微型生物监测新技术[J]. 北京:中国建筑工业出版社, 1994:36-38
    马正学, 宋玉珍, 刘红岩. 用原生动物评价黄河兰州段的水质[J]. 中国环境科学, 1994, 14(6):401-406

    Ma Z X, Song Y Z, Liu H Y. Assessment of pollution in Lanzhou reach of Huanghe River by using protozoan communities[J]. China Environmental Science, 1994, 14(6):401-406(in Chinese)

    Robertson L J, Clark C G, Debenham J J, et al. Are molecular tools clarifying or confusing our understanding of the public health threat from zoonotic enteric protozoa in wildlife?[J]. International Journal for Parasitology:Parasites and Wildlife, 2019, 9:323-341
    Rakshit D, Sahu G R, Mohanty A K, et al. Bioindicator role of tintinnid (Protozoa:Ciliophora) for water quality monitoring in Kalpakkam, Tamil Nadu, south east coast of India[J]. Marine Pollution Bulletin, 2017, 114(1):134-143
    Yang J H, Zhang X W. eDNA metabarcoding in zooplankton improves the ecological status assessment of aquatic ecosystems[J]. Environment International, 2020, 134:105230
    Xie Y W, Wang J Z, Yang J H, et al. Environmental DNA metabarcoding reveals primary chemical contaminants in freshwater sediments from different land-use types[J]. Chemosphere, 2017, 172:201-209
    Zhang L J, Yang J H, Li H Z, et al. Development of the transcriptome for a sediment ecotoxicological model species, Chironomus dilutus[J]. Chemosphere, 2020, 244:125541
    Li J Y, Su L, Wei F H, et al. Bioavailability-based assessment of aryl hydrocarbon receptor-mediated activity in Lake Tai Basin from Eastern China[J]. The Science of the Total Environment, 2016, 544:987-994
    Xie Y W, Wang J Z, Wu Y, et al. Using in situ bacterial communities to monitor contaminants in river sediments[J]. Environmental Pollution, 2016, 212:348-357
    Wu W X, Liu H B. Disentangling protist communities identified from DNA and RNA surveys in the Pearl River-South China Sea Continuum during the wet and dry seasons[J]. Molecular Ecology, 2018, 27(22):4627-4640
    Sweeney B W, Battle J M, Jackson J K, et al. Can DNA barcodes of stream macroinvertebrates improve descriptions of community structure and water quality?[J]. Journal of the North American Benthological Society, 2011, 30(1):195-216
    Martins F M S, Galhardo M, Filipe A F, et al. Have the cake and eat it:Optimizing nondestructive DNA metabarcoding of macroinvertebrate samples for freshwater biomonitoring[J]. Molecular Ecology Resources, 2019, 19(4):863-876
    李飞龙, 杨江华, 杨雅楠, 等. 环境DNA宏条形码监测水生态系统变化与健康状态[J]. 中国环境监测, 2018, 34(6):37-46

    Li F L, Yang J H, Yang Y N, et al. Using environmental DNA metabarcoding to monitor the changes and health status of aquatic ecosystems[J]. Environmental Monitoring in China, 2018, 34(6):37-46(in Chinese)

    高旭, 杨江华, 张效伟. 浮游动物DNA宏条形码标志基因比较研究[J]. 生态毒理学报, 2020, 15(2):61-70

    Gao X, Yang J H, Zhang X W. Study on the selection of marker genes in zooplankton DNA metabarcoding monitoring[J]. Asian Journal of Ecotoxicology, 2020, 15(2):61-70(in Chinese)

    张丽娟, 徐杉, 赵峥, 等. 环境DNA宏条形码监测湖泊真核浮游植物的精准性[J]. 环境科学, 2021, 42(2):796-807

    Zhang L J, Xu S, Zhao Z, et al. Precision of eDNA metabarcoding technology for biodiversity monitoring of eukaryotic phytoplankton in lakes[J]. Environmental Science, 2021, 42(2):796-807(in Chinese)

    孙晶莹, 杨江华, 张效伟. 环境DNA(eDNA)宏条形码技术对枝角类浮游动物物种鉴定及其生物量监测研究[J]. 生态毒理学报, 2018, 13(5):76-86

    Sun J Y, Yang J H, Zhang X W. Identification and biomass monitoring of zooplankton Cladocera species with eDNA metabarcoding technology[J]. Asian Journal of Ecotoxicology, 2018, 13(5):76-86(in Chinese)

    van der Loos L M, Nijland R. Biases in bulk:DNA metabarcoding of marine communities and the methodology involved[J]. Molecular Ecology, 2021, 30(13):3270-3288
    Sleith R S, Katz L A. Ubiquity or not ubiquity:That is the question[J]. Molecular Ecology, 2019, 28(22):4842-4844
    Keeley N, Wood S A, Pochon X. Development and preliminary validation of a multi-trophic metabarcoding biotic index for monitoring benthic organic enrichment[J]. Ecological Indicators, 2018, 85:1044-1057
    Jiang J G, Shen Y F. Use of the aquatic protozoa to formulate a community biotic index for an urban water system[J]. Science of the Total Environment, 2005, 346(1-3):99-111
    蔡琨, 张杰, 徐兆安, 等. 应用底栖动物完整性指数评价太湖生态健康[J]. 湖泊科学, 2014, 26(1):74-82

    Cai K, Zhang J, Xu Z A, et al. Application of a benthic index of biotic integrity for the ecosystem health assessment of Lake Taihu[J]. Journal of Lake Sciences, 2014, 26(1):74-82(in Chinese)

    Delavenne J, Keszler L, Castelin M, et al. Deep-sea benthic communities in the largest oceanic desert are structured by the presence of polymetallic crust[J]. Scientific Reports, 2019, 9(1):6977
    Peralta-Maraver I, Galloway J, Posselt M, et al. Environmental filtering and community delineation in the streambed ecotone[J]. Scientific Reports, 2018, 8(1):15871
    苏玉, 曹晓峰, 黄艺. 应用底栖动物完整性指数评价滇池流域入湖河流生态系统健康[J]. 湖泊科学, 2013, 25(1):91-98

    Su Y, Cao X F, Huang Y. Stream ecosystem health assessment of inflow rivers in Lake Dianchi Catchment by using Benthic Integrity Biotic Index (B-IBI)[J]. Journal of Lake Sciences, 2013, 25(1):91-98(in Chinese)

    Dawson J, Pillay D, Roberts P J, et al. Declines in benthic macroinvertebrate community metrics and microphytobenthic biomass in an estuarine lake following enrichment by hippo dung[J]. Scientific Reports, 2016, 6:37359
    Trebitz A S, Hoffman J C, Grant G W, et al. Potential for DNA-based identification of Great Lakes fauna:Match and mismatch between taxa inventories and DNA barcode libraries[J]. Scientific Reports, 2015, 5:12162
    刘霞, 陆晓华, 陈宇炜. 太湖浮游硅藻时空演化与环境因子的关系[J]. 环境科学学报, 2012, 32(4):821-827

    Liu X, Lu X H, Chen Y W. Long-term evolution of planktonic diatoms and their relationships with environmental factors in Lake Taihu[J]. Acta Scientiae Circumstantiae, 2012, 32(4):821-827(in Chinese)

    张翔, 张效伟, 杨江华, 等. 应用物种DNA条形码识别太湖流域部分底栖无脊椎动物种类[J]. 环境监控与预警, 2016, 8(6):18-21

    , 25 Zhang X, Zhang X W, Yang J H, et al. Applying DNA barcoding for identification of some invertebrate macrozoobenthos at Taihu Lake Basin[J]. Environmental Monitoring and Forewarning, 2016, 8(6):18-21, 25(in Chinese)

    Stapanian M A, Micacchion M, Adams J V. Wetland habitat disturbance best predicts metrics of an amphibian index of biotic integrity[J]. Ecological Indicators, 2015, 56:237-242
    Abdullah Al M, Xue Y Y, Xiao P, et al. DNA metabarcoding reveals the significant influence of anthropogenic effects on microeukaryotic communities in urban waterbodies[J]. Environmental Pollution, 2021, 285:117336
    Chen W D, Ren K X, Isabwe A, et al. Stochastic processes shape microeukaryotic community assembly in a subtropical river across wet and dry seasons[J]. Microbiome, 2019, 7(1):138
  • 加载中
计量
  • 文章访问数:  3388
  • HTML全文浏览数:  3388
  • PDF下载数:  130
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-11-01
薛棋文, 杨江华, 张丽娟, 张效伟, 雷春生. eDNA宏条形码监测沉积物原生生物群落多样性[J]. 生态毒理学报, 2022, 17(4): 175-186. doi: 10.7524/AJE.1673-5897.20211101003
引用本文: 薛棋文, 杨江华, 张丽娟, 张效伟, 雷春生. eDNA宏条形码监测沉积物原生生物群落多样性[J]. 生态毒理学报, 2022, 17(4): 175-186. doi: 10.7524/AJE.1673-5897.20211101003
Xue Qiwen, Yang Jianghua, Zhang Lijuan, Zhang Xiaowei, Lei Chunsheng. Using Environmental DNA Metabarcoding to Monitor Community Diversity of Protist in Sediments[J]. Asian journal of ecotoxicology, 2022, 17(4): 175-186. doi: 10.7524/AJE.1673-5897.20211101003
Citation: Xue Qiwen, Yang Jianghua, Zhang Lijuan, Zhang Xiaowei, Lei Chunsheng. Using Environmental DNA Metabarcoding to Monitor Community Diversity of Protist in Sediments[J]. Asian journal of ecotoxicology, 2022, 17(4): 175-186. doi: 10.7524/AJE.1673-5897.20211101003

eDNA宏条形码监测沉积物原生生物群落多样性

    通讯作者: 张效伟, E-mail: zhangxw@nju.edu.cn
    作者简介: 薛棋文(1992—),男,硕士研究生,研究方向为生态毒理学,E-mail:286229926@qq.com
  • 1. 常州大学环境与安全工程学院, 常州 213164;
  • 2. 污染控制与资源化研究国家重点实验室, 南京大学环境学院, 南京 210023
基金项目:

国家自然科学基金青年基金资助项目(41807482);江苏省自然科学基金青年基金资助项目(BK20180331);国家重大“水专项”(2018ZX0720801004)

摘要: 原生生物个体小、繁殖快,对污染物敏感,是沉积物环境污染重要指示类群。传统基于形态学的方法难以快速准确地反映沉积物中原生生物的群落组成和物种多样性,严重制约了其在水生态评估中的应用。本研究采用环境DNA宏条形码方法,基于真核18S rRNA基因片段分析了太湖流域沉积物原生生物的群落结构及其时空差异,筛选了可用于太湖流域沉积物生态评估的原生生物指标,建立了基于原生生物的水生态评估方法。结果显示,利用环境DNA技术在太湖流域沉积物共检出原生生物群落有2 468个分类单元(OTU),属于13门44纲,至少在2个平行样本出现的OTU占总OTU的84.25%,春季(3月)与秋季(8月)原生生物群落组成差异明显。评价结果表明,目前太湖流域原生生物群落完整性整体处于亚健康和一般水平。

English Abstract

参考文献 (35)

返回顶部

目录

/

返回文章
返回