三唑酮对大型溞代际影响的转录组学分析

侯琳, 徐建, 梁雪芳, 金小伟. 三唑酮对大型溞代际影响的转录组学分析[J]. 生态毒理学报, 2022, 17(1): 170-184. doi: 10.7524/AJE.1673-5897.20211208001
引用本文: 侯琳, 徐建, 梁雪芳, 金小伟. 三唑酮对大型溞代际影响的转录组学分析[J]. 生态毒理学报, 2022, 17(1): 170-184. doi: 10.7524/AJE.1673-5897.20211208001
Hou Lin, Xu Jian, Liang Xuefang, Jin Xiaowei. Transcriptome Analysis on Intergenerational Effect of Daphnia magna Exposed to Triadimefon[J]. Asian Journal of Ecotoxicology, 2022, 17(1): 170-184. doi: 10.7524/AJE.1673-5897.20211208001
Citation: Hou Lin, Xu Jian, Liang Xuefang, Jin Xiaowei. Transcriptome Analysis on Intergenerational Effect of Daphnia magna Exposed to Triadimefon[J]. Asian Journal of Ecotoxicology, 2022, 17(1): 170-184. doi: 10.7524/AJE.1673-5897.20211208001

三唑酮对大型溞代际影响的转录组学分析

    作者简介: 侯琳(1995-),女,硕士研究生,研究方向为生态毒理学,E-mail:houlin191@mails.ucas.ac.cn
    通讯作者: 金小伟, E-mail: jinxw@cnemc.cn
  • 基金项目:

    国家自然科学基金资助项目(41977364)

    北京市优秀人才培养资助项目

  • 中图分类号: X171.5

Transcriptome Analysis on Intergenerational Effect of Daphnia magna Exposed to Triadimefon

    Corresponding author: Jin Xiaowei, jinxw@cnemc.cn
  • Fund Project:
  • 摘要: 三唑酮是一种普遍使用的唑类杀菌剂,其对水生生物的危害已经引起广泛关注。为探讨三唑酮对无脊椎动物的毒性效应和致毒机理,以大型溞为模式生物,开展多代试验,评估不同浓度(5、12.5、25、50、100和200 μg·L-1)的三唑酮对大型溞生长和繁殖以及每代时间间隔的影响。结果表明,暴露21 d后,200 μg·L-1的三唑酮显著降低了大型溞的体长和繁殖能力。转录组分析发现,三唑酮暴露后,F1代和F2代的处理组与对照组的差异表达基因分别为376个和422个,而两代间的差异表达基因共2 604个。通过对差异表达基因的功能富集发现,三唑酮对大型溞F1代影响的主要通路有蛋白质吸收消化、视黄醇新陈代谢、氧化应激和甾类激素生物合成等,对F2代影响的主要通路有抗原处理和呈递、类固醇生物合成和谷胱甘肽代谢等。三唑酮对大型溞可能的毒性作用有氧化应激、内分泌干扰效应、神经毒性和免疫毒性,且可能会存在传代效应。
  • 加载中
  • Watschke T L, Mumma R O, Linde D T, et al. Surface Runoff of Selected Pesticides Applied to Turfgrasses[M]//Fate and Management of Turfgrass Chemicals. Washington DC:American Chemical Society, 1999:94-105
    迭庆杞,黄泽春,杨玉飞,等.我国农药工业危险废物产生和污染特性研究[J].环境工程技术学报, 2021, 11(6):1266-1272

    Die Q Q, Huang Z C, Yang Y F, et al. Research on the generation and pollution characteristics of pesticide industrial hazardous wastes in China[J]. Journal of Environmental Engineering Technology, 2021, 11(6):1266-1272(in Chinese)

    Fu Y, Yang T, Zhao J, et al. Determination of eight pesticides in Lycium barbarum by LC-MS/MS and dietary risk assessment[J]. Food Chemistry, 2017, 218:192-198
    刘园,杨卫萍,魏琛,等.枯水期贵阳市饮用水源农药污染特征及健康风险[J].地球与环境, 2015, 43(6):653-659

    Liu Y, Yang W P, Wei C, et al. Pollution characteristics and health risk assessment of pesticide in drinking water of Guiyang City, China during withered water period[J]. Earth and Environment, 2015, 43(6):653-659(in Chinese)

    刘娜,金小伟,薛荔栋,等.太湖流域药物和个人护理品污染调查与生态风险评估[J].中国环境科学, 2017, 37(9):3515-3522

    Liu N, Jin X W, Xue L D, et al. Concentrations distribution and ecological risk assessment of pharmaceuticals and personal care products in Taihu Lake[J]. China Environmental Science, 2017, 37(9):3515-3522(in Chinese)

    游明华.天然水中9种三唑类农药的检测方法及其非生物降解研究[D].厦门:厦门大学, 2008:39You M H. Determination and abiotic degradation of nine trizole pesticides in natural aquatic environments[D]. Xiamen:Xiamen University, 2008:39(in Chinese)
    Wang Z K, Tian Z N, Chen L, et al. Stereoselective metabolism and potential adverse effects of chiral fungicide triadimenol on Eremias argus [J]. Environmental Science and Pollution Research International, 2020, 27(8):7823-7834
    Xu P, Huang L D. Stereoselective bioaccumulation, transformation, and toxicity of triadimefon in Scenedesmus obliquus [J]. Chirality, 2017, 29(2):61-69
    Liu T T, Diao J L, Di S S, et al. Stereoselective bioaccumulation and metabolite formation of triadimefon in Tubifex tubifex [J]. Environmental Science&Technology, 2014, 48(12):6687-6693
    Li M, Li S Y, Yao T T, et al. Waterborne exposure to triadimefon causes thyroid endocrine disruption and developmental delay in Xenopus laevis tadpoles[J]. Aquatic Toxicology, 2016, 177:190-197
    Zhang W J, Deng Y, Chen L, et al. Effect of triadimefon and its metabolite on adult amphibians Xenopus laevis [J]. Chemosphere, 2020, 243:125288
    Zhang W J, Deng Y, Chen L, et al. Comparing the effect of triadimefon and its metabolite on male and female Xenopus laevis :Obstructed growth and gonad morphology[J]. Chemosphere, 2020, 259:127415
    de la Paz J F, Beiza N, Paredes-Zúñiga S, et al. Triazole fungicides inhibit zebrafish hatching by blocking the secretory function of hatching gland cells[J]. International Journal of Molecular Sciences, 2017, 18(4):710
    Hassold E, Backhaus T. Chronic toxicity of five structurally diverse demethylase-inhibiting fungicides to the crustacean Daphnia magna :A comparative assessment[J]. Environmental Toxicology and Chemistry, 2009, 28(6):1218-1226
    Paredes-Zúñiga S, Trost N, de la Paz J F, et al. Behavioral effects of triadimefon in zebrafish are associated with alterations of the dopaminergic and serotonergic pathways[J]. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2019, 92:118-126
    Ward W O, Delker D A, Hester S D, et al. Transcriptional profiles in liver from mice treated with hepatotumorigenic and nonhepatotumorigenic triazole conazole fungicides:Propiconazole, triadimefon, and myclobutanil[J]. Toxicologic Pathology, 2006, 34(7):863-878
    Liu H C, Chu T Y, Chen L L, et al. The cardiovascular toxicity of triadimefon in early life stage of zebrafish and potential implications to human health[J]. Environmental Pollution, 2017, 231:1093-1103
    Jiang J H, Hu G J, Zhang C P, et al. Toxicological analysis of triadimefon on endocrine disruption and oxidative stress during rare minnow ( Gobiocypris rarus ) larvae development[J]. Environmental Science and Pollution Research International, 2017, 24(34):26681-26691
    Wu S G, Hu G J, Zhao X P, et al. Synergistic potential of fenvalerate and triadimefon on endocrine disruption and oxidative stress during rare minnow embryo development[J]. Environmental Toxicology, 2018, 33(7):759-769
    Zhang W J, Lu Y L, Huang L D, et al. Comparison of triadimefon and its metabolite on acute toxicity and chronic effects during the early development of Rana nigromaculata tadpoles[J]. Ecotoxicology and Environmental Safety, 2018, 156:247-254
    Liu S Y, Jin Q, Huang X H, et al. Disruption of zebrafish ( Danio rerio ) sexual development after full life-cycle exposure to environmental levels of triadimefon[J]. Environmental Toxicology and Pharmacology, 2014, 37(1):468-475
    刘娜,金小伟,王业耀,等.三唑酮对青鳉鱼和大型溞不同测试终点的毒性效应评价[J].中国环境科学, 2016, 36(7):2205-2211

    Liu N, Jin X W, Wang Y Y, et al. Toxicity effect of triadimefon based on Oryzias latipes and Daphnia magna with different test endpoints[J]. China Environmental Science, 2016, 36(7):2205-2211(in Chinese)

    刘娜,金小伟,穆云松,等.三唑酮在水环境中的环境行为、毒性效应及生态风险[J].生态毒理学报, 2017, 12(4):65-75

    Liu N, Jin X W, Mu Y S, et al. Review of environmental behavior, toxicity and ecological risk of triadimefon in the aquatic environment[J]. Asian Journal of Ecotoxicology, 2017, 12(4):65-75(in Chinese)

    高嘉蔚,赵莎莎,李富云,等.微塑料对大型溞摄食和抗氧化防御系统的影响[J].环境科学研究, 2021, 34(5):1205-1212

    Gao J W, Zhao S S, Li F Y, et al. Effects of microplastics on feeding behavior and antioxidant system of Daphnia magna [J]. Research of Environmental Sciences, 2021, 34(5):1205-1212(in Chinese)

    Shaw J R, Pfrender M E, Eads B D, et al. Daphnia as an emerging model for toxicological genomics[J]. Advances in Experimental Biology, 2008, 2:165-328
    Chen Y, Huang J, Xing L Q, et al. Effects of multigenerational exposures of D. magna to environmentally relevant concentrations of pentachlorophenol[J]. Environmental Science and Pollution Research, 2014, 21(1):234-243
    Organization for Economic Co-operation and Development (OECD). Test No. 211: Daphnia magna reproduction test[R]. Paris:OECD, 2008
    Organization for Economic Co-operation and Development (OECD). Test No. 201:Freshwater alga and cyanobacteria:Growth inhibition[R]. Paris:OECD, 2008
    Quinn B, Gagné F, Blaise C, et al. Evaluation of the lethal and sub-lethal toxicity and potential endocrine disrupting effect of nonylphenol on the zebra mussel ( Dreissena polymorpha )[J]. Comparative Biochemistry and Physiology Toxicology&Pharmacology, 2006, 142(1-2):118-127
    Ford A T, LeBlanc G A. Endocrine disruption in invertebrates:A survey of research progress[J]. Environmental Science&Technology, 2020, 54(21):13365-13369
    胡方华,宋文华,丁峰,等.三唑酮对大型溞21天慢性毒性效应[J].生态毒理学报, 2012, 7(2):171-176

    Hu F H, Song W H, Ding F, et al. 21-d chronic toxicity of triadimefon to Daphnia magna [J]. Asian Journal of Ecotoxicology, 2012, 7(2):171-176(in Chinese)

    Cui F, Chai T T, Qian L, et al. Effects of three diamides (chlorantraniliprole, cyantraniliprole and flubendiamide) on life history, embryonic development and oxidative stress biomarkers of Daphnia magna [J]. Chemosphere, 2017, 169:107-116
    Horwitz J. Alpha-crystallin[J]. Experimental Eye Research, 2003, 76(2):145-153
    Walker Q D, Lewis M H, Crofton K M, et al. Triadimefon, a triazole fungicide, induces stereotyped behavior and alters monoamine metabolism in rats[J]. Toxicology and Applied Pharmacology, 1990, 102(3):474-485
    Gagnaire F, Micillino J C. Effects of triadimefon on extracellular dopamine, DOPAC, HVA and 5-HIAA in adult rat striatum[J]. Toxicology, 2006, 217(2-3):91-104
    Liu S Y, Chang J H, Zhao Y, et al. Changes of thyroid hormone levels and related gene expression in zebrafish on early life stage exposure to triadimefon[J]. Environmental Toxicology and Pharmacology, 2011, 32(3):472-477
    Kenneke J F, Mazur C S, Ritger S E, et al. Mechanistic investigation of the noncytochrome P450-mediated metabolism of triadimefon to triadimenol in hepatic microsomes[J]. Chemical Research in Toxicology, 2008, 21(10):1997-2004
    Jones E L, Demaria M C, Wright M D. Tetraspanins in cellular immunity[J]. Biochemical Society Transactions, 2011, 39(2):506-511
    Termini C M, Gillette J M. Tetraspanins function as regulators of cellular signaling[J]. Frontiers in Cell and Developmental Biology, 2017, 5:34
    Jung S, Kim M J, Sellaththurai S, et al. Generation of Cd63-deficient zebrafish to analyze the role of Cd63 in viral infection[J]. Fish&Shellfish Immunology, 2021, 111:152-159
  • 加载中
计量
  • 文章访问数:  2324
  • HTML全文浏览数:  2324
  • PDF下载数:  83
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-12-08
侯琳, 徐建, 梁雪芳, 金小伟. 三唑酮对大型溞代际影响的转录组学分析[J]. 生态毒理学报, 2022, 17(1): 170-184. doi: 10.7524/AJE.1673-5897.20211208001
引用本文: 侯琳, 徐建, 梁雪芳, 金小伟. 三唑酮对大型溞代际影响的转录组学分析[J]. 生态毒理学报, 2022, 17(1): 170-184. doi: 10.7524/AJE.1673-5897.20211208001
Hou Lin, Xu Jian, Liang Xuefang, Jin Xiaowei. Transcriptome Analysis on Intergenerational Effect of Daphnia magna Exposed to Triadimefon[J]. Asian Journal of Ecotoxicology, 2022, 17(1): 170-184. doi: 10.7524/AJE.1673-5897.20211208001
Citation: Hou Lin, Xu Jian, Liang Xuefang, Jin Xiaowei. Transcriptome Analysis on Intergenerational Effect of Daphnia magna Exposed to Triadimefon[J]. Asian Journal of Ecotoxicology, 2022, 17(1): 170-184. doi: 10.7524/AJE.1673-5897.20211208001

三唑酮对大型溞代际影响的转录组学分析

    通讯作者: 金小伟, E-mail: jinxw@cnemc.cn
    作者简介: 侯琳(1995-),女,硕士研究生,研究方向为生态毒理学,E-mail:houlin191@mails.ucas.ac.cn
  • 1. 中国环境科学研究院环境健康风险评估与研究中心, 北京 100012;
  • 2. 中国环境科学研究院国家环境保护化学品生态效应与风险评估重点实验室, 北京 100012;
  • 3. 中国环境监测总站, 北京 100012;
  • 4. 内蒙古大学生态与环境学院, 呼和浩特 010021
基金项目:

国家自然科学基金资助项目(41977364)

北京市优秀人才培养资助项目

摘要: 三唑酮是一种普遍使用的唑类杀菌剂,其对水生生物的危害已经引起广泛关注。为探讨三唑酮对无脊椎动物的毒性效应和致毒机理,以大型溞为模式生物,开展多代试验,评估不同浓度(5、12.5、25、50、100和200 μg·L-1)的三唑酮对大型溞生长和繁殖以及每代时间间隔的影响。结果表明,暴露21 d后,200 μg·L-1的三唑酮显著降低了大型溞的体长和繁殖能力。转录组分析发现,三唑酮暴露后,F1代和F2代的处理组与对照组的差异表达基因分别为376个和422个,而两代间的差异表达基因共2 604个。通过对差异表达基因的功能富集发现,三唑酮对大型溞F1代影响的主要通路有蛋白质吸收消化、视黄醇新陈代谢、氧化应激和甾类激素生物合成等,对F2代影响的主要通路有抗原处理和呈递、类固醇生物合成和谷胱甘肽代谢等。三唑酮对大型溞可能的毒性作用有氧化应激、内分泌干扰效应、神经毒性和免疫毒性,且可能会存在传代效应。

English Abstract

参考文献 (40)

返回顶部

目录

/

返回文章
返回