镉对集胞藻光合活性的影响

阮港, 许萍萍, 殷旭旺, 张春梅, 宋高飞, 米武娟, 毕永红. 镉对集胞藻光合活性的影响[J]. 生态毒理学报, 2022, 17(6): 325-332. doi: 10.7524/AJE.1673-5897.20211224001
引用本文: 阮港, 许萍萍, 殷旭旺, 张春梅, 宋高飞, 米武娟, 毕永红. 镉对集胞藻光合活性的影响[J]. 生态毒理学报, 2022, 17(6): 325-332. doi: 10.7524/AJE.1673-5897.20211224001
Ruan Gang, Xu Pingping, Yin Xuwang, Zhang Chunmei, Song Gaofei, Mi Wujuan, Bi Yonghong. Effects of Cadmium on Photosynthetic Activity of Synechocystis PCC 6803[J]. Asian Journal of Ecotoxicology, 2022, 17(6): 325-332. doi: 10.7524/AJE.1673-5897.20211224001
Citation: Ruan Gang, Xu Pingping, Yin Xuwang, Zhang Chunmei, Song Gaofei, Mi Wujuan, Bi Yonghong. Effects of Cadmium on Photosynthetic Activity of Synechocystis PCC 6803[J]. Asian Journal of Ecotoxicology, 2022, 17(6): 325-332. doi: 10.7524/AJE.1673-5897.20211224001

镉对集胞藻光合活性的影响

    作者简介: 阮港(1997-),男,硕士研究生,研究方向为生态毒理学,E-mail:zgrgang@163.com
    通讯作者: 毕永红, E-mail: biyh@ihb.ac.cn
  • 基金项目:

    国家重点研发计划项目(2020YFA0907400)

  • 中图分类号: X171.5

Effects of Cadmium on Photosynthetic Activity of Synechocystis PCC 6803

    Corresponding author: Bi Yonghong, biyh@ihb.ac.cn
  • Fund Project:
  • 摘要: 镉是环境中的主要重金属污染物,研究镉胁迫下蓝藻光合活性的变化,有助于深入认识镉的细胞毒性以及蓝藻细胞对镉胁迫的响应特性,可为评价镉的生态环境风险提供科学依据。为探索镉对淡水蓝藻的毒性效应,选择集胞藻PCC 6803作为受试生物,以0、0.05、0.25、0.50和1.00 mg·L-1 Cd2+处理24 h后,测定其光合色素含量、光合活性以及活性氧(ROS)、超氧化物歧化酶(SOD)的变化。结果表明,0.05 mg·L-1 Cd2+处理下细胞的光合活性与对照组无显著差异;高于0.25 mg·L-1的Cd2+处理,细胞叶绿素a含量下降,PSⅡ反应中心受损,活性氧积累并激活抗氧化酶活性。Cd2+浓度高于0.50 mg·L-1,最大光化学效率(Fv/Fm)显著下降,PSⅡ线性电子传递链受阻;Q-A动力学曲线的快相和中相时长明显增加,QA-到QB电子传递受到抑制,PSⅡ受体侧受损,QB空位点对PQ的结合速率减慢。结果表明,集胞藻能耐受低于0.05 mg·L-1 Cd2+胁迫并表现出毒性兴奋效应;高浓度Cd2+通过干扰PSⅡ导致生长抑制作用,影响线性电子传递链中QA-和QB,主要毒性作用位点(受体蛋白)尚不清楚。
  • 加载中
  • Wagner G. Accumulation of cadmium in crop plants and its consequences to human health[J]. Advances in Agronomy, 1993, 51:173-212
    Tukaj Z, Baścik-Remisiewicz A, Skowroński T, et al. Cadmium effect on the growth, photosynthesis, ultrastructure and phytochelatin content of green microalga Scenedesmus armatus:A study at low and elevated CO2 concentration[J]. Environmental and Experimental Botany, 2007, 60(3):291-299
    Xia X, Wu S J, Zhou Z J, et al. Microbial Cd(Ⅱ) and Cr(Ⅵ) resistance mechanisms and application in bioremediation[J]. Journal of Hazardous Materials, 2021, 401:123685
    Ammendola S, Cerasi M, Battistoni A. Deregulation of transition metals homeostasis is a key feature of cadmium toxicity in Salmonella[J]. BioMetals, 2014, 27(4):703-714
    Rani A, Kumar A, Lal A, et al. Cellular mechanisms of cadmium-induced toxicity:A review[J]. International Journal of Environmental Health Research, 2014, 24(4):378-399
    Aimola P, Carmignani M, Volpe A R, et al. Cadmium induces p53-dependent apoptosis in human prostate epithelial cells[J]. PLoS One, 2012, 7(3):e33647
    Srivastava A, Biswas S, Yadav S, et al. Acute cadmium toxicity and post-stress recovery:Insights into coordinated and integrated response/recovery strategies of Anabaena sp. PCC 7120[J]. Journal of Hazardous Materials, 2021, 411:124822
    Blasi B, Peca L, Vass I, et al. Characterization of stress responses of heavy metal and metalloid inducible promoters in synechocystis PCC6803[J]. Journal of Microbiology and Biotechnology, 2012, 22(2):166-169
    Luo Z X, Wang Z H, Liu A F, et al. New insights into toxic effects of arsenate on four Microcystis species under different phosphorus regimes[J]. Environmental Science and Pollution Research International, 2020, 27(35):44460-44469
    Zhou W B, Juneau P, Qiu B S. Growth and photosynthetic responses of the bloom-forming cyanobacterium Microcystis aeruginosa to elevated levels of cadmium[J]. Chemosphere, 2006, 65(10):1738-1746
    Wang Y, Wang J C, Zhang H H, et al. A intermediate concentration of atmospheric nitrogen dioxide enhances PSⅡ activity and inhibits PSⅠ activity in expanded leaves of tobacco seedlings[J]. Ecotoxicology and Environmental Safety, 2021, 209:111844
    Yu Z, Hao R, Zhang L, et al. Effects of TiO2, SiO2, Ag and CdTe/CdS quantum dots nanoparticles on toxicity of cadmium towards Chlamydomonas reinhardtii[J]. Ecotoxicology and Environmental Safety, 2018, 156:75-86
    Faller P, Kienzler K, Krieger-Liszkay A. Mechanism of Cd2+ toxicity:Cd2+ inhibits photoactivation of photosystem Ⅱ by competitive binding to the essential Ca2+ site[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2005, 1706(1-2):158-164
    Liu M Q, Yanai J, Jiang R F, et al. Does cadmium play a physiological role in the hyperaccumulator Thlaspi caerulescens?[J]. Chemosphere, 2008, 71(7):1276-1283
    Poole J H, Tyack P L, Stoeger-Horwath A S, et al. Animal behaviour:Elephants are capable of vocal learning[J]. Nature, 2005, 434(7032):455-456
    Glatz A Vass I, Los D A, et al. The Synechocystis model of stress:From molecular chaperones to membranes[J]. Plant Physiology and Biochemistry, 1999, 37(1):1-12
    Igiri B E, Okoduwa S I R, Idoko G O, et al. Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater:A review[J]. Journal of Toxicology, 2018, 2018:2568038
    Deng L P. Sorption and desorption of lead (Ⅱ) from wastewater by green algae Cladophora fascicularis[J]. Journal of Hazardous Materials, 2007, 143(1-2):220-225
    Ao D, Lei Z, Dzakpasu M, et al. Role of divalent metals Cu2+ and Zn2+ in Microcystis aeruginosa proliferation and production of toxic microcystins[J]. Toxicon:Official Journal of the International Society on Toxinology, 2019, 170:51-59
    Shivaji S, Dronamaraju S V L. Scenedesnus rotundus isolated from the petroleum effluent employs alternate mechanisms of tolerance to elevated levels of cadmium and zinc[J]. Scientific Reports, 2019, 9:8485
    Newby R Jr, Lee L H, Perez J L, et al. Characterization of zinc stress response in Cyanobacterium synechococcus sp. IU 625[J]. Aquatic Toxicology, 2017, 186:159-170
    Tóth T, Zsiros O, Kis M, et al. Cadmium exerts its toxic effects on photosynthesis via a cascade mechanism in the cyanobacterium, Synechocystis PCC 6803[J]. Plant, Cell & Environment, 2012, 35(12):2075-2086
    Lichtenthaler H K. Chlorophylls and carotenoids:Pigments of photosynthetic biomembranes[J]. Methods in Enzymology, 1987, 148:350-382
    Pan X L, Zhang D Y, Chen X, et al. Effects of levofloxacin hydrochloride on photosystem Ⅱ activity and heterogeneity of Synechocystis sp.[J]. Chemosphere, 2009, 77(3):413-418
    Maxwell K, Johnson G N. Chlorophyll fluorescence-A practical guide[J]. Journal of Experimental Botany, 2000, 51(345):659-668
    Wang S Z, Zhang D, Pan X. Effects of arsenic on growth and photosystem Ⅱ (PSⅡ) activity of Microcystis aeruginosa[J]. Ecotoxicology and Environmental Safety, 2012, 84:104-111
    Beauchemin R, Gauthier A, Harnois J, et al. Spermine and spermidine inhibition of photosystem Ⅱ:Disassembly of the oxygen evolving complex and consequent perturbation in electron donation from TyrZ to P680+ and the quinone acceptors Q-A to QB[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2007, 1767(7):905-912
    Wodala B, Deák Z, Vass I, et al. In vivo target sites of nitric oxide in photosynthetic electron transport as studied by chlorophyll fluorescence in pea leaves[J]. Plant Physiology, 2008, 146(4):1920-1927
    Kaftan D, Meszaros T, Whitmarsh J, et al. Characterization of photosystem Ⅱ activity and heterogeneity during the cell cycle of the green alga Scenedesmus quadricauda[J]. Plant Physiology, 1999, 120(2):433-442
    Pan X L, Deng C N, Zhang D Y, et al. Toxic effects of amoxicillin on the photosystem Ⅱ of Synechocystis sp. characterized by a variety of in vivo chlorophyll fluorescence tests[J]. Aquatic Toxicology, 2008, 89(4):207-213
    杨雨嘉, 支崇远, 李培林, 等. 重金属Cd2+和Cu2+对一种曲壳藻生长情况及其抗氧化酶活性的影响[J]. 生态科学, 2015, 34(6):75-80

    Yang Y J, Zhi C Y, Li P L, et al. Effects of heavy metal Cd2+ and Cu2+ on growth and antioxidant enzymes of Achnanthes kryophila[J]. Ecological Science, 2015, 34(6):75-80(in Chinese)

    Latifi A, Ruiz M, Zhang C C. Oxidative stress in cyanobacteria[J]. FEMS Microbiology Reviews, 2009, 33(2):258-278
    Rutherford A W, Krieger-Liszkay A. Herbicide-induced oxidative stress in photosystem Ⅱ[J]. Trends in Biochemical Sciences, 2001, 26(11):648-653
    Ezraty B, Gennaris A, Barras F, et al. Oxidative stress, protein damage and repair in bacteria[J]. Nature Reviews Microbiology, 2017, 15(7):385-396
    Govindje E. Sixty-three years since Kautsky:Chlorophyll a fluorescence[J]. Functional Plant Biology, 1995, 22(2):131-160
    Zhang X, Chen H, Wang H, et al. Time-course effects of Tris(1,3-dichloro-2-propyl) phosphate (TDCPP) on Chlorella pyrenoidosa:Growth inhibition and adaptability mechanisms[J]. Journal of Hazardous Materials, 2021, 402:123784
    T[AKu。]mová E, Sofrová D. Response of intact cyanobacterial cells and their photosynthetic apparatus to Cd2+ ion treatment[J]. Photosynthetica, 2002, 40(1):103-108
    苏甜, 李义刚, 欧瑞康, 等. 镉离子对羊角月牙藻光合作用及其抗氧化酶的毒性影响[J]. 生态科学, 2014, 33(2):301-306

    Su T, Li Y G, Ou R K, et al. Toxic effects of Cd2+ on the photosynthesis and antioxidase activity of Selenastrum capricornutum[J]. Ecological Science, 2014, 33(2):301-306(in Chinese)

    邱昌恩, 况琪军, 毕永红, 等. Cd2+对绿球藻生长及生理特性的影响研究[J]. 水生生物学报, 2007, 31(1):142-145

    Qiu C G, Kuang Q J, Bi Y H, et al. The effects of Cd2+ on the growth and physiological characteristics of chlorococcum sp.[J]. Acta Hydrobiologica Sinica, 2007, 31(1):142-145(in Chinese)

    聂利华, 杨东娟, 刘亚群, 等. 一株虾池来源的螺旋拟柱孢藻藻株的分离鉴定及重金属离子Cu2+、Cd2+和Pb2+对其生长的影响[J]. 微生物学报, 2019, 59(7):1307-1317

    Nie L H, Yang D J, Liu Y Q, et al. Isolation, identification and effect of heavy metals on the growth of Cylindrospermopsis raciborskii helix from shrimp ponds[J]. Acta Microbiologica Sinica, 2019, 59(7):1307-1317(in Chinese)

    Xu C X, Sun T, Li S B, et al. Adaptive laboratory evolution of cadmium tolerance in Synechocystis sp. PCC 6803[J]. Biotechnology for Biofuels, 2018, 11:205
  • 加载中
计量
  • 文章访问数:  1388
  • HTML全文浏览数:  1388
  • PDF下载数:  50
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-12-24

镉对集胞藻光合活性的影响

    通讯作者: 毕永红, E-mail: biyh@ihb.ac.cn
    作者简介: 阮港(1997-),男,硕士研究生,研究方向为生态毒理学,E-mail:zgrgang@163.com
  • 1. 大连海洋大学水产与生命学院,大连 116023;
  • 2. 中国科学院水生生物研究所,淡水生态与生物技术国家重点实验室,武汉 430072
基金项目:

国家重点研发计划项目(2020YFA0907400)

摘要: 镉是环境中的主要重金属污染物,研究镉胁迫下蓝藻光合活性的变化,有助于深入认识镉的细胞毒性以及蓝藻细胞对镉胁迫的响应特性,可为评价镉的生态环境风险提供科学依据。为探索镉对淡水蓝藻的毒性效应,选择集胞藻PCC 6803作为受试生物,以0、0.05、0.25、0.50和1.00 mg·L-1 Cd2+处理24 h后,测定其光合色素含量、光合活性以及活性氧(ROS)、超氧化物歧化酶(SOD)的变化。结果表明,0.05 mg·L-1 Cd2+处理下细胞的光合活性与对照组无显著差异;高于0.25 mg·L-1的Cd2+处理,细胞叶绿素a含量下降,PSⅡ反应中心受损,活性氧积累并激活抗氧化酶活性。Cd2+浓度高于0.50 mg·L-1,最大光化学效率(Fv/Fm)显著下降,PSⅡ线性电子传递链受阻;Q-A动力学曲线的快相和中相时长明显增加,QA-到QB电子传递受到抑制,PSⅡ受体侧受损,QB空位点对PQ的结合速率减慢。结果表明,集胞藻能耐受低于0.05 mg·L-1 Cd2+胁迫并表现出毒性兴奋效应;高浓度Cd2+通过干扰PSⅡ导致生长抑制作用,影响线性电子传递链中QA-和QB,主要毒性作用位点(受体蛋白)尚不清楚。

English Abstract

参考文献 (41)

目录

/

返回文章
返回