小球藻(Chlorella vulgaris)耐受短期模拟酸雨及紫外辐射的光合生理特性研究

杨雨玲, 章鹏, 李亚鹤, 蔡飞, 毕淑峰, 李伟. 小球藻(Chlorella vulgaris)耐受短期模拟酸雨及紫外辐射的光合生理特性研究[J]. 生态毒理学报, 2022, 17(6): 315-324. doi: 10.7524/AJE.1673-5897.20211207001
引用本文: 杨雨玲, 章鹏, 李亚鹤, 蔡飞, 毕淑峰, 李伟. 小球藻(Chlorella vulgaris)耐受短期模拟酸雨及紫外辐射的光合生理特性研究[J]. 生态毒理学报, 2022, 17(6): 315-324. doi: 10.7524/AJE.1673-5897.20211207001
Yang Yuling, Zhang Peng, Li Yahe, Cai Fei, Bi Shufeng, Li Wei. Study on Photosynthetic Physiological Characters of Chlorella vulgaris under Stress of Short-term Simulated Acid Rain and UV Radiation[J]. Asian Journal of Ecotoxicology, 2022, 17(6): 315-324. doi: 10.7524/AJE.1673-5897.20211207001
Citation: Yang Yuling, Zhang Peng, Li Yahe, Cai Fei, Bi Shufeng, Li Wei. Study on Photosynthetic Physiological Characters of Chlorella vulgaris under Stress of Short-term Simulated Acid Rain and UV Radiation[J]. Asian Journal of Ecotoxicology, 2022, 17(6): 315-324. doi: 10.7524/AJE.1673-5897.20211207001

小球藻(Chlorella vulgaris)耐受短期模拟酸雨及紫外辐射的光合生理特性研究

    作者简介: 杨雨玲(1986-),女,硕士研究生,研究方向为藻类生理生态学,E-mail:yyl@hsu.edu.cn
    通讯作者: 李伟, E-mail: livilike@163.com
  • 基金项目:

    安徽省重点研究与开发计划项目(202004i07020004);国家自然科学青年基金项目(31600317);安徽省高校自然科学研究重点项目(KJ2021A1038);安徽省教育厅高校优秀青年人才支持计划一般项目(gxyq2021212);安徽省教育厅自然科学一般项目(KJHS2018B08);大学生创新创业项目(201910375011,S201910375018);黄山学院新安江流域生态环境保护研究中心(kypt202102)

  • 中图分类号: X171.5

Study on Photosynthetic Physiological Characters of Chlorella vulgaris under Stress of Short-term Simulated Acid Rain and UV Radiation

    Corresponding author: Li Wei, livilike@163.com
  • Fund Project:
  • 摘要: 为了解新安江流域优势藻类对短期模拟酸雨及紫外辐射的光合生理响应,选取流域分离的一株绿藻门小球藻(Chlorella vulgaris)为对象,通过模拟酸雨引起的水体pH值降低(5.65和4.50),研究了短期(24 h)酸胁迫下该种在低光(60 μmol·m-2·s-1)与高光(150 μmol·m-2·s-1)培养时生长及光合活性的响应,并探讨了上述条件下该种对短期紫外辐射(UVR)的敏感性。结果表明,相较于对照组(pH值7.10),仅较低的pH值(4.50)显著抑制了小球藻生长并改变了其细胞形态(高光下细胞粒径显著降低)。高光培养而非低pH胁迫显著降低藻体光合色素含量(叶绿素a、叶绿素b);光保护色素(类胡萝卜素、三苯甲咪唑类氨基酸(MAAs)整体上未受光强或pH值影响。高光培养的藻体有效光化学效率(Yield)在低pH值下显著降低,而低光处理下各pH值处理间无显著差别。低光下培养的藻,经阳光模拟器下辐射处理后(可见光(P):87.5 W·m-2、紫外线A(UVA):33.5 W·m-2、紫外线B(UVB):1.91 W·m-2),Yield在低pH值(5.65、4.50)下整体低于高光处理组,且UVR对Yield、最大相对电子传递速率(rETRmax)、光能利用效率(α)的抑制率在低pH值、低光下更为显著。研究结果表明,藻细胞经历的光环境(高、低光强)可显著影响其对水体酸化与UVR耦合效应响应。
  • 加载中
  • Kwiatkowski R E, Roff J C. Effects of acidity on the phytoplankton and primary productivity of selected northern Ontario Lakes[J]. Canadian Journal of Botany, 1976, 54(22):2546-2561
    Leavitt P R, Findlay D L, Hall R I, et al. Algal responses to dissolved organic carbon loss and pH decline during whole-lake acidification:Evidence from paleolimnology[J]. Limnology and Oceanography, 1999, 44(3part2):757-773
    Ohta H, Kobayashi Y, Moriyama A, et al. Acid Stress Responsive Genes, slr0967 and sll0939, are Directly Involved in Low-pH Tolerance of Cyanobacterium synechocystis sp. PCC6803[M]//Advanced Topics in Science and Technology in China. Berlin, Heidelberg:Springer Berlin Heidelberg, 2013:659-662
    Lessmann D, Fyson A, Nixdorf B. Phytoplankton of the extremely acidic mining lakes of Lusatia (Germany) with pH ≤ 3[J]. Hydrobiologia, 2000, 433:123-128
    Raut R, Sharma S, Bajracharya R M. Biotic response to acidification of lakes-A review[J]. Kathmandu University Journal of Science, Engineering and Technology, 2012, 8(1):171-184
    李伟, 杨雨玲, 董丽丽, 等. 短期酸化对新安江流域屯溪段水体浮游植物群落结构及多样性的影响[J]. 生态毒理学报, 2016, 11(6):313-322

    Li W, Yang Y L, Dong L L, et al. Short-term impact of acidification on the community structure and diversity of aquatic phytoplankton in Xin'anjiang River Basin (Tunxi section)[J]. Asian Journal of Ecotoxicology, 2016, 11(6):313-322(in Chinese)

    李伟, 杨雨玲, 黄松, 等. 产毒与不产毒铜绿微囊藻对模拟酸雨及紫外辐射的生理响应[J]. 生态学报, 2015, 35(23):7615-7624

    Li W, Yang Y L, Huang S, et al. Physiological responses of toxigenic and non-toxigenic strains of Microcystis aeruginosa to simulated acid rain and UV radiation[J]. Acta Ecologica Sinica, 2015, 35(23):7615-7624(in Chinese)

    胡长玉, 方建新, 李伟, 等. 新安江(安徽段)及其支流丰水期浮游植物功能群[J]. 生态学杂志, 2019, 38(4):1013-1021

    Hu C Y, Fang J X, Li W, et al. Phytoplankton functional groups of Xin'anjiang River Basin (Anhui section) and its tributaries in flood season[J]. Chinese Journal of Ecology, 2019, 38(4):1013-1021(in Chinese)

    张国庆, 杨雨玲, 唐爱国, 等. 新安江流域(屯溪段)浮游植物群落结构及其与环境因子的关系[J]. 生态学杂志, 2020, 39(2):527-540

    Zhang G Q, Yang Y L, Tang A G, et al. Phytoplankton community structure and its relationship with environmental factors in Xin'anjiang River Basin (Tunxi section)[J]. Chinese Journal of Ecology, 2020, 39(2):527-540(in Chinese)

    Li W, Yang Y L, Li Z Z, et al. Effects of seawater acidification on the growth rates of the diatom Thalassiosira (Conticribra) weissflogii under different nutrient, light, and UV radiation regimes[J]. Journal of Applied Phycology, 2017, 29(1):133-142
    Harrison J W, Smith R E H. Effects of ultraviolet radiation on the productivity and composition of freshwater phytoplankton communities[J]. Photochemical & Photobiological Sciences, 2009, 8(9):1218-1232
    Litchman E, Neale P J. UV effects on photosynthesis, growth and acclimation of an estuarine diatom and cryptomonad[J]. Marine Ecology Progress Series, 2005, 300:53-62
    van de Poll W H, Janknegt P J, Van Leeuwe M A, et al. Excessive irradiance and antioxidant responses of an Antarctic marine diatom exposed to iron limitation and to dynamic irradiance[J]. Journal of Photochemistry and Photobiology B:Biology, 2009, 94(1):32-37
    Buma A G J, Boelen P, Jeffrey W H. UVR-induced DNA Damage in Aquatic Organisms[M]//UV Effects in Aquatic Organisms and Ecosystems. Cambridge:Royal Society of Chemistry, 2007:291-328
    Wellburn A R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution[J]. Journal of Plant Physiology, 1994, 144(3):307-313
    Dunlap W C, Rae G A, Helbling E W, et al. Ultraviolet-absorbing compounds in natural assemblages of Antarctic phytoplankton[J]. Antarctic Journal of the United States, 1995, 30:323-326
    Jassby A D, Platt T. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton[J]. Limnology and Oceanography, 1976, 21(4):540-547
    中国科学院中国孢子植物志委员会. 中国淡水藻志(第八卷):绿藻门:绿球藻目(上)[M]. 北京:科学出版社, 2004:30-31
    Du E Z, Dong D, Zeng X, et al. Direct effect of acid rain on leaf chlorophyll content of terrestrial plants in China[J]. Science of the Total Environment, 2017, 605-606:764-769
    Liu Z Q, Yang J Y, Zhang J E, et al. A bibliometric analysis of research on acid rain[J]. Sustainability, 2019, 11(11):3077
    Ledger M E, Hildrew A G. The ecology of acidification and recovery:Changes in herbivore-algal food web linkages across a stream pH gradient[J]. Environmental Pollution, 2005, 137(1):103-118
    Gao S. A decline in macro-algae species resulting in the overwhelming prevalence of Corallina species is caused by low-pH seawater induced by short-term acid rain[J]. Journal of Experimental Marine Biology and Ecology, 2016, 475:144-153
    Ledger M E, Hildrew A G. Growth of an acid-tolerant stonefly on epilithic biofilms from streams of contrasting pH[J]. Freshwater Biology, 2001, 46(11):1457-1470
    Vinebrooke R D, Dixit S S, Graham M D, et al. Whole-lake algal responses to a century of acidic industrial deposition on the Canadian Shield[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2002, 59(3):483-493
    Stumm W, Morgan J J. Aquatic Chemistry:Chemical Equilibria and Rates in Natural Waters[M]. John Wiley & Sons, 2012:138-140
    Reinfelder J R. Carbon concentrating mechanisms in eukaryotic marine phytoplankton[J]. Annual Review of Marine Science, 2011, 3:291-315
    Li W, Wang T F, Campbell D A, et al. Ocean acidification interacts with variable light to decrease growth but increase particulate organic nitrogen production in a diatom[J]. Marine Environmental Research, 2020, 160:104965
    Larkum A W D. Light-harvesting Systems in Algae[M]//Larkum A W D, Douglas S E, Raven J A. Photosynthesis in Algae. Dordrecht:Springer Netherlands, 2003:277-304
    Gao K S, Campbell D A. Photophysiological responses of marine diatoms to elevated CO2 and decreased pH:A review[J]. Functional Plant Biology, 2014, 41(5):449-459
    Gao K S, Xu J T, Gao G, et al. Rising CO2 and increased light exposure synergistically reduce marine primary productivity[J]. Nature Climate Change, 2012, 2(7):519-523
    Liu N N, Yuan Y J, Yi J D, et al. The effects of modified acid rain on Anabaena flos-aquae under different light levels[J]. Fundamental and Applied Limnology, 2022, 195(4):297-304
    Wu H Y, Abasova L, Cheregi O, et al. D1 protein turnover is involved in protection of photosystem Ⅱ against UV-B induced damage in the cyanobacterium Arthrospira (Spirulina) platensis[J]. Journal of Photochemistry and Photobiology B, Biology, 2011, 104(1-2):320-325
    Nina Bouchard J, Campbell D A, Roy S. Effects of UV-b radiation on the d1 protein repair cycle of natural phytoplankton communities from three latitudes (Canada, Brazil, and Argentina)[J]. Journal of Phycology, 2005, 41(2):273-286
    Wu H Y, Roy S, Alami M, et al. Photosystem Ⅱ photoinactivation, repair, and protection in marine centric diatoms[J]. Plant Physiology, 2012, 160(1):464-476
    Hãder D P, Williamson C E, Wãngberg S, et al. Effects of UV radiation on aquatic ecosystems and interactions with other environmental factors[J]. Photochemical & Photobiological Sciences, 2015, 14(1):108-126
  • 加载中
计量
  • 文章访问数:  1510
  • HTML全文浏览数:  1510
  • PDF下载数:  43
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-12-07

小球藻(Chlorella vulgaris)耐受短期模拟酸雨及紫外辐射的光合生理特性研究

    通讯作者: 李伟, E-mail: livilike@163.com
    作者简介: 杨雨玲(1986-),女,硕士研究生,研究方向为藻类生理生态学,E-mail:yyl@hsu.edu.cn
  • 1. 宁波大学海洋学院,宁波 315211;
  • 2. 黄山学院生命与环境科学学院,黄山 245041;
  • 3. 黄山学院新安江流域生态环境保护研究中心,黄山 245041;
  • 4. 黄山市屯溪区林业局,黄山 245041
基金项目:

安徽省重点研究与开发计划项目(202004i07020004);国家自然科学青年基金项目(31600317);安徽省高校自然科学研究重点项目(KJ2021A1038);安徽省教育厅高校优秀青年人才支持计划一般项目(gxyq2021212);安徽省教育厅自然科学一般项目(KJHS2018B08);大学生创新创业项目(201910375011,S201910375018);黄山学院新安江流域生态环境保护研究中心(kypt202102)

摘要: 为了解新安江流域优势藻类对短期模拟酸雨及紫外辐射的光合生理响应,选取流域分离的一株绿藻门小球藻(Chlorella vulgaris)为对象,通过模拟酸雨引起的水体pH值降低(5.65和4.50),研究了短期(24 h)酸胁迫下该种在低光(60 μmol·m-2·s-1)与高光(150 μmol·m-2·s-1)培养时生长及光合活性的响应,并探讨了上述条件下该种对短期紫外辐射(UVR)的敏感性。结果表明,相较于对照组(pH值7.10),仅较低的pH值(4.50)显著抑制了小球藻生长并改变了其细胞形态(高光下细胞粒径显著降低)。高光培养而非低pH胁迫显著降低藻体光合色素含量(叶绿素a、叶绿素b);光保护色素(类胡萝卜素、三苯甲咪唑类氨基酸(MAAs)整体上未受光强或pH值影响。高光培养的藻体有效光化学效率(Yield)在低pH值下显著降低,而低光处理下各pH值处理间无显著差别。低光下培养的藻,经阳光模拟器下辐射处理后(可见光(P):87.5 W·m-2、紫外线A(UVA):33.5 W·m-2、紫外线B(UVB):1.91 W·m-2),Yield在低pH值(5.65、4.50)下整体低于高光处理组,且UVR对Yield、最大相对电子传递速率(rETRmax)、光能利用效率(α)的抑制率在低pH值、低光下更为显著。研究结果表明,藻细胞经历的光环境(高、低光强)可显著影响其对水体酸化与UVR耦合效应响应。

English Abstract

参考文献 (35)

目录

/

返回文章
返回