军事训练场地特征污染物的生态和健康效应研究进展

倪珅瑶, 朱勇兵, 赵三平, 许安, 裴诚诚, 赵亚南, 聂亚光. 军事训练场地特征污染物的生态和健康效应研究进展[J]. 生态毒理学报, 2022, 17(6): 188-202. doi: 10.7524/AJE.1673-5897.20220109001
引用本文: 倪珅瑶, 朱勇兵, 赵三平, 许安, 裴诚诚, 赵亚南, 聂亚光. 军事训练场地特征污染物的生态和健康效应研究进展[J]. 生态毒理学报, 2022, 17(6): 188-202. doi: 10.7524/AJE.1673-5897.20220109001
Ni Shenyao, Zhu Yongbing, Zhao Sanping, Xu An, Pei Chengcheng, Zhao Yanan, Nie Yaguang. Research Progress on Ecological and Health Effects of Typical Pollutants in Military Training Ranges[J]. Asian journal of ecotoxicology, 2022, 17(6): 188-202. doi: 10.7524/AJE.1673-5897.20220109001
Citation: Ni Shenyao, Zhu Yongbing, Zhao Sanping, Xu An, Pei Chengcheng, Zhao Yanan, Nie Yaguang. Research Progress on Ecological and Health Effects of Typical Pollutants in Military Training Ranges[J]. Asian journal of ecotoxicology, 2022, 17(6): 188-202. doi: 10.7524/AJE.1673-5897.20220109001

军事训练场地特征污染物的生态和健康效应研究进展

    作者简介: 倪珅瑶(1995-),女,硕士研究生,研究方向为环境毒理学,E-mail:1978851479@qq.com
    通讯作者: 聂亚光, E-mail: nyg@ahu.edu.cn
  • 基金项目:

    国家重点研发计划项目(2018YFC1801100)

  • 中图分类号: X171.5

Research Progress on Ecological and Health Effects of Typical Pollutants in Military Training Ranges

    Corresponding author: Nie Yaguang, nyg@ahu.edu.cn
  • Fund Project:
  • 摘要: 军事训练活动导致大量弹药残留进入土壤环境,从而引起军事训练场地含能化合物和重金属的污染问题,训练场地特征污染物的环境和生态效应已经引起国内外越来越多的关注。本文对三硝基甲苯(TNT)、环三亚甲基三硝铵(RDX)、环四亚甲基四硝铵(HMX)、铅(Pb)、锑(Sb)和铜(Cu)等训练场地特征污染物的污染现状及其生态、健康效应进行综述,介绍了这些污染物对植物、动物、微生物和人体健康的影响及风险评估研究进展。综合当前的国内外研究现状,未来还需进一步加强含能化合物毒理学、多污染物协同耦合作用的健康与生态效应等方面的研究,为我国军事训练场地风险管控与治理修复提供技术支撑。
  • 加载中
  • Rodríguez-Seijo A, Lago-Vila M, Andrade M L, et al. Pb pollution in soils from a trap shooting range and the phytoremediation ability of Agrostis capillaris L.[J]. Environmental Science and Pollution Research International, 2016, 23(2):1312-1323
    Cao X D, Ma L Q, Chen M, et al. Lead transformation and distribution in the soils of shooting ranges in Florida, USA[J]. The Science of the Total Environment, 2003, 307(1-3):179-189
    Sanderson P, Qi F J, Seshadri B, et al. Contamination, fate and management of metals in shooting range soils-A review[J]. Current Pollution Reports, 2018, 4(2):175-187
    Barker A J, Clausen J L, Douglas T A, et al. Environmental impact of metals resulting from military training activities:A review[J]. Chemosphere, 2021, 265:129110
    Pichtel J. Distribution and fate of military explosives and propellants in soil:A review[J]. Applied and Environmental Soil Science, 2012, 2012:617236
    李烨玲. 靶场土壤中铅的环境行为及生物有效性研究[D]. 合肥:中国科学技术大学, 2018:7-8 Li Y L. The environmental fate and bioavailability of lead in shooting range soils[D]. Hefei:University of Science and Technology of China, 2018:7

    -8(in Chinese)

    Bai J, Zhao X F. Ecological and human health risks of heavy metals in shooting range soils:A meta assessment from China[J]. Toxics, 2020, 8(2):32
    Chatterjee S, Deb U, Datta S, et al. Common explosives (TNT, RDX, HMX) and their fate in the environment:Emphasizing bioremediation[J]. Chemosphere, 2017, 184:438-451
    Certini G, Scalenghe R, Woods W I. The impact of warfare on the soil environment[J]. Earth-Science Reviews, 2013, 127:1-15
    Kalderis D, Juhasz A L, Boopathy R, et al. Soils contaminated with explosives:Environmental fate and evaluation of state-of-the-art remediation processes (IUPAC Technical Report)[J]. Pure and Applied Chemistry, 2011, 83(7):1407-1484
    Katseanes C K, Chappell M A, Hopkins B G, et al. Multivariate soil fertility relationships for predicting the environmental persistence of 2,4,6-trinitrotoluene (TNT) and 1,3,5-trinitro-1,3,5-tricyclohexane (RDX) among taxonomically distinct soils[J]. Journal of Environmental Management, 2017, 203(Pt 1):383-390
    Yang X, Lai J L, Zhang Y, et al. Microbial community structure and metabolome profiling characteristics of soil contaminated by TNT, RDX, and HMX[J]. Environmental Pollution, 2021, 285:117478
    Fayiga A O. Remediation of inorganic and organic contaminants in military ranges[J]. Environmental Chemistry, 2019, 16(2):81
    Via S M, Zinnert J C. Impacts of explosive compounds on vegetation:A need for community scale investigations[J]. Environmental Pollution, 2016, 208:495-505
    Alavi G, Chung M, Lichwa J, et al. The fate and transport of RDX, HMX, TNT and DNT in the volcanic soils of Hawaii:A laboratory and modeling study[J]. Journal of Hazardous Materials, 2011, 185(2-3):1600-1604
    Sharma P, Mayes M A, Tang G. Role of soil organic carbon and colloids in sorption and transport of TNT, RDX and HMX in training range soils[J]. Chemosphere, 2013, 92(8):993-1000
    Lingamdinne L P, Roh H, Choi Y L, et al. Influencing factors on sorption of TNT and RDX using rice husk biochar[J]. Journal of Industrial and Engineering Chemistry, 2015, 32:178-186
    Katseanes C K, Chappell M A, Hopkins B G, et al. Multivariate functions for predicting the sorption of 2,4,6-trinitrotoluene (TNT) and 1,3,5-trinitro-1,3,5-tricyclohexane (RDX) among taxonomically distinct soils[J]. Journal of Environmental Management, 2016, 182:101-110
    Rantalainen M L, Torkkeli M, Str mmer R, et al. Lead contamination of an old shooting range affecting the local ecosystem-A case study with a holistic approach[J]. Science of the Total Environment, 2006, 369(1-3):99-108
    Lewis L A, Poppenga R J, Davidson W R, et al. Lead toxicosis and trace element levels in wild birds and mammals at a firearms training facility[J]. Archives of Environmental Contamination and Toxicology, 2001, 41(2):208-214
    Fayiga A O, Saha U K. Soil pollution at outdoor shooting ranges:Health effects, bioavailability and best management practices[J]. Environmental Pollution, 2016, 216:135-145
    Dermatas D, Menounou N, Dadachov M, et al. Lead leachability in firing range soils[J]. Environmental Engineering Science, 2006, 23(1):88-101
    Fayiga A, Saha U. Impact of soil amendments and vegetation on Pb mobility in contaminated shooting range soils[J]. International Research Journal of Environmental Sciences, 2016, 5:42-50
    Li Y L, Zhu Y B, Zhao S P, et al. The weathering and transformation process of lead in China's shooting ranges[J]. Environmental Science Processes & Impacts, 2015, 17(9):1620-1633
    Islam M N, Nguyen X P, Jung H Y, et al. Chemical speciation and quantitative evaluation of heavy metal pollution hazards in two army shooting range backstop soils[J]. Bulletin of Environmental Contamination and Toxicology, 2016, 96(2):179-185
    Cao X D, Dermatas D, Xu X F, et al. Immobilization of lead in shooting range soils by means of cement, quicklime, and phosphate amendments[J]. Environmental Science and Pollution Research International, 2008, 15(2):120-127
    Kelebemang R, Dinake P, Sehube N, et al. Speciation and mobility of lead in shooting range soils[J]. Chemical Speciation & Bioavailability, 2017, 29(1):143-152
    Ahmad M, Lee S S, Moon D H, et al. A Review of Environmental Contamination and Remediation Strategies for Heavy Metals at Shooting Range Soils[M]//Environmental Protection Strategies for Sustainable Development. Dordrecht:Springer Netherlands, 2011:437-451
    Ma L Q, Hardison D W Jr, Harris W G, et al. Effects of soil property and soil amendment on weathering of abraded metallic Pb in shooting ranges[J]. Water, Air, and Soil Pollution, 2007, 178(1):297-307
    Cao X D, Ma L Q, Chen M, et al. Weathering of lead bullets and their environmental effects at outdoor shooting ranges[J]. Journal of Environmental Quality, 2003, 32(2):526-534
    Liu R, Gress J, Gao J, et al. Impacts of two best management practices on Pb weathering and leachability in shooting range soils[J]. Environmental Monitoring and Assessment, 2013, 185(8):6477-6484
    Yin X Q. Effectiveness of best management practices in reducing Pb-bullet weathering in a shooting range in Florida[J]. Journal of Hazardous Materials, 2010, 179(1-3):895-900
    Rooney C, McLaren R. Distribution of soil lead contamination at clay target shooting ranges[J]. Australasian Journal of Ecotoxicology, 2000, 6(2):95-102
    Chrastný V, Komárek M, Hájek T. Lead contamination of an agricultural soil in the vicinity of a shooting range[J]. Environmental Monitoring and Assessment, 2010, 162(1):37-46
    Yin X Q, Gao B, Ma L Q, et al. Colloid-facilitated Pb transport in two shooting-range soils in Florida[J]. Journal of Hazardous Materials, 2010, 177(1-3):620-625
    Dinake P, Maphane O, Sebogisi K, et al. Pollution status of shooting range soils from Cd, Cu, Mn, Ni and Zn found in ammunition[J]. Cogent Environmental Science, 2018, 4(1):1528701
    Laporte-Saumure M, Martel R, Mercier G. Characterization and metal availability of copper, lead, antimony and zinc contamination at four Canadian small arms firing ranges[J]. Environmental Technology, 2011, 32(7):767-781
    Martin W A, Lee L S, Schwab P. Antimony migration trends from a small arms firing range compared to lead, copper, and zinc[J]. Science of the Total Environment, 2013, 463-464:222-228
    Tandy S, Meier N, Schulin R. Use of soil amendments to immobilize antimony and lead in moderately contaminated shooting range soils[J]. Journal of Hazardous Materials, 2017, 324(Pt B):617-625
    Okkenhaug G, Grasshorn Gebhardt K A, Amstaetter K, et al. Antimony (Sb) and lead (Pb) in contaminated shooting range soils:Sb and Pb mobility and immobilization by iron based sorbents, a field study[J]. Journal of Hazardous Materials, 2016, 307:336-343
    Mariussen E, Johnsen I V, Strømseng A E. Distribution and mobility of lead (Pb), copper (Cu), zinc (Zn), and antimony (Sb) from ammunition residues on shooting ranges for small arms located on mires[J]. Environmental Science and Pollution Research, 2017, 24(11):10182-10196
    Sanderson P, Naidu R, Bolan N. Effectiveness of chemical amendments for stabilisation of lead and antimony in risk-based land management of soils of shooting ranges[J]. Environmental Science and Pollution Research International, 2015, 22(12):8942-8956
    Tandy S, Hockmann K, Keller M, et al. Antimony mobility during prolonged waterlogging and reoxidation of shooting range soil:A field experiment[J]. The Science of the Total Environment, 2018, 624:838-844
    Hu X Y, Guo X, He M, et al. pH-dependent release characteristics of antimony and arsenic from typical antimony-bearing ores[J]. Journal of Environmental Sciences, 2016, 44:171-179
    Johnson C A, Moench H, Wersin P, et al. Solubility of antimony and other elements in samples taken from shooting ranges[J]. Journal of Environmental Quality, 2005, 34(1):248-254
    Rodríguez-Seijo A, Alfaya M C, Andrade M L, et al. Copper, chromium, nickel, lead and zinc levels and pollution degree in firing range soils[J]. Land Degradation & Development, 2016, 27(7):1721-1730
    Okkenhaug G, Smebye A B, Pabst T, et al. Shooting range contamination:Mobility and transport of lead (Pb), copper (Cu) and antimony (Sb) in contaminated peatland[J]. Journal of Soils and Sediments, 2018, 18(11):3310-3323
    Migliorini M. The effects of heavy metal contamination on the soil arthropod community of a shooting range[J]. Environmental Pollution, 2004, 129(2):331-340
    Panz K, Miksch K. Phytoremediation of explosives (TNT, RDX, HMX) by wild-type and transgenic plants[J]. Journal of Environmental Management, 2012, 113:85-92
    Groom C A, Halasz A, Paquet L, et al. Accumulation of HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) in indigenous and agricultural plants grown in HMX-contaminated anti-tank firing-range soil[J]. Environmental Science & Technology, 2002, 36(1):112-118
    Zhang L, Rylott E L, Bruce N C, et al. Genetic modification of western wheatgrass (Pascopyrum smithii) for the phytoremediation of RDX and TNT[J]. Planta, 2019, 249(4):1007-1015
    Das P, Sarkar D, Datta R. Proteomic profiling of vetiver grass (Chrysopogon zizanioides) under 2,4,6-trinitrotoluene (TNT) stress[J]. GeoHealth, 2017, 1(2):66-74
    Rocheleau S, Kuperman R G, Simini M, et al. Toxicity of 2,4-dinitrotoluene to terrestrial plants in natural soils[J]. The Science of the Total Environment, 2010, 408(16):3193-3199
    Gong P, Wilke B M, Fleischmann S. Soil-based phytotoxicity of 2,4,6-trinitrotoluene (TNT) to terrestrial higher plants[J]. Archives of Environmental Contamination and Toxicology, 1999, 36(2):152-157
    Robidoux P Y, Bardai G, Paquet L, et al. Phytotoxicity of 2,4,6-trinitrotoluene (TNT) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) in spiked artificial and natural forest soils[J]. Archives of Environmental Contamination and Toxicology, 2003, 44(2):198-209
    Peterson M M, Horst G L, Shea P J, et al. Germination and seedling development of switchgrass and smooth bromegrass exposed to 2,4,6-trinitrotoluene[J]. Environmental Pollution, 1998, 99(1):53-59
    Peterson M M, Horst G L, Shea P J, et al. TNT and 4-amino-2,6-dinitrotoluene influence on germination and early seedling development of tall fescue[J]. Environmental Pollution, 1996, 93(1):57-62
    Rocheleau S, Lachance B, Kuperman R G, et al. Toxicity and uptake of cyclic nitramine explosives in ryegrass Lolium perenne[J]. Environmental Pollution, 2008, 156(1):199-206
    Scheidemann P, Klunk A, Sens C, et al. Species dependent uptake and tolerance of nitroaromatic compounds by higher plants[J]. Journal of Plant Physiology, 1998, 152(2-3):242-247
    Via S M, Zinnert J C, Butler A D, et al. Comparative physiological responses of Morella cerifera to RDX, TNT, and composition B contaminated soils[J]. Environmental and Experimental Botany, 2014, 99:67-74
    Yang X. Analysis of the biodegradation and phytotoxicity mechanism of TNT, RDX, HMX in alfalfa (Medicago sativa)[J]. Chemosphere, 2021, 281:130842
    Branzini A, Zubillaga M S. Assessing phytotoxicity of heavy metals in remediated soil[J]. International Journal of Phytoremediation, 2010, 12(4):335-342
    Ahmad M, Lee S S, Yang J E, et al. Effects of soil dilution and amendments (mussel shell, cow bone, and biochar) on Pb availability and phytotoxicity in military shooting range soil[J]. Ecotoxicology and Environmental Safety, 2012, 79:225-231
    An Y J. Assessment of comparative toxicities of lead and copper using plant assay[J]. Chemosphere, 2006, 62(8):1359-1365
    Selonen S, Setälä H. Soil processes and tree growth at shooting ranges in a boreal forest reflect contamination history and lead-induced changes in soil food webs[J]. Science of the Total Environment, 2015, 518-519:320-327
    Mukhi S, Patiño R. Effects of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in zebrafish:General and reproductive toxicity[J]. Chemosphere, 2008, 72(5):726-732
    Burton D T. The acute and chronic toxicity of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) to the fathead minnow (Pimephales)[J]. Chemosphere, 1994, 29(3):567-579
    Johnson M S, McFarland C A, Bazar M A, et al. Toxicity of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) in three vertebrate species[J]. Archives of Environmental Contamination and Toxicology, 2010, 58(3):836-843
    Lotufo G R. Toxicity and Bioaccumulation of Munitions Constituents in Aquatic and terrestrial Organisms[M]//Challenges and Advances in Computational Chemistry and Physics. Cham:Springer International Publishing, 2017:445-479
    Eum J, Kwak J, Kim H J, et al. 3D visualization of developmental toxicity of 2,4,6-trinitrotoluene in zebrafish embryogenesis using light-sheet microscopy[J]. International Journal of Molecular Sciences, 2016, 17(11):1925
    Koske D, Goldenstein N I, Kammann U. Nitroaromatic compounds damage the DNA of zebrafish embryos (Danio rerio)[J]. Aquatic Toxicology, 2019, 217:105345
    Strehse J S, Brenner M, Kisiela M, et al. The explosive trinitrotoluene (TNT) induces gene expression of carbonyl reductase in the blue mussel (Mytilus spp.):A new promising biomarker for sea dumped war relicts?[J]. Archives of Toxicology, 2020, 94(12):4043-4054
    Lachance B, Renoux A Y, Sarrazin M, et al. Toxicity and bioaccumulation of reduced TNT metabolites in the earthworm Eisenia andrei exposed to amended forest soil[J]. Chemosphere, 2004, 55(10):1339-1348
    Robidoux P Y, Hawari J, Bardai G, et al. TNT, RDX, and HMX decrease earthworm (Eisenia andrei) life-cycle responses in a spiked natural forest soil[J]. Archives of Environmental Contamination and Toxicology, 2002, 43(4):379-388
    Fuchs J, Piola L, González E P, et al. Coelomocyte biomarkers in the earthworm Eisenia fetida exposed to 2,4,6-trinitrotoluene (TNT)[J]. Environmental Monitoring and Assessment, 2011, 175(1-4):127-137
    Reddy G, Chandra S A M, Lish J W, et al. Toxicity of 2,4,6-trinitrotoiuene (TNT) in hispid cotton rats (Sigmodon hispidus):Hematological, biochemical, and pathological effects[J]. International Journal of Toxicology, 2000, 19(3):169-177
    Levine B S, Rust J H, Barkley J J, et al. Six month oral toxicity study of trinitrotoluene in beagle dogs[J]. Toxicology, 1990, 63(2):233-244
    Johnsen I V, Aaneby J. Soil intake in ruminants grazing on heavy-metal contaminated shooting ranges[J]. The Science of the Total Environment, 2019, 687:41-49
    Luo W, Verweij R A, van Gestel C A M. Determining the bioavailability and toxicity of lead contamination to earthworms requires using a combination of physicochemical and biological methods[J]. Environmental Pollution, 2014, 185:1-9
    Česynaitė J, Praspaliauskas M, Pedišius N, et al. Biological assessment of contaminated shooting range soil using earthworm biomarkers[J]. Ecotoxicology, 2021, 30(10):2024-2035
    Sanderson P, Naidu R, Bolan N. Ecotoxicity of chemically stabilised metal(loid)s in shooting range soils[J]. Ecotoxicology and Environmental Safety, 2014, 100:201-208
    Kumpiene J, Guerri G, Landi L, et al. Microbial biomass, respiration and enzyme activities after in situ aided phytostabilization of a Pb- and Cu-contaminated soil[J]. Ecotoxicology and Environmental Safety, 2009, 72(1):115-119
    Meyers S K, Deng S P, Basta N T, et al. Long-term explosive contamination in soil:Effects on soil microbial community and bioremediation[J]. Soil and Sediment Contamination:An International Journal, 2007, 16(1):61-77
    Lee I S, Kim O K, Chang Y Y, et al. Heavy metal concentrations and enzyme activities in soil from a contaminated Korean shooting range[J]. Journal of Bioscience and Bioengineering, 2002, 94(5):406-411
    Hashimoto Y, Matsufuru H, Takaoka M, et al. Impacts of chemical amendment and plant growth on lead speciation and enzyme activities in a shooting range soil:An X-ray absorption fine structure investigation[J]. Journal of Environmental Quality, 2009, 38(4):1420-1428
    Selonen S, Setälä H. Nutrient leaching, soil pH and changes in microbial community increase with time in lead-contaminated boreal forest soil at a shooting range area[J]. Environmental Science and Pollution Research, 2017, 24(6):5415-5425
    Bolt H M, Degen G H, Dorn S B, et al. Genotoxicity and potential carcinogenicity of 2,4,6-TNT trinitrotoluene:Structural and toxicological considerations[J]. Reviews on Environmental Health, 2006, 21(4):217-228
    Woody R C, Kearns G L, Brewster M A, et al. The neurotoxicity of cyclotrimethylenetrinitramine (RDX) in a child:A clinical and pharmacokinetic evaluation[J]. Journal of Toxicology Clinical Toxicology, 1986, 24(4):305-319
    Major M A. Biological Degradation of Explosives. Agronomy Monographs.[M]. Madison, WI, USA:American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, 2015:111-132
    Bernstein A, Ronen Z. Biodegradation of the Explosives TNT, RDX and HMX[M]//Environmental Science and Engineering. Berlin, Heidelberg:Springer Berlin Heidelberg, 2011:135-176
    Camobreco V J, Richards B K, Steenhuis T S, et al. Movement of heavy metals through undisturbed and homogenized soil columns[J]. Soil Science, 1996, 161(11):740-750
    Bruell R, Nikolaidis N P, Long R P. Evaluation of remedial alternatives of lead from shooting range soil[J]. Environmental Engineering Science, 1999, 16(5):403-414
    Lima D R, Bezerra M L, Neves E B, et al. Impact of ammunition and military explosives on human health and the environment[J]. Reviews on Environmental Health, 2011, 26(2):101-110
    Aschner M, Vrana K E, Zheng W. Manganese uptake and distribution in the central nervous system (CNS)[J]. Neurotoxicology, 1999, 20(2-3):173-180
    Guilarte T R. Manganese and Parkinson's disease:A critical review and new findings[J]. Environmental Health Perspectives, 2010, 118(8):1071-1080
    Plum L M, Rink L, Haase H. The essential toxin:Impact of zinc on human health[J]. International Journal of Environmental Research and Public Health, 2010, 7(4):1342-1365
    Jung J W, Lee G, Im S, et al. Human health risk assessment of a civilian-accessible active firing range[J]. Human and Ecological Risk Assessment:An International Journal, 2013, 19(3):807-818
    Choi Y, Jeong S, Ryu H, et al. Ecological risk characterization in a military heavy metals- and explosives-contaminated site[J]. Human and Ecological Risk Assessment:An International Journal, 2011, 17(4):856-872
    Ryu H, Han J K, Jung J W, et al. Human health risk assessment of explosives and heavy metals at a military gunnery range[J]. Environmental Geochemistry and Health, 2007, 29(4):259-269
    Islam M N, Jung H Y, Park J H. Subcritical water treatment of explosive and heavy metals co-contaminated soil:Removal of the explosive, and immobilization and risk assessment of heavy metals[J]. Journal of Environmental Management, 2015, 163:262-269
    Urrutia-Goyes R, Argyraki A, Ornelas-Soto N. Assessing lead, nickel, and zinc pollution in topsoil from a historic shooting range rehabilitated into a public urban park[J]. International Journal of Environmental Research and Public Health, 2017, 14(7):698
  • 加载中
计量
  • 文章访问数:  2695
  • HTML全文浏览数:  2695
  • PDF下载数:  97
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-01-09
倪珅瑶, 朱勇兵, 赵三平, 许安, 裴诚诚, 赵亚南, 聂亚光. 军事训练场地特征污染物的生态和健康效应研究进展[J]. 生态毒理学报, 2022, 17(6): 188-202. doi: 10.7524/AJE.1673-5897.20220109001
引用本文: 倪珅瑶, 朱勇兵, 赵三平, 许安, 裴诚诚, 赵亚南, 聂亚光. 军事训练场地特征污染物的生态和健康效应研究进展[J]. 生态毒理学报, 2022, 17(6): 188-202. doi: 10.7524/AJE.1673-5897.20220109001
Ni Shenyao, Zhu Yongbing, Zhao Sanping, Xu An, Pei Chengcheng, Zhao Yanan, Nie Yaguang. Research Progress on Ecological and Health Effects of Typical Pollutants in Military Training Ranges[J]. Asian journal of ecotoxicology, 2022, 17(6): 188-202. doi: 10.7524/AJE.1673-5897.20220109001
Citation: Ni Shenyao, Zhu Yongbing, Zhao Sanping, Xu An, Pei Chengcheng, Zhao Yanan, Nie Yaguang. Research Progress on Ecological and Health Effects of Typical Pollutants in Military Training Ranges[J]. Asian journal of ecotoxicology, 2022, 17(6): 188-202. doi: 10.7524/AJE.1673-5897.20220109001

军事训练场地特征污染物的生态和健康效应研究进展

    通讯作者: 聂亚光, E-mail: nyg@ahu.edu.cn
    作者简介: 倪珅瑶(1995-),女,硕士研究生,研究方向为环境毒理学,E-mail:1978851479@qq.com
  • 1. 安徽大学物质科学与信息技术研究院,合肥 230601;
  • 2. 国民核生化灾害防护国家重点实验室,北京 102205;
  • 3. 中国科学院合肥物质科学研究院强磁场科学中心,合肥 230031;
  • 4. 环境毒理与污染控制技术安徽省重点实验室,合肥 230031
基金项目:

国家重点研发计划项目(2018YFC1801100)

摘要: 军事训练活动导致大量弹药残留进入土壤环境,从而引起军事训练场地含能化合物和重金属的污染问题,训练场地特征污染物的环境和生态效应已经引起国内外越来越多的关注。本文对三硝基甲苯(TNT)、环三亚甲基三硝铵(RDX)、环四亚甲基四硝铵(HMX)、铅(Pb)、锑(Sb)和铜(Cu)等训练场地特征污染物的污染现状及其生态、健康效应进行综述,介绍了这些污染物对植物、动物、微生物和人体健康的影响及风险评估研究进展。综合当前的国内外研究现状,未来还需进一步加强含能化合物毒理学、多污染物协同耦合作用的健康与生态效应等方面的研究,为我国军事训练场地风险管控与治理修复提供技术支撑。

English Abstract

参考文献 (101)

返回顶部

目录

/

返回文章
返回