抗生素解离形态对其植物富集及人体暴露的影响

王浩楠, 李烨, 傅志强, 乔显亮. 抗生素解离形态对其植物富集及人体暴露的影响[J]. 生态毒理学报, 2022, 17(5): 43-53. doi: 10.7524/AJE.1673-5897.20220307002
引用本文: 王浩楠, 李烨, 傅志强, 乔显亮. 抗生素解离形态对其植物富集及人体暴露的影响[J]. 生态毒理学报, 2022, 17(5): 43-53. doi: 10.7524/AJE.1673-5897.20220307002
Wang Haonan, Li Ye, Fu Zhiqiang, Qiao Xianliang. Influence of Ionization Forms of Antibiotics on Plant Accumulation and Human Exposure[J]. Asian journal of ecotoxicology, 2022, 17(5): 43-53. doi: 10.7524/AJE.1673-5897.20220307002
Citation: Wang Haonan, Li Ye, Fu Zhiqiang, Qiao Xianliang. Influence of Ionization Forms of Antibiotics on Plant Accumulation and Human Exposure[J]. Asian journal of ecotoxicology, 2022, 17(5): 43-53. doi: 10.7524/AJE.1673-5897.20220307002

抗生素解离形态对其植物富集及人体暴露的影响

    作者简介: 王浩楠(1996-),男,硕士研究生,研究方向为植物对抗生素的吸收机制,E-mail:178326429@qq.com
    通讯作者: 乔显亮, E-mail: xlqiao@dlut.edu.cn
  • 基金项目:

    国家自然科学基金面上项目(21777014)

  • 中图分类号: X171.5

Influence of Ionization Forms of Antibiotics on Plant Accumulation and Human Exposure

    Corresponding author: Qiao Xianliang, xlqiao@dlut.edu.cn
  • Fund Project:
  • 摘要: 抗生素通过畜禽有机肥、灌溉用水等途径进入土壤,被植物吸收后会进入食物链,可能引起人体的被动暴露。研究植物对抗生素的富集规律可以为评价人体健康风险提供参考。很多抗生素属于可解离有机物,在不同pH下会呈现出不同的解离形态,这导致其植物吸收富集机制非常复杂。目前,关于植物对不同形态抗生素吸收的研究还比较缺失。本研究选取磺胺嘧啶(SDZ)、磺胺甲恶唑(SMX)、甲氧苄啶(TRM)、氯霉素(CAP)、克拉霉素(CLA)和恩诺沙星(ENR)作为目标抗生素,分别在pH 6.5和pH 5~9条件下进行了水培暴露实验,研究了抗生素在小麦和生菜中的富集规律。结果表明,50 μg·L-1抗生素暴露下,6种抗生素在小麦和生菜根部的富集大致表现为ENR>TRM>CAP>CLA>SMX>SDZ。在生菜对抗生素的根部吸收中,随着pH升高,SDZ和SMX的吸收呈显著下降趋势,而其他4种抗生素随着pH变化吸收差异不显著。通过分析抗生素形态与其吸收的关系发现,SDZ、SMX和CLA在生菜中的富集与其中性形态比例成正相关关系,R2分别为0.931、0.926和0.751,表明中性形态对其植物吸收具有比较重要的贡献。在本研究暴露水平下,生菜可食用部分中目标抗生素的人体每日预估摄入量(EDI)均低于每日允许摄入量(ADI);但是,在pH 5~9之间同种抗生素的EDI存在16倍的差异,抗生素通过植物富集可能产生的人体健康风险仍需进一步研究。
  • 加载中
  • Zhang Q Q, Ying G G, Pan C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China:Source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015, 49(11):6772-6782
    Fick J. Pharmaceuticals and personal care products in the environment contamination of surface, ground, and drinking water from pharmaceutical production[J]. Environmental Toxicology and Chemistry, 2009, 28(12):2522-2527
    Yao L L, Wang Y X, Tong L, et al. Occurrence and risk assessment of antibiotics in surface water and groundwater from different depths of aquifers:A case study at Jianghan Plain, central China[J]. Ecotoxicology and Environmental Safety, 2017, 135:236-242
    Jiang Y H, Li M X, Guo C S, et al. Distribution and ecological risk of antibiotics in a typical effluent-receiving river (Wangyang River) in North China[J]. Chemosphere, 2014, 112:267-274
    Chen H Y, Jing L J, Teng Y G, et al. Characterization of antibiotics in a large-scale river system of China:Occurrence pattern, spatiotemporal distribution and environmental risks[J]. The Science of the Total Environment, 2018, 618:409-418
    刘锋, 陶然, 应光国, 等. 抗生素的环境归宿与生态效应研究进展[J]. 生态学报, 2010, 30(16):4503-4511

    Liu F, Tao R, Ying G G, et al. Advance in environmental fate and ecological effects of antibiotics[J]. Acta Ecologica Sinica, 2010, 30(16):4503-4511(in Chinese)

    Hu X G, Zhou Q X, Luo Y. Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, Northern China[J]. Environmental Pollution, 2010, 158(9):2992-2998
    Li C, Chen J Y, Wang J H, et al. Occurrence of antibiotics in soils and manures from greenhouse vegetable production bases of Beijing, China and an associated risk assessment[J]. The Science of the Total Environment, 2015, 521-522:101-107
    Rutgersson C, Fick J, Marathe N, et al. Fluoroquinolones and qnr genes in sediment, water, soil, and human fecal flora in an environment polluted by manufacturing discharges[J]. Environmental Science & Technology, 2014, 48(14):7825-7832
    管荷兰, 于海凤, 王嘉宇. 氟喹诺酮类抗生素在土壤中的归趋及其生态毒性研究进展[J]. 生态学杂志, 2012, 31(12):3228-3234

    Guan H L, Yu H F, Wang J Y. Fate and ecological toxicity of fluoroquinolone antibiotics in soil:A review[J]. Chinese Journal of Ecology, 2012, 31(12):3228-3234(in Chinese)

    王晓洁, 赵蔚, 张志超, 等. 兽用抗生素在土壤中的环境行为、生态毒性及危害调控[J]. 中国科学:技术科学, 2021, 51(6):615-636

    Wang X J, Zhao W, Zhang Z C, et al. Veterinary antibiotics in soils:Environmental processes, ecotoxicity, and risk mitigation[J]. Scientia Sinica (Technologica), 2021, 51(6):615-636(in Chinese)

    Pan M, Chu L M. Fate of antibiotics in soil and their uptake by edible crops[J]. Science of the Total Environment, 2017, 599-600:500-512
    陈姗, 许凡, 张玮, 等. 磺胺类抗生素污染现状及其环境行为的研究进展[J]. 环境化学, 2019, 38(7):1557-1569

    Chen S, Xu F, Zhang W, et al. Research progress in pollution situation and environmental behavior of sulfonamides[J]. Environmental Chemistry, 2019, 38(7):1557-1569(in Chinese)

    孔维栋, 朱永官. 抗生素类兽药对植物和土壤微生物的生态毒理学效应研究进展[J]. 生态毒理学报, 2007, 2(1):1-9

    Kong W D, Zhu Y G. A review on ecotoxicology of veterinary pharmaceuticals to plants and soil microbes[J]. Asian Journal of Ecotoxicology, 2007, 2(1):1-9(in Chinese)

    Subirats J, Domingues A, Topp E. Does dietary consumption of antibiotics by humans promote antibiotic resistance in the gut microbiome?[J]. Journal of Food Protection, 2019, 82(10):1636-1642
    陈秋方, Briggs G G, Evans A A. 水稻根系对非电离性农药的吸收、转移、分配与农药亲脂性的关系[J]. 核农学报, 1989, 3(1):1-8

    Chen Q F, Briggs G G, Evans A A. Relationships between lipophilicity and root uptake and translocation of non-ionised chemicals by rice[J]. Acta Agriculturae Nucleatae Sinica, 1989, 3(1):1-8(in Chinese)

    Kong W D, Zhu Y G, Liang Y C, et al. Uptake of oxytetracycline and its phytotoxicity to alfalfa (Medicago sativa L.)[J]. Environmental Pollution, 2007, 147(1):187-193
    Wu X Q, Ernst F, Conkle J L, et al. Comparative uptake and translocation of pharmaceutical and personal care products (PPCPs) by common vegetables[J]. Environment International, 2013, 60:15-22
    Li Y B, Sallach J B, Zhang W, et al. Insight into the distribution of pharmaceuticals in soil-water-plant systems[J]. Water Research, 2019, 152:38-46
    Goldstein M, Shenker M, Chefetz B. Insights into the uptake processes of wastewater-borne pharmaceuticals by vegetables[J]. Environmental Science & Technology, 2014, 48(10):5593-5600
    Trapp S. Bioaccumulation of Polar and Ionizable Compounds in Plants[M]//Ecotoxicology Modeling. Boston, MA:Springer US, 2009:299-353
    Miller E L, Nason S L, Karthikeyan K G, et al. Root uptake of pharmaceuticals and personal care product ingredients[J]. Environmental Science & Technology, 2016, 50(2):525-541
    Meng C, Huan D, Zhao H M, et al. Nitrate supply decreases uptake and accumulation of ciprofloxacin in Brassica parachinensis[J]. Journal of Hazardous Materials, 2021, 403:123803
    Barbosa J, Barrón D, Jiménez-Lozano E, et al. Comparison between capillary electrophoresis, liquid chromatography, potentiometric and spectrophotometric techniques for evaluation of pKa values of zwitterionic drugs in acetonitrile-water mixtures[J]. Analytica Chimica Acta, 2001, 437(2):309-321
    Paltiel O, Fedorova G, Tadmor G, et al. Human exposure to wastewater-derived pharmaceuticals in fresh produce:A randomized controlled trial focusing on carbamazepine[J]. Environmental Science & Technology, 2016, 50(8):4476-4482
    李丹, 高阳俊, 耿春女. 食物链途径人体健康风险评估的关键内容探讨[J]. 环境化学, 2015, 34(3):431-441

    Li D, Gao Y J, Geng C N. Discussions on the human health risk assessment by food-chain exposure pathways[J]. Environmental Chemistry, 2015, 34(3):431-441(in Chinese)

    周启星, 罗义, 王美娥. 抗生素的环境残留、生态毒性及抗性基因污染[J]. 生态毒理学报, 2007, 2(3):243-251

    Zhou Q X, Luo Y, Wang M E. Environmental residues and ecotoxicity of antibiotics and their resistance gene pollution:A review[J]. Asian Journal of Ecotoxicology, 2007, 2(3):243-251(in Chinese)

    Gudda F O, Waigi M G, Odinga E S, et al. Antibiotic-contaminated wastewater irrigated vegetables pose resistance selection risks to the gut microbiome[J]. Environmental Pollution, 2020, 264:114752
    Duan Y J, Chen Z Y, Tan L, et al. Gut resistomes, microbiota and antibiotic residues in Chinese patients undergoing antibiotic administration and healthy individuals[J]. The Science of the Total Environment, 2020, 705:135674
    Boxall A B, Johnson P, Smith E J, et al. Uptake of veterinary medicines from soils into plants[J]. Journal of Agricultural and Food Chemistry, 2006, 54(6):2288-2297
    Schwab B W, Hayes E P, Fiori J M, et al. Human pharmaceuticals in US surface waters:A human health risk assessment[J]. Regulatory Toxicology and Pharmacology, 2005, 42(3):296-312
    Pan M, Chu L M. Transfer of antibiotics from wastewater or animal manure to soil and edible crops[J]. Environmental Pollution, 2017, 231:829-836
  • 加载中
计量
  • 文章访问数:  2612
  • HTML全文浏览数:  2612
  • PDF下载数:  90
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-03-07
王浩楠, 李烨, 傅志强, 乔显亮. 抗生素解离形态对其植物富集及人体暴露的影响[J]. 生态毒理学报, 2022, 17(5): 43-53. doi: 10.7524/AJE.1673-5897.20220307002
引用本文: 王浩楠, 李烨, 傅志强, 乔显亮. 抗生素解离形态对其植物富集及人体暴露的影响[J]. 生态毒理学报, 2022, 17(5): 43-53. doi: 10.7524/AJE.1673-5897.20220307002
Wang Haonan, Li Ye, Fu Zhiqiang, Qiao Xianliang. Influence of Ionization Forms of Antibiotics on Plant Accumulation and Human Exposure[J]. Asian journal of ecotoxicology, 2022, 17(5): 43-53. doi: 10.7524/AJE.1673-5897.20220307002
Citation: Wang Haonan, Li Ye, Fu Zhiqiang, Qiao Xianliang. Influence of Ionization Forms of Antibiotics on Plant Accumulation and Human Exposure[J]. Asian journal of ecotoxicology, 2022, 17(5): 43-53. doi: 10.7524/AJE.1673-5897.20220307002

抗生素解离形态对其植物富集及人体暴露的影响

    通讯作者: 乔显亮, E-mail: xlqiao@dlut.edu.cn
    作者简介: 王浩楠(1996-),男,硕士研究生,研究方向为植物对抗生素的吸收机制,E-mail:178326429@qq.com
  • 大连理工大学环境学院, 工业生态与环境工程教育部重点实验室, 大连 116000
基金项目:

国家自然科学基金面上项目(21777014)

摘要: 抗生素通过畜禽有机肥、灌溉用水等途径进入土壤,被植物吸收后会进入食物链,可能引起人体的被动暴露。研究植物对抗生素的富集规律可以为评价人体健康风险提供参考。很多抗生素属于可解离有机物,在不同pH下会呈现出不同的解离形态,这导致其植物吸收富集机制非常复杂。目前,关于植物对不同形态抗生素吸收的研究还比较缺失。本研究选取磺胺嘧啶(SDZ)、磺胺甲恶唑(SMX)、甲氧苄啶(TRM)、氯霉素(CAP)、克拉霉素(CLA)和恩诺沙星(ENR)作为目标抗生素,分别在pH 6.5和pH 5~9条件下进行了水培暴露实验,研究了抗生素在小麦和生菜中的富集规律。结果表明,50 μg·L-1抗生素暴露下,6种抗生素在小麦和生菜根部的富集大致表现为ENR>TRM>CAP>CLA>SMX>SDZ。在生菜对抗生素的根部吸收中,随着pH升高,SDZ和SMX的吸收呈显著下降趋势,而其他4种抗生素随着pH变化吸收差异不显著。通过分析抗生素形态与其吸收的关系发现,SDZ、SMX和CLA在生菜中的富集与其中性形态比例成正相关关系,R2分别为0.931、0.926和0.751,表明中性形态对其植物吸收具有比较重要的贡献。在本研究暴露水平下,生菜可食用部分中目标抗生素的人体每日预估摄入量(EDI)均低于每日允许摄入量(ADI);但是,在pH 5~9之间同种抗生素的EDI存在16倍的差异,抗生素通过植物富集可能产生的人体健康风险仍需进一步研究。

English Abstract

参考文献 (32)

返回顶部

目录

/

返回文章
返回