臭氧老化聚苯乙烯微塑料和标准聚苯乙烯微塑料小球短期经口暴露对小鼠肠道菌群结构和能量代谢相关激素影响的比较研究

蒋进, 王碧莹, 吴笛. 臭氧老化聚苯乙烯微塑料和标准聚苯乙烯微塑料小球短期经口暴露对小鼠肠道菌群结构和能量代谢相关激素影响的比较研究[J]. 生态毒理学报, 2022, 17(5): 95-105. doi: 10.7524/AJE.1673-5897.20220411003
引用本文: 蒋进, 王碧莹, 吴笛. 臭氧老化聚苯乙烯微塑料和标准聚苯乙烯微塑料小球短期经口暴露对小鼠肠道菌群结构和能量代谢相关激素影响的比较研究[J]. 生态毒理学报, 2022, 17(5): 95-105. doi: 10.7524/AJE.1673-5897.20220411003
Jiang Jin, Wang Biying, Wu Di. A Comparative Study of Effects of Short-Term Oral Exposure to Ozone-aged Polystyrene Microplastics and Standard Polystyrene Microplastic Beads on Gut Microbiota Structure and Energy Metabolism-related Hormones in Mice[J]. Asian journal of ecotoxicology, 2022, 17(5): 95-105. doi: 10.7524/AJE.1673-5897.20220411003
Citation: Jiang Jin, Wang Biying, Wu Di. A Comparative Study of Effects of Short-Term Oral Exposure to Ozone-aged Polystyrene Microplastics and Standard Polystyrene Microplastic Beads on Gut Microbiota Structure and Energy Metabolism-related Hormones in Mice[J]. Asian journal of ecotoxicology, 2022, 17(5): 95-105. doi: 10.7524/AJE.1673-5897.20220411003

臭氧老化聚苯乙烯微塑料和标准聚苯乙烯微塑料小球短期经口暴露对小鼠肠道菌群结构和能量代谢相关激素影响的比较研究

    作者简介: 蒋进(1996-),男,硕士研究生,研究方向为卫生毒理学,E-mail:jiangjin@njmu.edu.cn
    通讯作者: 吴笛, E-mail: diwu@njmu.edu.cn
  • 基金项目:

    南京医科大学公共卫生与预防优势学科-科研创新与创新团队-青年梯队人才培育项目(JX1033180417)

  • 中图分类号: X171.5

A Comparative Study of Effects of Short-Term Oral Exposure to Ozone-aged Polystyrene Microplastics and Standard Polystyrene Microplastic Beads on Gut Microbiota Structure and Energy Metabolism-related Hormones in Mice

    Corresponding author: Wu Di, diwu@njmu.edu.cn
  • Fund Project:
  • 摘要: 微塑料污染日益严重,关于微塑料的健康风险的研究逐日增多。大多数微塑料研究使用标准微塑料作为暴露材料,而环境中的微塑料经过老化,物化性状发生改变,其相关不良效应值得进一步研究。本研究通过分析小鼠经口暴露老化微塑料和标准微塑料后结肠病理结构、血清能量代谢相关激素和肠道菌群变化,探讨老化微塑料和标准微塑料对能量代谢和肠道菌群影响的差异。15只C57BL/6小鼠随机分为3组,分别连续7 d暴露20 μg·g-1·d-1 10 μm直径聚苯乙烯微塑料标品(标准PS-MPs组)、20 μg·g-1·d-1 50 μm老化聚苯乙烯微塑料(老化PS-MPs组)和玉米油(对照组)。暴露结束后收集小鼠血清检测能量代谢相关激素(胰高血糖素样肽-1(GLP-1)、胆囊收缩素(CCK)、胃饥饿素(ghrelin)、YY肽(PYY))水平;收集小鼠结肠采取苏木精-伊红染色法(H&E)以及阿利新蓝与过碘酸雪夫氏染色方法(AB-PAS)进行肠道病理形态学观察。采集小鼠粪便,使用16S高通量测序法对粪便中微生物区系进行测序并对测序结果进行分析。结果显示,相比对照组,标准PS-MPs暴露显著降低小鼠肝脏脏器系数(P<0.05)。老化PS-MPs暴露组小鼠血清中GLP-1和胃饥饿素水平显著上升(P<0.01和P<0.05)。结肠切片观察结果显示,相比对照组,标准PS-MPs和老化PS-MPs暴露组小鼠的肠道都出现隐窝结构受损,杯状细胞数量减少,且老化PS-MPs暴露组小鼠隐窝结构受损更严重,杯状细胞数量减少更多,酸性黏液分泌更多,黏蛋白水平更低。老化PS-MPs暴露组小鼠肠道菌群的多样性显著下降(P<0.05)。从门水平分析,老化PS-MPs暴露可以显著增加拟杆菌门(P<0.001)相对丰度,显著降低厚壁菌门相对丰度(P<0.05);从科水平分析,老化PS-MPs暴露后肠道乳杆菌科显著减少(P<0.05),鼠杆菌科、普雷沃氏菌显著增多(两者P<0.05)。综上,本研究发现微塑料在臭氧老化后,相比标准微塑料,短期经口暴露显著干扰能量代谢相关激素水平,降低肠道菌群结构多样性,改变小鼠肠道菌群的菌种组成。因此,在进行微塑料相关毒性研究时,应当重视暴露材料物化性质对结果产生的影响。
  • 加载中
  • Geyer R, Jambeck J R, Law K L. Production, use, and fate of all plastics ever made[J]. Science Advances, 2017, 3(7):e1700782
    Thompson R C, Olsen Y, Mitchell R P, et al. Lost at sea:Where is all the plastic?[J]. Science, 2004, 304(5672):838
    杨婧婧, 徐笠, 陆安祥, 等. 环境中微(纳米)塑料的来源及毒理学研究进展[J]. 环境化学, 2018, 37(3):383-396

    Yang J J, Xu L, Lu A X, et al. Research progress on the sources and toxicology of micro (nano) plastics in environment[J]. Environmental Chemistry, 2018, 37(3):383-396(in Chinese)

    Jahnke A, Arp H P H, Escher B I, et al. Reducing uncertainty and confronting ignorance about the possible impacts of weathering plastic in the marine environment[J]. Environmental Science & Technology Letters, 2017, 4(3):85-90
    Guo X, Wang J L. The chemical behaviors of microplastics in marine environment:A review[J]. Marine Pollution Bulletin, 2019, 142:1-14
    Tang C C, Chen H I, Brimblecombe P, et al. Textural, surface and chemical properties of polyvinyl chloride particles degraded in a simulated environment[J]. Marine Pollution Bulletin, 2018, 133:392-401
    唐海辉, 周世帆, 邹小明, 等. 不同老化条件对聚酰胺6微塑料吸附磺胺噻唑的影响[J]. 环境污染与防治, 2022, 44(2):154-159

    Tang H H, Zhou S F, Zou X M, et al. Effects of different aging condition on the adsorption of sulfathiazole by polyamide 6 microplastic[J]. Environmental Pollution & Control, 2022, 44(2):154-159(in Chinese)

    王琼杰, 张勇, 张阳阳, 等. 老化微塑料对水体中重金属铜和锌的吸附行为研究[J]. 环境科学学报, 2021, 41(7):2712-2726

    Wang Q J, Zhang Y, Zhang Y Y, et al. Adsorption of heavy metal ions Cu2+ and Zn2+ onto UV-aged microplastics in aquatic system[J]. Acta Scientiae Circumstantiae, 2021, 41(7):2712-2726(in Chinese)

    马思睿, 李舒行, 郭学涛. 微塑料的老化特性、机制及其对污染物吸附影响的研究进展[J]. 中国环境科学, 2020, 40(9):3992-4003

    Ma S R, Li S X, Guo X T. A review on aging characteristics, mechanism of microplastics and their effects on the adsorption behaviors of pollutants[J]. China Environmental Science, 2020, 40(9):3992-4003(in Chinese)

    Lu K, Qiao R X, An H, et al. Influence of microplastics on the accumulation and chronic toxic effects of cadmium in zebrafish (Danio rerio)[J]. Chemosphere, 2018, 202:514-520
    Rummel C D, Jahnke A, Gorokhova E, et al. Impacts of biofilm formation on the fate and potential effects of microplastic in the aquatic environment[J]. Environmental Science & Technology Letters, 2017, 4(7):258-267
    Zhang H B, Wang J Q, Zhou B Y, et al. Enhanced adsorption of oxytetracycline to weathered microplastic polystyrene:Kinetics, isotherms and influencing factors[J]. Environmental Pollution, 2018, 243(Pt B):1550-1557
    Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body[J]. PLoS Biology, 2016, 14(8):e1002533
    Gilbert J A, Blaser M J, Caporaso J G, et al. Current understanding of the human microbiome[J]. Nature Medicine, 2018, 24(4):392-400
    Jin M C, Qian Z Y, Yin J Y, et al. The role of intestinal microbiota in cardiovascular disease[J]. Journal of Cellular and Molecular Medicine, 2019, 23(4):2343-2350
    Hobby G P, Karaduta O, Dusio G F, et al. Chronic kidney disease and the gut microbiome[J]. American Journal of Physiology-Renal Physiology, 2019, 316(6):1211-1217
    Rajendiran E, Ramadass B, Ramprasath V. Understanding connections and roles of gut microbiome in cardiovascular diseases[J]. Canadian Journal of Microbiology, 2021, 67(2):101-111
    Zeng S L, Li S Z, Xiao P T, et al. Citrus polymethoxyflavones attenuate metabolic syndrome by regulating gut microbiome and amino acid metabolism[J]. Science Advances, 2020, 6(1):eaax6208
    李米环, 李国强. 能量代谢指标与肥胖评价方法关系分析[J]. 中国组织工程研究与临床康复, 2008, 12(24):4763-4766

    Li M H, Li G Q. Correlation between metabolism indexes and obesity assessment[J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2008, 12(24):4763-4766(in Chinese)

    罗琥捷, 杨宜婷, 宁嘉玲, 等. 与体重、体脂、摄食行为及能量代谢特异相关的生物激素研究进展[J]. 中国民族民间医药, 2016, 25(3):28-29
    Marana M H, Poulsen R, Thormar E A, et al. Plastic nanoparticles cause mild inflammation, disrupt metabolic pathways, change the gut microbiota and affect reproduction in zebrafish:A full generation multi-omics study[J]. Journal of Hazardous Materials, 2022, 424(Pt D):127705
    Li L L, Amara R, Souissi S, et al. Impacts of microplastics exposure on mussel (Mytilus edulis) gut microbiota[J]. The Science of the Total Environment, 2020, 745:141018
    Huang J N, Wen B, Xu L, et al. Micro/nano-plastics cause neurobehavioral toxicity in discus fish (Symphysodon aequifasciatus):Insight from brain-gut-microbiota axis[J]. Journal of Hazardous Materials, 2022, 421:126830
    Sun H Q, Chen N, Yang X N, et al. Effects induced by polyethylene microplastics oral exposure on colon mucin release, inflammation, gut microflora composition and metabolism in mice[J]. Ecotoxicology and Environmental Safety, 2021, 220:112340
    Kelsey M D, Nelson A J, Green J B, et al. Guidelines for cardiovascular risk reduction in patients with type 2 diabetes[J]. Journal of the American College of Cardiology, 2022, 79(18):1849-1857
    Yue J T Y, Duca F A, Lam T K T. Silencing gut CCK cells alters gut reaction to sugar[J]. Nature Neuroscience, 2022, 25(2):136-138
    Huang H H, Wang T Y, Yao S F, et al. Gastric mobility and gastrointestinal hormones in older patients with sarcopenia[J]. Nutrients, 2022, 14(9):1897
    Qin J, Cai Y, Xu Z, et al. Molecular mechanism of agonism and inverse agonism in ghrelin receptor[J]. Nature Communications, 2022, 13(1):300
    Anbumani S, Kakkar P. Ecotoxicological effects of microplastics on biota:A review[J]. Environmental Science and Pollution Research, 2018, 25(15):14373-14396
    袁鹏, 胡献刚, 周启星. 微塑料在肠道的蓄积毒性及其生态危害研究进展[J]. 徐州工程学院学报:自然科学版, 2019, 34(4):54-58

    Yuan P, Hu X G, Zhou Q X. Progress on cumulative toxicity and ecological hazards of microplastics in intestinal tract[J]. Journal of Xuzhou Institute of Technology:Natural Sciences Edition, 2019, 34(4):54-58(in Chinese)

    Qiao R X, Sheng C, Lu Y F, et al. Microplastics induce intestinal inflammation, oxidative stress, and disorders of metabolome and microbiome in zebrafish[J]. The Science of the Total Environment, 2019, 662:246-253
    Huang J N, Wen B, Zhu J G, et al. Exposure to microplastics impairs digestive performance, stimulates immune response and induces microbiota dysbiosis in the gut of juvenile guppy (Poecilia reticulata)[J]. The Science of the Total Environment, 2020, 733:138929
    Jin Y X, Lu L, Tu W Q, et al. Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice[J]. The Science of the Total Environment, 2019, 649:308-317
    Scherer C, Brennholt N, Reifferscheid G, et al. Feeding type and development drive the ingestion of microplastics by freshwater invertebrates[J]. Scientific Reports, 2017, 7(1):17006
    Moreno J. Prevotella copri and the microbial pathogenesis of rheumatoid arthritis[J]. Reumatologia Clinica, 2015, 11(2):61-63
    毛微波. Ghrelin. 一个促生长激素分泌及调节能量代谢的新多肽[J]. 国外医学内分泌学分册, 2002, 22(3):174-177
    Everard A, Cani P D. Gut microbiota and GLP-1[J]. Reviews in Endocrine and Metabolic Disorders, 2014, 15(3):189-196
    Turnbaugh P J, Ley R E, Mahowald M A, et al. An obesity-associated gut microbiome with increased capacity for energy harvest[J]. Nature, 2006, 444(7122):1027-1031
    Cheesman S E, Neal J T, Mittge E, et al. Epithelial cell proliferation in the developing zebrafish intestine is regulated by the Wnt pathway and microbial signaling via Myd88[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(Suppl 1):4570-4577
    李惠, 王学红, 马臻棋, 等. 短链脂肪酸与代谢相关性疾病的研究进展[J]. 中国医刊, 2022, 57(4):367-371

    Li H, Wang X H, Ma Z Q, et al. Progress of short-chain fatty acids and metabolic related diseases[J]. Chinese Journal of Medicine, 2022, 57(4):367-371(in Chinese)

    van der Hee B, Wells J M. Microbial regulation of host physiology by short-chain fatty acids[J]. Trends in Microbiology, 2021, 29(8):700-712
  • 加载中
计量
  • 文章访问数:  2472
  • HTML全文浏览数:  2472
  • PDF下载数:  121
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-04-11
蒋进, 王碧莹, 吴笛. 臭氧老化聚苯乙烯微塑料和标准聚苯乙烯微塑料小球短期经口暴露对小鼠肠道菌群结构和能量代谢相关激素影响的比较研究[J]. 生态毒理学报, 2022, 17(5): 95-105. doi: 10.7524/AJE.1673-5897.20220411003
引用本文: 蒋进, 王碧莹, 吴笛. 臭氧老化聚苯乙烯微塑料和标准聚苯乙烯微塑料小球短期经口暴露对小鼠肠道菌群结构和能量代谢相关激素影响的比较研究[J]. 生态毒理学报, 2022, 17(5): 95-105. doi: 10.7524/AJE.1673-5897.20220411003
Jiang Jin, Wang Biying, Wu Di. A Comparative Study of Effects of Short-Term Oral Exposure to Ozone-aged Polystyrene Microplastics and Standard Polystyrene Microplastic Beads on Gut Microbiota Structure and Energy Metabolism-related Hormones in Mice[J]. Asian journal of ecotoxicology, 2022, 17(5): 95-105. doi: 10.7524/AJE.1673-5897.20220411003
Citation: Jiang Jin, Wang Biying, Wu Di. A Comparative Study of Effects of Short-Term Oral Exposure to Ozone-aged Polystyrene Microplastics and Standard Polystyrene Microplastic Beads on Gut Microbiota Structure and Energy Metabolism-related Hormones in Mice[J]. Asian journal of ecotoxicology, 2022, 17(5): 95-105. doi: 10.7524/AJE.1673-5897.20220411003

臭氧老化聚苯乙烯微塑料和标准聚苯乙烯微塑料小球短期经口暴露对小鼠肠道菌群结构和能量代谢相关激素影响的比较研究

    通讯作者: 吴笛, E-mail: diwu@njmu.edu.cn
    作者简介: 蒋进(1996-),男,硕士研究生,研究方向为卫生毒理学,E-mail:jiangjin@njmu.edu.cn
  • 南京医科大学公共卫生学院现代毒理学教育部重点实验室, 南京 211166
基金项目:

南京医科大学公共卫生与预防优势学科-科研创新与创新团队-青年梯队人才培育项目(JX1033180417)

摘要: 微塑料污染日益严重,关于微塑料的健康风险的研究逐日增多。大多数微塑料研究使用标准微塑料作为暴露材料,而环境中的微塑料经过老化,物化性状发生改变,其相关不良效应值得进一步研究。本研究通过分析小鼠经口暴露老化微塑料和标准微塑料后结肠病理结构、血清能量代谢相关激素和肠道菌群变化,探讨老化微塑料和标准微塑料对能量代谢和肠道菌群影响的差异。15只C57BL/6小鼠随机分为3组,分别连续7 d暴露20 μg·g-1·d-1 10 μm直径聚苯乙烯微塑料标品(标准PS-MPs组)、20 μg·g-1·d-1 50 μm老化聚苯乙烯微塑料(老化PS-MPs组)和玉米油(对照组)。暴露结束后收集小鼠血清检测能量代谢相关激素(胰高血糖素样肽-1(GLP-1)、胆囊收缩素(CCK)、胃饥饿素(ghrelin)、YY肽(PYY))水平;收集小鼠结肠采取苏木精-伊红染色法(H&E)以及阿利新蓝与过碘酸雪夫氏染色方法(AB-PAS)进行肠道病理形态学观察。采集小鼠粪便,使用16S高通量测序法对粪便中微生物区系进行测序并对测序结果进行分析。结果显示,相比对照组,标准PS-MPs暴露显著降低小鼠肝脏脏器系数(P<0.05)。老化PS-MPs暴露组小鼠血清中GLP-1和胃饥饿素水平显著上升(P<0.01和P<0.05)。结肠切片观察结果显示,相比对照组,标准PS-MPs和老化PS-MPs暴露组小鼠的肠道都出现隐窝结构受损,杯状细胞数量减少,且老化PS-MPs暴露组小鼠隐窝结构受损更严重,杯状细胞数量减少更多,酸性黏液分泌更多,黏蛋白水平更低。老化PS-MPs暴露组小鼠肠道菌群的多样性显著下降(P<0.05)。从门水平分析,老化PS-MPs暴露可以显著增加拟杆菌门(P<0.001)相对丰度,显著降低厚壁菌门相对丰度(P<0.05);从科水平分析,老化PS-MPs暴露后肠道乳杆菌科显著减少(P<0.05),鼠杆菌科、普雷沃氏菌显著增多(两者P<0.05)。综上,本研究发现微塑料在臭氧老化后,相比标准微塑料,短期经口暴露显著干扰能量代谢相关激素水平,降低肠道菌群结构多样性,改变小鼠肠道菌群的菌种组成。因此,在进行微塑料相关毒性研究时,应当重视暴露材料物化性质对结果产生的影响。

English Abstract

参考文献 (41)

返回顶部

目录

/

返回文章
返回