臭氧老化聚苯乙烯微塑料和标准聚苯乙烯微塑料小球短期经口暴露对小鼠肠道菌群结构和能量代谢相关激素影响的比较研究
A Comparative Study of Effects of Short-Term Oral Exposure to Ozone-aged Polystyrene Microplastics and Standard Polystyrene Microplastic Beads on Gut Microbiota Structure and Energy Metabolism-related Hormones in Mice
-
摘要: 微塑料污染日益严重,关于微塑料的健康风险的研究逐日增多。大多数微塑料研究使用标准微塑料作为暴露材料,而环境中的微塑料经过老化,物化性状发生改变,其相关不良效应值得进一步研究。本研究通过分析小鼠经口暴露老化微塑料和标准微塑料后结肠病理结构、血清能量代谢相关激素和肠道菌群变化,探讨老化微塑料和标准微塑料对能量代谢和肠道菌群影响的差异。15只C57BL/6小鼠随机分为3组,分别连续7 d暴露20 μg·g-1·d-1 10 μm直径聚苯乙烯微塑料标品(标准PS-MPs组)、20 μg·g-1·d-1 50 μm老化聚苯乙烯微塑料(老化PS-MPs组)和玉米油(对照组)。暴露结束后收集小鼠血清检测能量代谢相关激素(胰高血糖素样肽-1(GLP-1)、胆囊收缩素(CCK)、胃饥饿素(ghrelin)、YY肽(PYY))水平;收集小鼠结肠采取苏木精-伊红染色法(H&E)以及阿利新蓝与过碘酸雪夫氏染色方法(AB-PAS)进行肠道病理形态学观察。采集小鼠粪便,使用16S高通量测序法对粪便中微生物区系进行测序并对测序结果进行分析。结果显示,相比对照组,标准PS-MPs暴露显著降低小鼠肝脏脏器系数(P<0.05)。老化PS-MPs暴露组小鼠血清中GLP-1和胃饥饿素水平显著上升(P<0.01和P<0.05)。结肠切片观察结果显示,相比对照组,标准PS-MPs和老化PS-MPs暴露组小鼠的肠道都出现隐窝结构受损,杯状细胞数量减少,且老化PS-MPs暴露组小鼠隐窝结构受损更严重,杯状细胞数量减少更多,酸性黏液分泌更多,黏蛋白水平更低。老化PS-MPs暴露组小鼠肠道菌群的多样性显著下降(P<0.05)。从门水平分析,老化PS-MPs暴露可以显著增加拟杆菌门(P<0.001)相对丰度,显著降低厚壁菌门相对丰度(P<0.05);从科水平分析,老化PS-MPs暴露后肠道乳杆菌科显著减少(P<0.05),鼠杆菌科、普雷沃氏菌显著增多(两者P<0.05)。综上,本研究发现微塑料在臭氧老化后,相比标准微塑料,短期经口暴露显著干扰能量代谢相关激素水平,降低肠道菌群结构多样性,改变小鼠肠道菌群的菌种组成。因此,在进行微塑料相关毒性研究时,应当重视暴露材料物化性质对结果产生的影响。Abstract: Microplastic pollution becomes serious and studies on the health risks of microplastic exposure are increasing day by day. Most studies on microplastic toxicity use standard microplastics as exposure materials. However microplastics in the environment undergo aging and their physical and chemical properties change. In this study, the differences between the effects of aged microplastics and standard microplastics on energy metabolism-related hormones and intestinal flora were investigated. Fifteen C57BL/6 mice were randomly divided into three groups and were exposed to 20 μg·g-1·d-1 standard polystyrene microplastics (s PS-MPs), 20 μg·g-1·d-1 aged polystyrene microplastics (a PS-MPs) or corn oil (Control) for 7 consecutive days, respectively. Mice were sacrificed after the exposure. Mice blood serum was collected to measure energy metabolism-related hormones (glucagon-like peptide-1 (GLP-1), cholecystokinin, ghrelin, peptide YY). Mice colon was collected for H&E and AB-PAS staining to observe morphological alteration. Feces were collected and the microbiota in the feces was sequenced using the 16S high-throughput sequencing method. The results showed that compared to the control, s PS-MPs exposure significantly reduced the liver organ coefficients (P<0.05). GLP-1 and ghrelin significantly increased in a PS-MPs-exposed mice (P<0.01 and P<0.05, respectively) compared to s PS-MPs group. Colon morphological analysis showed that both s PS-MPs and a PS-MPs groups had impaired crypt structure and a relative decrease in the number of goblet cells compared to the control group. The group of a PS-MPs showed more severely impaired crypt structure, less goblet cell, more acidic mucus secretion, and less mucin. The diversity of the intestinal flora of mice in a PS-MPs group was significantly reduced (P<0.05). At the Phylum level, exposure to a PS-MPs significantly increased the relative abundance of Bacteroidetes (P<0.001) and significantly reduced the relative abundance of Firmicutes (P<0.05); at the Family level, exposure to a PS-MPs significantly reduced the number of Lactobacillaceae (P<0.05), and significantly increased the number of Muribaculaceae (P<0.01) and Prevotellaceae (P<0.05). This study found that after ozone aging, short-term oral exposure to ozone-aged microplastics significantly interfered with the levels of energy metabolism-related hormones, reduced the structural diversity of intestinal flora, and changed the bacterial composition of the intestinal flora of mice compared with standard microplastics. Therefore, attention should be paid to the impact of the physicochemical properties of the exposed materials on the results when conducting microplastic-related toxicity studies.
-
Key words:
- aged microplastics /
- standard microplastics /
- polystyrene /
- intestinal flora /
- GLP-1 /
- ghrelin
-
-
Geyer R, Jambeck J R, Law K L. Production, use, and fate of all plastics ever made[J]. Science Advances, 2017, 3(7):e1700782 Thompson R C, Olsen Y, Mitchell R P, et al. Lost at sea:Where is all the plastic?[J]. Science, 2004, 304(5672):838 杨婧婧, 徐笠, 陆安祥, 等. 环境中微(纳米)塑料的来源及毒理学研究进展[J]. 环境化学, 2018, 37(3):383-396 Yang J J, Xu L, Lu A X, et al. Research progress on the sources and toxicology of micro (nano) plastics in environment[J]. Environmental Chemistry, 2018, 37(3):383-396(in Chinese)
Jahnke A, Arp H P H, Escher B I, et al. Reducing uncertainty and confronting ignorance about the possible impacts of weathering plastic in the marine environment[J]. Environmental Science & Technology Letters, 2017, 4(3):85-90 Guo X, Wang J L. The chemical behaviors of microplastics in marine environment:A review[J]. Marine Pollution Bulletin, 2019, 142:1-14 Tang C C, Chen H I, Brimblecombe P, et al. Textural, surface and chemical properties of polyvinyl chloride particles degraded in a simulated environment[J]. Marine Pollution Bulletin, 2018, 133:392-401 唐海辉, 周世帆, 邹小明, 等. 不同老化条件对聚酰胺6微塑料吸附磺胺噻唑的影响[J]. 环境污染与防治, 2022, 44(2):154-159 Tang H H, Zhou S F, Zou X M, et al. Effects of different aging condition on the adsorption of sulfathiazole by polyamide 6 microplastic[J]. Environmental Pollution & Control, 2022, 44(2):154-159(in Chinese)
王琼杰, 张勇, 张阳阳, 等. 老化微塑料对水体中重金属铜和锌的吸附行为研究[J]. 环境科学学报, 2021, 41(7):2712-2726 Wang Q J, Zhang Y, Zhang Y Y, et al. Adsorption of heavy metal ions Cu2+ and Zn2+ onto UV-aged microplastics in aquatic system[J]. Acta Scientiae Circumstantiae, 2021, 41(7):2712-2726(in Chinese)
马思睿, 李舒行, 郭学涛. 微塑料的老化特性、机制及其对污染物吸附影响的研究进展[J]. 中国环境科学, 2020, 40(9):3992-4003 Ma S R, Li S X, Guo X T. A review on aging characteristics, mechanism of microplastics and their effects on the adsorption behaviors of pollutants[J]. China Environmental Science, 2020, 40(9):3992-4003(in Chinese)
Lu K, Qiao R X, An H, et al. Influence of microplastics on the accumulation and chronic toxic effects of cadmium in zebrafish (Danio rerio)[J]. Chemosphere, 2018, 202:514-520 Rummel C D, Jahnke A, Gorokhova E, et al. Impacts of biofilm formation on the fate and potential effects of microplastic in the aquatic environment[J]. Environmental Science & Technology Letters, 2017, 4(7):258-267 Zhang H B, Wang J Q, Zhou B Y, et al. Enhanced adsorption of oxytetracycline to weathered microplastic polystyrene:Kinetics, isotherms and influencing factors[J]. Environmental Pollution, 2018, 243(Pt B):1550-1557 Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body[J]. PLoS Biology, 2016, 14(8):e1002533 Gilbert J A, Blaser M J, Caporaso J G, et al. Current understanding of the human microbiome[J]. Nature Medicine, 2018, 24(4):392-400 Jin M C, Qian Z Y, Yin J Y, et al. The role of intestinal microbiota in cardiovascular disease[J]. Journal of Cellular and Molecular Medicine, 2019, 23(4):2343-2350 Hobby G P, Karaduta O, Dusio G F, et al. Chronic kidney disease and the gut microbiome[J]. American Journal of Physiology-Renal Physiology, 2019, 316(6):1211-1217 Rajendiran E, Ramadass B, Ramprasath V. Understanding connections and roles of gut microbiome in cardiovascular diseases[J]. Canadian Journal of Microbiology, 2021, 67(2):101-111 Zeng S L, Li S Z, Xiao P T, et al. Citrus polymethoxyflavones attenuate metabolic syndrome by regulating gut microbiome and amino acid metabolism[J]. Science Advances, 2020, 6(1):eaax6208 李米环, 李国强. 能量代谢指标与肥胖评价方法关系分析[J]. 中国组织工程研究与临床康复, 2008, 12(24):4763-4766 Li M H, Li G Q. Correlation between metabolism indexes and obesity assessment[J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2008, 12(24):4763-4766(in Chinese)
罗琥捷, 杨宜婷, 宁嘉玲, 等. 与体重、体脂、摄食行为及能量代谢特异相关的生物激素研究进展[J]. 中国民族民间医药, 2016, 25(3):28-29 Marana M H, Poulsen R, Thormar E A, et al. Plastic nanoparticles cause mild inflammation, disrupt metabolic pathways, change the gut microbiota and affect reproduction in zebrafish:A full generation multi-omics study[J]. Journal of Hazardous Materials, 2022, 424(Pt D):127705 Li L L, Amara R, Souissi S, et al. Impacts of microplastics exposure on mussel (Mytilus edulis) gut microbiota[J]. The Science of the Total Environment, 2020, 745:141018 Huang J N, Wen B, Xu L, et al. Micro/nano-plastics cause neurobehavioral toxicity in discus fish (Symphysodon aequifasciatus):Insight from brain-gut-microbiota axis[J]. Journal of Hazardous Materials, 2022, 421:126830 Sun H Q, Chen N, Yang X N, et al. Effects induced by polyethylene microplastics oral exposure on colon mucin release, inflammation, gut microflora composition and metabolism in mice[J]. Ecotoxicology and Environmental Safety, 2021, 220:112340 Kelsey M D, Nelson A J, Green J B, et al. Guidelines for cardiovascular risk reduction in patients with type 2 diabetes[J]. Journal of the American College of Cardiology, 2022, 79(18):1849-1857 Yue J T Y, Duca F A, Lam T K T. Silencing gut CCK cells alters gut reaction to sugar[J]. Nature Neuroscience, 2022, 25(2):136-138 Huang H H, Wang T Y, Yao S F, et al. Gastric mobility and gastrointestinal hormones in older patients with sarcopenia[J]. Nutrients, 2022, 14(9):1897 Qin J, Cai Y, Xu Z, et al. Molecular mechanism of agonism and inverse agonism in ghrelin receptor[J]. Nature Communications, 2022, 13(1):300 Anbumani S, Kakkar P. Ecotoxicological effects of microplastics on biota:A review[J]. Environmental Science and Pollution Research, 2018, 25(15):14373-14396 袁鹏, 胡献刚, 周启星. 微塑料在肠道的蓄积毒性及其生态危害研究进展[J]. 徐州工程学院学报:自然科学版, 2019, 34(4):54-58 Yuan P, Hu X G, Zhou Q X. Progress on cumulative toxicity and ecological hazards of microplastics in intestinal tract[J]. Journal of Xuzhou Institute of Technology:Natural Sciences Edition, 2019, 34(4):54-58(in Chinese)
Qiao R X, Sheng C, Lu Y F, et al. Microplastics induce intestinal inflammation, oxidative stress, and disorders of metabolome and microbiome in zebrafish[J]. The Science of the Total Environment, 2019, 662:246-253 Huang J N, Wen B, Zhu J G, et al. Exposure to microplastics impairs digestive performance, stimulates immune response and induces microbiota dysbiosis in the gut of juvenile guppy (Poecilia reticulata)[J]. The Science of the Total Environment, 2020, 733:138929 Jin Y X, Lu L, Tu W Q, et al. Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice[J]. The Science of the Total Environment, 2019, 649:308-317 Scherer C, Brennholt N, Reifferscheid G, et al. Feeding type and development drive the ingestion of microplastics by freshwater invertebrates[J]. Scientific Reports, 2017, 7(1):17006 Moreno J. Prevotella copri and the microbial pathogenesis of rheumatoid arthritis[J]. Reumatologia Clinica, 2015, 11(2):61-63 毛微波. Ghrelin. 一个促生长激素分泌及调节能量代谢的新多肽[J]. 国外医学内分泌学分册, 2002, 22(3):174-177 Everard A, Cani P D. Gut microbiota and GLP-1[J]. Reviews in Endocrine and Metabolic Disorders, 2014, 15(3):189-196 Turnbaugh P J, Ley R E, Mahowald M A, et al. An obesity-associated gut microbiome with increased capacity for energy harvest[J]. Nature, 2006, 444(7122):1027-1031 Cheesman S E, Neal J T, Mittge E, et al. Epithelial cell proliferation in the developing zebrafish intestine is regulated by the Wnt pathway and microbial signaling via Myd88[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(Suppl 1):4570-4577 李惠, 王学红, 马臻棋, 等. 短链脂肪酸与代谢相关性疾病的研究进展[J]. 中国医刊, 2022, 57(4):367-371 Li H, Wang X H, Ma Z Q, et al. Progress of short-chain fatty acids and metabolic related diseases[J]. Chinese Journal of Medicine, 2022, 57(4):367-371(in Chinese)
van der Hee B, Wells J M. Microbial regulation of host physiology by short-chain fatty acids[J]. Trends in Microbiology, 2021, 29(8):700-712 -

计量
- 文章访问数: 2472
- HTML全文浏览数: 2472
- PDF下载数: 121
- 施引文献: 0