微(纳米)塑料和抗生素的相互作用及对鱼类的联合毒性效应研究进展

陈晨, 宋杰, 闫瑾, 王慧利, 钱秋慧. 微(纳米)塑料和抗生素的相互作用及对鱼类的联合毒性效应研究进展[J]. 生态毒理学报, 2023, 18(5): 56-73. doi: 10.7524/AJE.1673-5897.20221112001
引用本文: 陈晨, 宋杰, 闫瑾, 王慧利, 钱秋慧. 微(纳米)塑料和抗生素的相互作用及对鱼类的联合毒性效应研究进展[J]. 生态毒理学报, 2023, 18(5): 56-73. doi: 10.7524/AJE.1673-5897.20221112001
Chen Chen, Song Jie, Yan Jin, Wang Huili, Qian Qiuhui. Advances on Interaction between Micro(nano)plastics and Antibiotics along with Their Joint Toxicity to Fish[J]. Asian journal of ecotoxicology, 2023, 18(5): 56-73. doi: 10.7524/AJE.1673-5897.20221112001
Citation: Chen Chen, Song Jie, Yan Jin, Wang Huili, Qian Qiuhui. Advances on Interaction between Micro(nano)plastics and Antibiotics along with Their Joint Toxicity to Fish[J]. Asian journal of ecotoxicology, 2023, 18(5): 56-73. doi: 10.7524/AJE.1673-5897.20221112001

微(纳米)塑料和抗生素的相互作用及对鱼类的联合毒性效应研究进展

    作者简介: 陈晨(1998-),女,硕士研究生,研究方向为风险评价与生态安全,E-mail:qc551022@163.com
    通讯作者: 钱秋慧,E-mail:qhqian@usts.edu.cn
  • 基金项目:

    国家自然科学基金资助项目(32071617);江苏省自然科学基金资助项目(BK20191455);江苏省“双创博士”项目(JSSCBS20210723)

  • 中图分类号: X171.5

Advances on Interaction between Micro(nano)plastics and Antibiotics along with Their Joint Toxicity to Fish

    Corresponding author: Qian Qiuhui, qhqian@usts.edu.cn
  • Fund Project:
  • 摘要: 中国是微(纳米)塑料和抗生素生产和使用大国,由于过度使用和废水处理设施的限制,大量的抗生素和微(纳米)塑料进入水环境中,对生态环境和人类健康带来潜在威胁。微(纳米)塑料可以作为载体通过多种物理和化学作用吸附抗生素并将其转移到生物体内,对水生生物的肠道、肝脏、神经和生殖系统等造成损伤,并且通过食物链富集和转移,最终威胁到人类的健康。本文系统地综述了微(纳米)塑料和抗生素的相互作用以及对鱼类的危害,对微(纳米)塑料和抗生素的联合作用机制的研究方向进行了展望,以期对微(纳米)塑料和抗生素的环境风险研究提供更多理论参考。
  • 加载中
  • Wang C H, Zhao J, Xing B S. Environmental source, fate, and toxicity of microplastics [J]. Journal of Hazardous Materials, 2021, 407: 124357
    Rizvi S G, Ahammad S Z. COVID-19 and antimicrobial resistance: A cross-study [J]. The Science of the Total Environment, 2022, 807(Pt 2): 150873
    Carvalho I T, Santos L. Antibiotics in the aquatic environments: A review of the European scenario [J]. Environment International, 2016, 94: 736-757
    周瑞飞, 王少坡, 常晶, 等. 水中抗生素污染现状及高级氧化技术研究进展[J]. 天津城建大学学报, 2021, 27(5): 356-362

    Zhou R F, Wang S P, Chang J, et al. Pollution status of antibiotics in water and research progress of advanced oxidation technology [J]. Journal of Tianjin Chengjian University, 2021, 27(5): 356-362 (in Chinese)

    赵亚奇, 温沁雪, 杨莲, 等. 废水中磺胺甲噁唑在A/O-MBR工艺中的去除机理[J]. 中国给水排水, 2017, 33(17): 26-31

    Zhao Y Q, Wen Q X, Yang L, et al. Removal principal of sulfamethoxazole in wastewater treatment in A/O-MBR [J]. China Water & Wastewater, 2017, 33(17): 26-31 (in Chinese)

    于明琪, 钟传青, 周英萍, 等. 乡镇医院污水环境中抗生素耐药细菌的分离与分析[J]. 环境生态学, 2021, 3(6): 74-78

    Yu M Q, Zhong C Q, Zhou Y P, et al. Isolation and analysis of antibiotic-resistant bacteria in sewage environment of township hospitals [J]. Environmental Ecology, 2021, 3(6): 74-78 (in Chinese)

    林茂宏, 王震, 张开明, 等. 电氧化耦合陶瓷膜处理南方某医院污水的研究[J]. 水处理技术, 2022, 48(1): 112-117

    Lin M H, Wang Z, Zhang K M, et al. Research on electro-oxidation coupled with ceramic membrane for treatment of sewage in a hospital located in South China [J]. Technology of Water Treatment, 2022, 48(1): 112-117 (in Chinese)

    Wang J W, Wei H, Zhou X D, et al. Occurrence and risk assessment of antibiotics in the Xi’an section of the Weihe River, northwestern China [J]. Marine Pollution Bulletin, 2019, 146: 794-800
    Zhang G D, Liu X H, Lu S Y, et al. Occurrence of typical antibiotics in Nansi Lake’sinflowing rivers and antibiotic source contribution to Nansi Lake based on principal component analysis-multiple linear regression model [J]. Chemosphere, 2020, 242: 125269
    Han Q F, Song C, Sun X, et al. Spatiotemporal distribution, source apportionment and combined pollution of antibiotics in natural waters adjacent to mariculture areas in the Laizhou Bay, Bohai Sea [J]. Chemosphere, 2021, 279: 130381
    Mutiyar P K, Mittal A K. Occurrences and fate of selected human antibiotics in influents and effluents of sewage treatment plant and effluent-receiving River Yamuna in Delhi (India) [J]. Environmental Monitoring and Assessment, 2014, 186(1): 541-557
    Xu Z A, Li T, Bi J, et al. Spatiotemporal heterogeneity of antibiotic pollution and ecological risk assessment in Taihu Lake Basin, China [J]. The Science of the Total Environment, 2018, 643: 12-20
    Guo X C, Song R R, Lu S Y, et al. Multi-media occurrence of antibiotics and antibiotic resistance genes in East Dongting Lake [J]. Frontiers in Environmental Science, 2022, 10: 866332
    Guo X Y, Xiaojun L, Zhang A G, et al. Antibiotic contamination in a typical water-rich city in southeast China: A concern for drinking water resource safety [J]. Journal of Environmental Science and Health Part B, Pesticides, Food Contaminants, and Agricultural Wastes, 2020, 55(3): 193-209
    Lei Y Y, Li F F, Ouyang J, et al. Environmental distribution characteristics and source analysis of antibiotics in Zhejiang area [J]. Progress in Chemistry, 2021, 33(8): 1414-1425
    Danner M C, Robertson A, Behrends V, et al. Antibiotic pollution in surface fresh waters: Occurrence and effects [J]. Science of the Total Environment, 2019, 664: 793-804
    Wang W X, Gu X H, Zhou L J, et al. Antibiotics in crab ponds of Lake Guchenghu Basin, China: Occurrence, temporal variations, and ecological risks [J]. International Journal of Environmental Research and Public Health, 2018, 15(3): 548
    Wei R C, Ge F, Huang S Y, et al. Occurrence of veterinary antibiotics in animal wastewater and surface water around farms in Jiangsu Province, China [J]. Chemosphere, 2011, 82(10): 1408-1414
    Pereira A M, Silva L J, Meisel L M, et al. Fluoroquinolones and tetracycline antibiotics in a Portuguese aquaculture system and aquatic surroundings: Occurrence and environmental impact [J]. Journal of Toxicology and Environmental Health Part A, 2015, 78(15): 959-975
    Östman M, Lindberg R H, Fick J, et al. Screening of biocides, metals and antibiotics in Swedish sewage sludge and wastewater [J]. Water Research, 2017, 115: 318-328
    Mao R F, Hu Y Y, Zhang S Y, et al. Microplastics in the surface water of Wuliangsuhai Lake, Northern China [J]. The Science of the Total Environment, 2020, 723: 137820
    Wang W F, Ndungu A W, Li Z, et al. Microplastics pollution in inland freshwaters of China: A case study in urban surface waters of Wuhan, China [J]. Science of the Total Environment, 2017, 575: 1369-1374
    Wang W F, Yuan W K, Chen Y L, et al. Microplastics in surface waters of Dongting Lake and Hong Lake, China [J]. The Science of the Total Environment, 2018, 633: 539-545
    Yin L S, Jiang C B, Wen X F, et al. Microplastic pollution in surface water of urban lakes in Changsha, China [J]. International Journal of Environmental Research and Public Health, 2019, 16(9): 1650
    Yuan W K, Liu X N, Wang W F, et al. Microplastic abundance, distribution and composition in water, sediments, and wild fish from Poyang Lake, China [J]. Ecotoxicology and Environmental Safety, 2019, 170: 180-187
    Gray A D, Wertz H, Leads R R, et al. Microplastic in two South Carolina Estuaries: Occurrence, distribution, and composition [J]. Marine Pollution Bulletin, 2018, 128: 223-233
    Tamminga M, Stoewer S C, Fischer E K. On the representativeness of pump water samples versus manta sampling in microplastic analysis [J]. Environmental Pollution, 2019, 254(Pt A): 112970
    Gopinath K, Seshachalam S, Neelavannan K, et al. Quantification of microplastic in red hills lake of Chennai City, Tamil Nadu, India [J]. Environmental Science and Pollution Research, 2020, 27(26): 33297-33306
    Shi J Y, Dong Y B, Shi Y Y, et al. Groundwater antibiotics and microplastics in a drinking-water source area, Northern China: Occurrence, spatial distribution, risk assessment, and correlation [J]. Environmental Research, 2022, 210: 112855
    Wang F, Wang B, Duan L, et al. Occurrence and distribution of microplastics in domestic, industrial, agricultural and aquacultural wastewater sources: A case study in Changzhou, China [J]. Water Research, 2020, 182: 115956
    Yuan F, Zhao H, Sun H B, et al. Abundance, morphology, and removal efficiency of microplastics in two wastewater treatment plants in Nanjing, China [J]. Environmental Science and Pollution Research International, 2021, 28(8): 9327-9337
    Morgana S, Ghigliotti L, Estévez-Calvar N, et al. Microplastics in the Arctic: A case study with sub-surface water and fish samples off Northeast Greenland [J]. Environmental Pollution, 2018, 242(Pt B): 1078-1086
    Kanhai D K, Gårdfeldt K, Lyashevska O, et al. Microplastics in sub-surface waters of the Arctic Central Basin [J]. Marine Pollution Bulletin, 2018, 130: 8-18
    Bour A, Avio C G, Gorbi S, et al. Presence of microplastics in benthic and epibenthic organisms: Influence of habitat, feeding mode and trophic level [J]. Environmental Pollution, 2018, 243(Pt B): 1217-1225
    Digka N, Tsangaris C, Torre M, et al. Microplastics in mussels and fish from the northern Ionian Sea [J]. Marine Pollution Bulletin, 2018, 135: 30-40
    Wang Y H, Yang Y N, Liu X, et al. Interaction of microplastics with antibiotics in aquatic environment: Distribution, adsorption, and toxicity [J]. Environmental Science & Technology, 2021, 55(23): 15579-15595
    Yan C X, Yang Y, Zhou J L, et al. Antibiotics in the surface water of the Yangtze Estuary: Occurrence, distribution and risk assessment [J]. Environmental Pollution, 2013, 175: 22-29
    Zhao S Y, Zhu L X, Wang T, et al. Suspended microplastics in the surface water of the Yangtze Estuary System, China: First observations on occurrence, distribution [J]. Marine Pollution Bulletin, 2014, 86(1-2): 562-568
    Minor E C, Lin R, Burrows A, et al. An analysis of microlitter and microplastics from Lake Superior beach sand and surface-water [J]. Science of the Total Environment, 2020, 744: 140824
    Kerrigan J F, Sandberg K D, Engstrom D R, et al. Sedimentary record of antibiotic accumulation in Minnesota Lakes [J]. Science of the Total Environment, 2018, 621: 970-979
    Zhu X P, Ran W, Teng J, et al. Microplastic pollution in nearshore sediment from the Bohai Sea coastline [J]. Bulletin of Environmental Contamination and Toxicology, 2021, 107(4): 665-670
    Lu J, Zhang Y X, Wu J, et al. Occurrence and spatial distribution of antibiotic resistance genes in the Bohai Sea and Yellow Sea areas, China [J]. Environmental Pollution, 2019, 252(Pt A): 450-460
    Li J, Zhang K N, Zhang H. Adsorption of antibiotics on microplastics [J]. Environmental Pollution, 2018, 237: 460-467
    Yang Y Y, Liu G H, Song W J, et al. Plastics in the marine environment are reservoirs for antibiotic and metal resistance genes [J]. Environment International, 2019, 123: 79-86
    范秀磊, 甘容, 谢雅, 等. 老化前后聚乳酸和聚乙烯微塑料对抗生素的吸附解吸行为[J]. 环境科学研究, 2021, 34(7): 1747-1756

    Fan X L, Gan R, Xie Y, et al. Adsorption and desorption behavior of antibiotics on polylactic acid and polyethylene microplastics before and after aging [J]. Research of Environmental Sciences, 2021, 34(7): 1747-1756 (in Chinese)

    Antony A, Fudianto R, Cox S, et al. Assessing the oxidative degradation of polyamide reverse osmosis membrane—Accelerated ageing with hypochlorite exposure [J]. Journal of Membrane Science, 2010, 347(1-2): 159-164
    Yu F, Li Y, Huang G Q, et al. Adsorption behavior of the antibiotic levofloxacin on microplastics in the presence of different heavy metals in an aqueous solution [J]. Chemosphere, 2020, 260: 127650
    Liu G Z, Zhu Z L, Yang Y X, et al. Sorption behavior and mechanism of hydrophilic organic chemicals to virgin and aged microplastics in freshwater and seawater [J]. Environmental Pollution, 2019, 246: 26-33
    Yang C F, Guan J N, Yang Y D, et al. Interface behavior changes of weathered polystyrene with ciprofloxacin in seawater environment [J]. Environmental Research, 2022, 212(Pt A): 113132
    Guo X, Chen C, Wang J L. Sorption of sulfamethoxazole onto six types of microplastics [J]. Chemosphere, 2019, 228: 300-308
    Ziccardi L M, Edgington A, Hentz K, et al. Microplastics as vectors for bioaccumulation of hydrophobic organic chemicals in the marine environment: A state-of-the-science review [J]. Environmental Toxicology and Chemistry, 2016, 35(7): 1667-1676
    Puckowski A, CwięK W, Mioduszewska K, et al. Sorption of pharmaceuticals on the surface of microplastics [J]. Chemosphere, 2021, 263: 127976
    Guo X T, Pang J W, Chen S Y, et al. Sorption properties oftylosin on four different microplastics [J]. Chemosphere, 2018, 209: 240-245
    Xu B L, Liu F, Brookes P C, et al. The sorption kinetics and isotherms of sulfamethoxazole with polyethylene microplastics [J]. Marine Pollution Bulletin, 2018, 131(Pt A): 191-196
    Ding L, Mao R F, Ma S R, et al. High temperature depended on the ageing mechanism of microplastics under different environmental conditions and its effect on the distribution of organic pollutants [J]. Water Research, 2020, 174: 115634
    Liu P, Qian L, Wang H Y, et al. New insights into the aging behavior of microplastics accelerated by advanced oxidation processes [J]. Environmental Science & Technology, 2019, 53(7): 3579-3588
    Razanajatovo R M, Ding J N, Zhang S S, et al. Sorption and desorption of selected pharmaceuticals by polyethylene microplastics [J]. Marine Pollution Bulletin, 2018, 136: 516-523
    Xu B L, Liu F, Brookes P C, et al. Microplastics play a minor role in tetracycline sorption in the presence of dissolved organic matter [J]. Environmental Pollution, 2018, 240: 87-94
    Fu J X, Li Y N, Peng L, et al. Distinct chemical adsorption behaviors of sulfanilamide as a model antibiotic onto weathered microplastics in complex systems [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648: 129337
    Sun M, Yang Y K, Huang M L, et al. Adsorption behaviors and mechanisms of antibiotic norfloxacin on degradable and nondegradable microplastics [J]. The Science of the Total Environment, 2022, 807(Pt 3): 151042
    Guo X, Liu Y, Wang J L. Sorption of sulfamethazine onto different types of microplastics: A combined experimental and molecular dynamics simulation study [J]. Marine Pollution Bulletin, 2019, 145: 547-554
    Velzeboer I, Kwadijk C J A F, Koelmans A A. Strong sorption of PCBs to nanoplastics, microplastics, carbon nanotubes, and fullerenes [J]. Environmental Science & Technology, 2014, 48(9): 4869-4876
    Chen Y J, Li J N, Wang F H, et al. Adsorption of tetracyclines onto polyethylene microplastics: A combined study of experiment and molecular dynamics simulation [J]. Chemosphere, 2021, 265: 129133
    Zhang H B, Wang J Q, Zhou B Y, et al. Enhanced adsorption of oxytetracycline to weathered microplastic polystyrene: Kinetics, isotherms and influencing factors [J]. Environmental Pollution, 2018, 243(Pt B): 1550-1557
    Atugoda T, Wijesekara H, Werellagama D R I B, et al. Adsorptive interaction of antibiotic ciprofloxacin on polyethylene microplastics: Implications for vector transport in water [J]. Environmental Technology & Innovation, 2020, 19: 100971
    Zhou Z Q, Sun Y R, Wang Y Y, et al. Adsorption behavior of Cu(Ⅱ) and Cr(Ⅵ) on aged microplastics in antibiotics-heavy metals coexisting system [J]. Chemosphere, 2022, 291(Pt 1): 132794
    Wu P F, Cai Z W, Jin H B, et al. Adsorption mechanisms of five bisphenol analogues on PVC microplastics [J]. The Science of the Total Environment, 2019, 650(Pt 1): 671-678
    Yamate T, Kumazawa K, Suzuki H, et al. CH/π interactions for macroscopic interfacial adhesion design [J]. ACS Macro Letters, 2016, 5(7): 858-861
    Kong F X, Xu X, Xue Y G, et al. Investigation of the adsorption of sulfamethoxazole by degradable microplastics artificially aged by chemical oxidation [J]. Archives of Environmental Contamination and Toxicology, 2021, 81(1): 155-165
    Atugoda T, Vithanage M, Wijesekara H, et al. Interactions between microplastics, pharmaceuticals and personal care products: Implications for vector transport [J]. Environment International, 2021, 149: 106367
    Xiong Y C, Zhao J H, Li L Q, et al. Interfacial interaction between micro/nanoplastics and typical PPCPs and nanoplastics removal via electrosorption from an aqueous solution [J]. Water Research, 2020, 184: 116100
    Fan X L, Zou Y F, Geng N, et al. Investigation on the adsorption and desorption behaviors of antibiotics by degradable MPs with or without UV ageing process [J]. Journal of Hazardous Materials, 2021, 401: 123363
    González-Pleiter M, Pedrouzo-Rodríguez A, Verdú I, et al. Microplastics as vectors of the antibiotics azithromycin and clarithromycin: Effects towards freshwater microalgae [J]. Chemosphere, 2021, 268: 128824
    Godoy V, Martín-Lara M A, Calero M, et al. The relevance of interaction of chemicals/pollutants and microplastic samples as route for transporting contaminants [J]. Process Safety and Environmental Protection, 2020, 138: 312-323
    Yao J J, Wen J Y, Li H P, et al. Surface functional groups determine adsorption of pharmaceuticals and personal care products on polypropylene microplastics [J]. Journal of Hazardous Materials, 2022, 423(Pt B): 127131
    Hüffer T, Hofmann T. Sorption of non-polar organic compounds by micro-sized plastic particles in aqueous solution [J]. Environmental Pollution, 2016, 214: 194-201
    郭梦函. 抗生素在微塑料上的吸附行为及其相关毒性研究[D]. 西安: 西安理工大学, 2020: 19-21 Guo M H. Studies on the adsorption behavior of antibiotics on microplastics and its related toxicity [D]. Xi’an: Xi’an University of Technology, 2020: 19

    -21 (in Chinese)

    Syranidou E, Kalogerakis N. Interactions of microplastics, antibiotics and antibiotic resistant genes within WWTPs [J]. Science of the Total Environment, 2022, 804: 150141
    Santos L H M L M, Rodríguez-Mozaz S, Barceló D. Microplastics as vectors of pharmaceuticals in aquatic organisms - An overview of their environmental implications [J]. Case Studies in Chemical and Environmental Engineering, 2021, 3: 100079
    孔凡星, 许霞, 薛银刚, 等. 微塑料老化对四环素吸附行为的影响[J]. 环境科学研究, 2021, 34(9): 2182-2190

    Kong F X, Xu X, Xue Y G, et al. Effect of aging on adsorption of tetracycline by microplastics [J]. Research of Environmental Sciences, 2021, 34(9): 2182-2190 (in Chinese)

    Li X N, Chen S, Fan X F, et al. Adsorption of ciprofloxacin, bisphenol and 2-chlorophenol on electrospun carbon nanofibers: In comparison with powder activated carbon [J]. Journal of Colloid and Interface Science, 2015, 447: 120-127
    Brennecke D, Duarte B, Paiva F, et al. Microplastics as vector for heavy metal contamination from the marine environment [J]. Estuarine, Coastal and Shelf Science, 2016, 178: 189-195
    Wang F, Shih K M, Li X Y. The partition behavior of perfluorooctanesulfonate (PFOS) and perfluorooctanesulfonamide (FOSA) on microplastics [J]. Chemosphere, 2015, 119: 841-847
    Elgarahy A M, Akhdhar A, Elwakeel K Z. Microplastics prevalence, interactions, and remediation in the aquatic environment: A critical review [J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 106224
    Fu L N, Li J, Wang G Y, et al. Adsorption behavior of organic pollutants on microplastics [J]. Ecotoxicology and Environmental Safety, 2021, 217: 112207
    Wang J, Liu X H, Liu G N, et al. Size effect of polystyrene microplastics on sorption of phenanthrene and nitrobenzene [J]. Ecotoxicology and Environmental Safety, 2019, 173: 331-338
    Arienzo M, Ferrara L, Trifuoggi M. The dual role of microplastics in marine environment: Sink and vectors of pollutants [J]. Journal of Marine Science and Engineering, 2021, 9(6): 642
    Sun P P, Liu X M, Zhang M H, et al. Sorption and leaching behaviors between aged MPs and BPA in water: The role of BPA binding modes within plastic matrix [J]. Water Research, 2021, 195: 116956
    Gong W W, Jiang M Y, Han P, et al. Comparative analysis on the sorption kinetics and isotherms of fipronil on nondegradable and biodegradable microplastics [J]. Environmental Pollution, 2019, 254(Pt A): 112927
    Elizalde-Velázquez A, Subbiah S, Anderson T A, et al. Sorption of three common nonsteroidal anti-inflammatory drugs (NSAIDs) to microplastics [J]. The Science of the Total Environment, 2020, 715: 136974
    Yu X X, Du H H, Huang Y H, et al. Selective adsorption of antibiotics on aged microplastics originating from mariculture benefits the colonization of opportunistic pathogenic bacteria [J]. Environmental Pollution, 2022, 313: 120157
    Ajouyed O, Hurel C, Ammari M, et al. Sorption of Cr(Ⅵ) onto natural iron and aluminum (oxy)hydroxides: Effects of pH, ionic strength and initial concentration [J]. Journal of Hazardous Materials, 2010, 174(1-3): 616-622
    Ma J, Zhao J H, Zhu Z L, et al. Effect of microplastic size on the adsorption behavior and mechanism of triclosan on polyvinyl chloride [J]. Environmental Pollution, 2019, 254(Pt B): 113104
    Aristilde L, Marichal C, Miéhé-Brendlé J, et al. Interactions of oxytetracycline with a smectite clay: A spectroscopic study with molecular simulations [J]. Environmental Science & Technology, 2010, 44(20): 7839-7845
    Guo X, Wang J L. Sorption of antibiotics onto aged microplastics in freshwater and seawater [J]. Marine Pollution Bulletin, 2019, 149: 110511
    Turku I, Sainio T, Paatero E. Thermodynamics of tetracycline adsorption on silica [J]. Environmental Chemistry Letters, 2007, 5(4): 225-228
    Xue X D, Hong S C, Cheng R T, et al. Adsorption characteristics of antibiotics on microplastics: The effect of surface contamination with an anionic surfactant [J]. Chemosphere, 2022, 307(Pt 4): 136195
    于明睿, 万涛, 熊静, 等. 磁性聚合物吸附剂的制备及其重金属离子吸附性能[J]. 功能材料与器件学报, 2022, 28(2): 166-171

    Yu M R, Wan T, Xiong J, et al. Synthesis and adsorption properties of magnetic polymer adsorbent for heavy metal ions [J]. Journal of Functional Materials and Devices, 2022, 28(2): 166-171 (in Chinese)

    李若男, 周丽莎, 陈舜胜, 等. 纤维素纳米纤维及其改性产物吸附重金属的研究进展[J]. 化工进展, 2022, 41(1): 310-319

    Li R N, Zhou L S, Chen S S, et al. Research progress on adsorption of heavy metals by cellulose nanofibers and their modified products [J]. Chemical Industry and Engineering Progress, 2022, 41(1): 310-319 (in Chinese)

    阮玉婷, 姚平, 陈国强, 等. 氧化石墨烯基材料吸附重金属离子的研究进展[J]. 印染助剂, 2022, 39(2): 9-17

    Ruan Y T, Yao P, Chen G Q, et al. Research progress on adsorption of heavy metal ions by graphene oxide-based materials [J]. Textile Auxiliaries, 2022, 39(2): 9-17 (in Chinese)

    Wang F T, Pan Y F, Cai P X, et al. Single and binary adsorption of heavy metal ions from aqueous solutions using sugarcane cellulose-based adsorbent [J]. Bioresource Technology, 2017, 241: 482-490
    王一飞. 微塑料对氟喹诺酮类抗生素的吸附作用[D]. 金华: 浙江师范大学, 2021: 14-15 Wang Y F. Adsorption of fluoroquinolones by microplastics [D]. Jinhua: Zhejiang Normal University, 2021: 14

    -15 (in Chinese)

    Barboza L G A, DickVethaak A, Lavorante B R B O, et al. Marine microplastic debris: An emerging issue for food security, food safety and human health [J]. Marine Pollution Bulletin, 2018, 133: 336-348
    Barboza L G A, Vieira L R, Guilhermino L. Single and combined effects of microplastics and mercury on juveniles of the European seabass (Dicentrarchus labrax): Changes in behavioural responses and reduction of swimming velocity and resistance time [J]. Environmental Pollution, 2018, 236: 1014-1019
    Wright S L, Kelly F J. Plastic and human health: A micro issue? [J]. Environmental Science & Technology, 2017, 51(12): 6634-6647
    屈沙沙, 朱会卷, 刘锋平, 等. 微塑料吸附行为及对生物影响的研究进展[J]. 环境卫生学杂志, 2017, 7(1): 75-78

    Qu S S, Zhu H J, Liu F P, et al. Adsorption behavior and effect on biont of microplastic [J]. Journal of Environmental Hygiene, 2017, 7(1): 75-78 (in Chinese)

    Oliveira R, McDonough S, Ladewig J C L, et al. Effects of oxytetracycline and amoxicillin on development and biomarkers activities of zebrafish (Danio rerio) [J]. Environmental Toxicology and Pharmacology, 2013, 36(3): 903-912
    Almeida A R,Tacão M, Machado A L, et al. Long-term effects of oxytetracycline exposure in zebrafish: A multi-level perspective [J]. Chemosphere, 2019, 222: 333-344
    Zhou L, Limbu S M, Qiao F, et al. Influence of long-term feeding antibiotics on the gut health of zebrafish [J]. Zebrafish, 2018, 15(4): 340-348
    Zhou L, Limbu S M, Shen M L, et al. Environmental concentrations of antibiotics impair zebrafish gut health [J]. Environmental Pollution, 2018, 235: 245-254
    Petersen B D, Pereira T C B, Altenhofen S, et al. Antibiotic drugs alter zebrafish behavior [J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology, 2021, 242: 108936
    Zhang Q, Cheng J P, Xin Q. Effects of tetracycline on developmental toxicity and molecular responses in zebrafish (Danio rerio) embryos [J]. Ecotoxicology, 2015, 24(4): 707-719
    Keerthisinghe T P, Wang F, Wang M J, et al. Long-term exposure to TET increases body weight of juvenile zebrafish as indicated in host metabolism and gut microbiome [J]. Environment International, 2020, 139: 105705
    Qiu W H, Liu X J, Yang F, et al. Single and joint toxic effects of four antibiotics on some metabolic pathways of zebrafish (Danio rerio) larvae [J]. The Science of the Total Environment, 2020, 716: 137062
    Gonçalves C L, Vasconcelos F F P, Wessler L B, et al. Exposure to a high dose of amoxicillin causes behavioral changes and oxidative stress in young zebrafish [J]. Metabolic Brain Disease, 2020, 35(8): 1407-1416
    Xi J L, Liu J, He S J, et al. Effects of norfloxacin exposure on neurodevelopment of zebrafish (Danio rerio) embryos [J]. Neurotoxicology, 2019, 72: 85-94
    Shen R, Yu Y C, Lan R, et al. The cardiovascular toxicity induced by high doses of gatifloxacin and ciprofloxacin in zebrafish [J]. Environmental Pollution, 2019, 254(Pt B): 112861
    Yan Z H, Lu G H, Ye Q X, et al. Long-term effects of antibiotics, norfloxacin, and sulfamethoxazole, in a partial life-cycle study with zebrafish (Danio rerio): Effects on growth, development, and reproduction [J]. Environmental Science and Pollution Research International, 2016, 23(18): 18222-18228
    Minski V T, Garbinato C, Thiel N, et al. Erythromycin in the aquatic environment: Deleterious effects on the initial development of zebrafish [J]. Journal of Toxicology and Environmental Health Part A, 2021, 84(2): 56-66
    He J H, Guo S Y, Zhu F, et al. A zebrafish phenotypic assay for assessing drug-induced hepatotoxicity [J]. Journal of Pharmacological and Toxicological Methods, 2013, 67(1): 25-32
    Zhang M Q, Chen B, Zhang J P, et al. Liver toxicity of macrolide antibiotics in zebrafish [J]. Toxicology, 2020, 441: 152501
    Yan Z Y, Huang X Y, Xie Y, et al. Macrolides induce severe cardiotoxicity and developmental toxicity in zebrafish embryos [J]. The Science of the Total Environment, 2019, 649: 1414-1421
    Han E, Oh K H, Park S, et al. Analysis of behavioral changes in zebrafish (Danio rerio) larvae caused by aminoglycoside-induced damage to the lateral line and muscles [J]. Neurotoxicology, 2020, 78: 134-142
    Ton C, Parng C. The use of zebrafish for assessing ototoxic and otoprotective agents [J]. Hearing Research, 2005, 208(1-2): 79-88
    Shao W H, Zhong D, Jiang H W, et al. A new aminoglycoside etimicin shows low nephrotoxicity and ototoxicity in zebrafish embryos [J]. Journal of Applied Toxicology, 2021, 41(7): 1063-1075
    Hentschel D M, Park K M, Cilenti L, et al. Acute renal failure in zebrafish: A novel system to study a complex disease [J]. American Journal of Physiology Renal Physiology, 2005, 288(5): F923-F929
    Liu J Y, Wei T Z, Wu X, et al. Early exposure to environmental levels of sulfamethoxazole triggers immune and inflammatory response of healthy zebrafish larvae [J]. The Science of the Total Environment, 2020, 703: 134724
    Yan Z Y, Yang Q L, Jiang W L, et al. Integrated toxic evaluation of sulfamethazine on zebrafish: Including two lifespan stages (embryo-larval and adult) and three exposure periods (exposure, post-exposure and re-exposure) [J]. Chemosphere, 2018, 195: 784-792
    Yang L Y, Higginbotham J N, Liu L P, et al. Production of a functional factor, p40, by Lactobacillus rhamnosus GG is promoted by intestinal epithelial cell-secreted extracellular vesicles [J]. Infection and Immunity, 2019, 87(7): e00113-e00119
    Jin Y X, Wu S S, Zeng Z Y, et al. Effects of environmental pollutants on gut microbiota [J]. Environmental Pollution, 2017, 222: 1-9
    Liu S L, Yan L, Zhang Y L, et al. Polystyrene nanoplastics exacerbated the ecotoxicological and potential carcinogenic effects of tetracycline in juvenile grass carp (Ctenopharyngodon idella) [J]. The Science of the Total Environment, 2022, 803: 150027
    Zhang P, Lu G H, Sun Y, et al. Aged microplastics change the toxicological mechanism of roxithromycin on Carassius auratus: Size-dependent interaction and potential long-term effects [J]. Environment International, 2022, 169: 107540
    Zhang P, Lu G H, Sun Y, et al. Metagenomic analysis explores the interaction of aged microplastics and roxithromycin on gut microbiota and antibiotic resistance genes of Carassius auratus [J]. Journal of Hazardous Materials, 2022, 425: 127773
    Lu J, Zhang Y X, Wu J, et al. Effects of microplastics on distribution of antibiotic resistance genes in recirculating aquaculture system [J]. Ecotoxicology and Environmental Safety, 2019, 184: 109631
    Bakir A, Rowland S J, Thompson R C. Enhanced desorption of persistent organic pollutants from microplastics under simulated physiological conditions [J]. Environmental Pollution, 2014, 185: 16-23
    Zhang Y T, Chen H X, He S Q, et al. Subchronic toxicity of dietary sulfamethazine and nanoplastics in marine medaka (Oryzias melastigma): Insights from the gut microbiota and intestinal oxidative status [J]. Ecotoxicology and Environmental Safety, 2021, 226: 112820
    Liao X, Zhao P Q, Hou L Y, et al. Network analysis reveals significant joint effects of microplastics and tetracycline on the gut than the gill microbiome of marine medaka [J]. Journal of Hazardous Materials, 2023, 442: 129996
    Zhang S S, Ding J N, Razanajatovo R M, et al. Interactive effects of polystyrene microplastics and roxithromycin on bioaccumulation and biochemical status in the freshwater fish red tilapia (Oreochromis niloticus) [J]. The Science of the Total Environment, 2019, 648: 1431-1439
    Broom D M. Fish brains and behaviour indicate capacity for feeling pain [J]. Animal Sentience, 2016, 1(3): 4
    Dvir H, Silman I, Harel M, et al. Acetylcholinesterase: From 3D structure to function [J].Chemico-Biological Interactions, 2010, 187(1-3): 10-22
    Huang Y J, Ding J N, Zhang G S, et al. Interactive effects of microplastics and selected pharmaceuticals on red tilapia: Role of microplastic aging [J]. The Science of the Total Environment, 2021, 752: 142256
    Lu J R, Wu J, Gong L L, et al. Combined toxicity of polystyrene microplastics and sulfamethoxazole on zebrafish embryos [J]. Environmental Science and Pollution Research International, 2022, 29(13): 19273-19282
    Segner H. Reproductive and Developmental Toxicity in Fishes [M]//Reproductive and Developmental Toxicology. Amsterdam: Elsevier, 2011: 1145-1166
    Qiu W H, Fang M J, Magnuson J T, et al. Maternal exposure to environmental antibiotic mixture during gravid period predicts gastrointestinal effects in zebrafish offspring [J]. Journal of Hazardous Materials, 2020, 399: 123009
    Cormier B,Cachot J, Blanc M, et al. Environmental microplastics disrupt swimming activity in acute exposure in Danio rerio larvae and reduce growth and reproduction success in chronic exposure in D. rerio and Oryzias melastigma [J]. Environmental Pollution, 2022, 308: 119721
    He S Q, Li D, Wang F P, et al. Parental exposure to sulfamethazine and nanoplastics alters the gut microbial communities in the offspring of marine medaka (Oryzias melastigma) [J]. Journal of Hazardous Materials, 2022, 423(Pt A): 127003
    Park S H, Kim K. Microplastics induced developmental toxicity with microcirculation dysfunction in zebrafish embryos [J]. Chemosphere, 2022, 286(Pt 3): 131868
    Yang Q L, Gao Y, Ke J, et al. Antibiotics: An overview on the environmental occurrence, toxicity, degradation, and removal methods [J]. Bioengineered, 2021, 12(1): 7376-7416
    Fonte E, Ferreira P, Guilhermino L. Temperature rise and microplastics interact with the toxicity of the antibiotic cefalexin to juveniles of the common goby (Pomatoschistus microps): Post-exposure predatory behaviour, acetylcholinesterase activity and lipid peroxidation [J]. Aquatic Toxicology, 2016, 180: 173-185
  • 加载中
计量
  • 文章访问数:  1359
  • HTML全文浏览数:  1359
  • PDF下载数:  13
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-11-12
陈晨, 宋杰, 闫瑾, 王慧利, 钱秋慧. 微(纳米)塑料和抗生素的相互作用及对鱼类的联合毒性效应研究进展[J]. 生态毒理学报, 2023, 18(5): 56-73. doi: 10.7524/AJE.1673-5897.20221112001
引用本文: 陈晨, 宋杰, 闫瑾, 王慧利, 钱秋慧. 微(纳米)塑料和抗生素的相互作用及对鱼类的联合毒性效应研究进展[J]. 生态毒理学报, 2023, 18(5): 56-73. doi: 10.7524/AJE.1673-5897.20221112001
Chen Chen, Song Jie, Yan Jin, Wang Huili, Qian Qiuhui. Advances on Interaction between Micro(nano)plastics and Antibiotics along with Their Joint Toxicity to Fish[J]. Asian journal of ecotoxicology, 2023, 18(5): 56-73. doi: 10.7524/AJE.1673-5897.20221112001
Citation: Chen Chen, Song Jie, Yan Jin, Wang Huili, Qian Qiuhui. Advances on Interaction between Micro(nano)plastics and Antibiotics along with Their Joint Toxicity to Fish[J]. Asian journal of ecotoxicology, 2023, 18(5): 56-73. doi: 10.7524/AJE.1673-5897.20221112001

微(纳米)塑料和抗生素的相互作用及对鱼类的联合毒性效应研究进展

    通讯作者: 钱秋慧,E-mail:qhqian@usts.edu.cn
    作者简介: 陈晨(1998-),女,硕士研究生,研究方向为风险评价与生态安全,E-mail:qc551022@163.com
  • 苏州科技大学环境科学与工程学院,苏州 215000
基金项目:

国家自然科学基金资助项目(32071617);江苏省自然科学基金资助项目(BK20191455);江苏省“双创博士”项目(JSSCBS20210723)

摘要: 中国是微(纳米)塑料和抗生素生产和使用大国,由于过度使用和废水处理设施的限制,大量的抗生素和微(纳米)塑料进入水环境中,对生态环境和人类健康带来潜在威胁。微(纳米)塑料可以作为载体通过多种物理和化学作用吸附抗生素并将其转移到生物体内,对水生生物的肠道、肝脏、神经和生殖系统等造成损伤,并且通过食物链富集和转移,最终威胁到人类的健康。本文系统地综述了微(纳米)塑料和抗生素的相互作用以及对鱼类的危害,对微(纳米)塑料和抗生素的联合作用机制的研究方向进行了展望,以期对微(纳米)塑料和抗生素的环境风险研究提供更多理论参考。

English Abstract

参考文献 (149)

返回顶部

目录

/

返回文章
返回