基于配体络合常数的毒代-毒效动力学(TK-TD)模型预测不同pH下镉和铅在斑马鱼幼鱼体内的积累和毒性

高永飞, 何安. 基于配体络合常数的毒代-毒效动力学(TK-TD)模型预测不同pH下镉和铅在斑马鱼幼鱼体内的积累和毒性[J]. 生态毒理学报, 2023, 18(5): 74-84. doi: 10.7524/AJE.1673-5897.20230303001
引用本文: 高永飞, 何安. 基于配体络合常数的毒代-毒效动力学(TK-TD)模型预测不同pH下镉和铅在斑马鱼幼鱼体内的积累和毒性[J]. 生态毒理学报, 2023, 18(5): 74-84. doi: 10.7524/AJE.1673-5897.20230303001
Gao Yongfei, He An. Prediction of Accumulation and Toxicity of Cadmium and Lead in Zebrafish Larvae at Different pH Using A Toxicokinetic-toxicodynamic (TK-TD) Model Based on Ligand Complex Constant[J]. Asian journal of ecotoxicology, 2023, 18(5): 74-84. doi: 10.7524/AJE.1673-5897.20230303001
Citation: Gao Yongfei, He An. Prediction of Accumulation and Toxicity of Cadmium and Lead in Zebrafish Larvae at Different pH Using A Toxicokinetic-toxicodynamic (TK-TD) Model Based on Ligand Complex Constant[J]. Asian journal of ecotoxicology, 2023, 18(5): 74-84. doi: 10.7524/AJE.1673-5897.20230303001

基于配体络合常数的毒代-毒效动力学(TK-TD)模型预测不同pH下镉和铅在斑马鱼幼鱼体内的积累和毒性

    作者简介: 高永飞(1986-),男,博士,讲师,研究方向为环境毒理学,E-mail:gaoyongfei@tyut.edu.cn
    通讯作者: 高永飞,E-mail:gaoyongfei@tyut.edu.cn; 
  • 基金项目:

    山西省高等学校科技创新项目(2022L067);中央高校基本科研业务费专项资金(226-2023-00077);污染环境修复与生态健康教育部重点实验室开放基金(EREH202204)

  • 中图分类号: X171.5

Prediction of Accumulation and Toxicity of Cadmium and Lead in Zebrafish Larvae at Different pH Using A Toxicokinetic-toxicodynamic (TK-TD) Model Based on Ligand Complex Constant

    Corresponding author: Gao Yongfei, gaoyongfei@tyut.edu.cn
  • Fund Project:
  • 摘要: 复杂多变的水化学条件影响重金属生物有效性和毒性,进一步影响水质基准的制定,需要建立既考虑水化学条件又考虑时间过程的毒代动力学-毒效动力学(toxicokinetics-toxicodynamics, TK-TD)模型去实时地模拟金属的生物蓄积性及产生的毒性。本研究将生物配体模型(biotic ligand model, BLM)中氢离子与配体络合常数(KHBL)引入TK-TD模型,尝试建立预测水环境不同pH条件下金属毒性的理论模型框架,分别预测镉(Cd)和铅(Pb)在染毒溶液pH为4.5、5.5和6.5下在斑马鱼幼鱼体内的积累和急性毒性,并验证该模型框架的有效性和合理性。结果表明,Pb的最大吸收速率(Jmax)比Cd大约3倍。Cd的致死速率(kk)是Pb的4倍。Cd和Pb的安全阈值(threshold)之间相差30倍。染毒溶液中H+浓度增加可显著抑制Cd和Pb在斑马鱼幼鱼体内的累积量。基于KHBL的TK-TD模型可以较好地预测染毒溶液不同pH(pH=4.5、5.5和6.5)条件下,非必需元素Cd和Pb在斑马鱼幼鱼体内的累积量及产生的毒性。
  • 加载中
  • Zhang Y L, Zhang L J, Liang X J, et al. Competitive exchange between divalent metal ions [Cu(Ⅱ), Zn(Ⅱ), Ca(Ⅱ)] and Hg(Ⅱ) bound to thiols and natural organic matter [J]. Journal of Hazardous Materials, 2022, 424(Pt A): 127388
    McDonald S, Holland A, Simpson S L, et al. Metal forms and dynamics in urban stormwater runoff: New insights from diffusive gradients in thin-films (DGT) measurements [J]. Water Research, 2021, 209: 117967
    Wetzel O, Hosseini S, Loza K, et al. Metal-ligand interface and internal structure of ultrasmall silver nanoparticles (2 nm) [J]. The Journal of Physical Chemistry B, 2021, 125(21): 5645-5659
    DeForest D K, Gensemer R W, van Genderen E J, et al. Protectiveness of water quality criteria for copper in western United States waters relative to predicted olfactory responses in juvenile Pacific salmon [J]. Integrated Environmental Assessment and Management, 2011, 7(3): 336-347
    Liu X Y, Tu M C, Wang S P, et al. Research on freshwater water quality criteria, sediment quality criteria and ecological risk assessment of triclosan in China [J]. The Science of the Total Environment, 2022, 816: 151616
    DeForest D K, Ryan A C, Tear L M, et al. Comparison of multiple linear regression and biotic ligand models for predicting acute and chronic zinc toxicity to freshwater organisms [J]. Environmental Toxicology and Chemistry, 2023, 42(2): 393-413
    Gao Y F, Zhu J X, He A. Effect of dissolved organic matter on the bioavailability and toxicity of cadmium in zebrafish larvae: Determination based on toxicokinetic-toxicodynamic processes [J]. Water Research, 2022, 226: 119272
    Chung J, Lee J H, Hwang D S, et al. Comparison of the estimation methods from acute to chronic biotic ligand model-based predicted no-effect concentrations for nickel in freshwater species [J]. Environmental Toxicology and Chemistry, 2023, 42(4): 914-927
    Croteau K, Ryan A C, Santore R, et al. Comparison of multiple linear regression and biotic ligand models to predict the toxicity of nickel to aquatic freshwater organisms [J]. Environmental Toxicology and Chemistry, 2021, 40(8): 2189-2205
    Liang W Q, Xie M W, Tan Q G. Making the biotic ligand model kinetic, easier to develop, and more flexible for deriving water quality criteria [J]. Water Research, 2021, 188: 116548
    Liu Y H, Yao L, Huang Z, et al. Enhanced prediction of internal concentrations of phenolic endocrine disrupting chemicals and their metabolites in fish by a physiologically based toxicokinetic incorporating metabolism (PBTK-MT) model [J]. Environmental Pollution, 2022, 314: 120290
    Nys C, Vlaeminck K, van Sprang P, et al. A generalized bioavailability model (gBAM) for predicting chronic copper toxicity to freshwater fish [J]. Environmental Toxicology and Chemistry, 2020, 39(12): 2424-2436
    Hommen U, Schmitt W, Heine S, et al. How TK-TD and population models for aquatic macrophytes could support the risk assessment for plant protection products [J]. Integrated Environmental Assessment and Management, 2016, 12(1): 82-95
    Gao Y F, Kang L L, Zhang Y, et al. Toxicokinetic and toxicodynamic (TK-TD) modeling to study oxidative stress-dependent toxicity of heavy metals in zebrafish [J]. Chemosphere, 2019, 220: 774-782
    Armitage J M, Hughes L, Sangion A, et al. Development and intercomparison of single and multicompartment physiologically-based toxicokinetic models: Implications for model selection and tiered modeling frameworks [J]. Environment International, 2021, 154: 106557
    Kajiura M. Stochastic estimation of the distribution of soil water repellency on the soil surface in a humid-temperate forest [J]. Hydrological Processes, 2022, 36(5): e14576
    Akimenko M A, Johnson S L, Westerfield M, et al. Differential induction of four msx homeobox genes during fin development and regeneration in zebrafish [J]. Development, 1995, 121(2): 347-357
    Jho E H, An J, Nam K. Extended biotic ligand model for prediction of mixture toxicity of Cd and Pb using single metal toxicity data [J]. Environmental Toxicology and Chemistry, 2011, 30(7): 1697-1703
    Nys C, Janssen C R, Mager E M, et al. Development and validation of a biotic ligand model for predicting chronic toxicity of lead to Ceriodaphnia dubia [J]. Environmental Toxicology and Chemistry, 2014, 33(2): 394-403
    Nys C, Janssen C R, De Schamphelaere K A C. Development and validation of a chronic Pb bioavailability model for the freshwater rotifer Brachionus calyciflorus [J]. Environmental Toxicology and Chemistry, 2016, 35(12): 2977-2986
    Wang X D, Hua L, Ma Y B. A biotic ligand model predicting acute copper toxicity for barley (Hordeum vulgare): Influence of calcium, magnesium, sodium, potassium and pH [J]. Chemosphere, 2012, 89(1): 89-95
    Bawa-Allah K A, Bulama H, Hamzat S A, et al. Predicting metal bioavailability and risk of toxicity in Nigerian surface waters: Are the existing user-friendly bioavailability tools applicable? [J]. Environmental Toxicology and Chemistry, 2022, 41(10): 2537-2547
    Santore R C, Croteau K, Ryan A C, et al. A review of water quality factors that affect nickel bioavailability to aquatic organisms: Refinement of the biotic ligand model for nickel in acute and chronic exposures [J]. Environmental Toxicology and Chemistry, 2021, 40(8): 2121-2134
    Pham H T, Vu L D, Lê N C, et al. Application and validation of a biotic ligand model for calculating acute toxicity of lead to Moina dubia in lakes of Hanoi, Vietnam [J]. Environmental Science and Pollution Research International, 2022, 29(28): 42005-42015
    Clément B, Felix V, Bertrand V. The toxicity of cadmium-copper mixtures on daphnids and microalgae analyzed using the biotic ligand model [J]. Environmental Science and Pollution Research International, 2022, 29(20): 29285-29295
    Mit C, Bado-Nilles A, Daniele G, et al. The toxicokinetics of bisphenol A and its metabolites in fish elucidated by a PBTK model [J]. Aquatic Toxicology, 2022, 247: 106174
    Jager T, Albert C, Preuss T G, et al. General unified threshold model of survival—A toxicokinetic-toxicodynamic framework for ecotoxicology [J]. Environmental Science & Technology, 2011, 45(7): 2529-2540
    Wen Y, Su L M, Qin W C, et al. Investigation of critical body residues and modes of toxic action based on injection and aquatic exposure in fish [J]. Water, Air, & Soil Pollution, 2015, 226(6): 174
  • 加载中
计量
  • 文章访问数:  1324
  • HTML全文浏览数:  1324
  • PDF下载数:  75
  • 施引文献:  0
出版历程
  • 收稿日期:  2023-03-03
高永飞, 何安. 基于配体络合常数的毒代-毒效动力学(TK-TD)模型预测不同pH下镉和铅在斑马鱼幼鱼体内的积累和毒性[J]. 生态毒理学报, 2023, 18(5): 74-84. doi: 10.7524/AJE.1673-5897.20230303001
引用本文: 高永飞, 何安. 基于配体络合常数的毒代-毒效动力学(TK-TD)模型预测不同pH下镉和铅在斑马鱼幼鱼体内的积累和毒性[J]. 生态毒理学报, 2023, 18(5): 74-84. doi: 10.7524/AJE.1673-5897.20230303001
Gao Yongfei, He An. Prediction of Accumulation and Toxicity of Cadmium and Lead in Zebrafish Larvae at Different pH Using A Toxicokinetic-toxicodynamic (TK-TD) Model Based on Ligand Complex Constant[J]. Asian journal of ecotoxicology, 2023, 18(5): 74-84. doi: 10.7524/AJE.1673-5897.20230303001
Citation: Gao Yongfei, He An. Prediction of Accumulation and Toxicity of Cadmium and Lead in Zebrafish Larvae at Different pH Using A Toxicokinetic-toxicodynamic (TK-TD) Model Based on Ligand Complex Constant[J]. Asian journal of ecotoxicology, 2023, 18(5): 74-84. doi: 10.7524/AJE.1673-5897.20230303001

基于配体络合常数的毒代-毒效动力学(TK-TD)模型预测不同pH下镉和铅在斑马鱼幼鱼体内的积累和毒性

    通讯作者: 高永飞,E-mail:gaoyongfei@tyut.edu.cn; 
    作者简介: 高永飞(1986-),男,博士,讲师,研究方向为环境毒理学,E-mail:gaoyongfei@tyut.edu.cn
  • 1. 太原理工大学生态学学院,太原 030024;
  • 2. 污染环境修复与生态健康教育部重点实验室,浙江大学环境与资源学院,杭州 310058;
  • 3. 南开大学环境科学与工程学院,天津 300071
基金项目:

山西省高等学校科技创新项目(2022L067);中央高校基本科研业务费专项资金(226-2023-00077);污染环境修复与生态健康教育部重点实验室开放基金(EREH202204)

摘要: 复杂多变的水化学条件影响重金属生物有效性和毒性,进一步影响水质基准的制定,需要建立既考虑水化学条件又考虑时间过程的毒代动力学-毒效动力学(toxicokinetics-toxicodynamics, TK-TD)模型去实时地模拟金属的生物蓄积性及产生的毒性。本研究将生物配体模型(biotic ligand model, BLM)中氢离子与配体络合常数(KHBL)引入TK-TD模型,尝试建立预测水环境不同pH条件下金属毒性的理论模型框架,分别预测镉(Cd)和铅(Pb)在染毒溶液pH为4.5、5.5和6.5下在斑马鱼幼鱼体内的积累和急性毒性,并验证该模型框架的有效性和合理性。结果表明,Pb的最大吸收速率(Jmax)比Cd大约3倍。Cd的致死速率(kk)是Pb的4倍。Cd和Pb的安全阈值(threshold)之间相差30倍。染毒溶液中H+浓度增加可显著抑制Cd和Pb在斑马鱼幼鱼体内的累积量。基于KHBL的TK-TD模型可以较好地预测染毒溶液不同pH(pH=4.5、5.5和6.5)条件下,非必需元素Cd和Pb在斑马鱼幼鱼体内的累积量及产生的毒性。

English Abstract

参考文献 (28)

返回顶部

目录

/

返回文章
返回