TCDD对胶质母细胞瘤中环氧合酶2基因表达的影响和生物学作用

彭颖蓓, 陈旸升, 刘奕耘, 李云平, 徐丽, 谢群慧, 赵斌. TCDD对胶质母细胞瘤中环氧合酶2基因表达的影响和生物学作用[J]. 生态毒理学报, 2023, 18(4): 241-252. doi: 10.7524/AJE.1673-5897.20230410003
引用本文: 彭颖蓓, 陈旸升, 刘奕耘, 李云平, 徐丽, 谢群慧, 赵斌. TCDD对胶质母细胞瘤中环氧合酶2基因表达的影响和生物学作用[J]. 生态毒理学报, 2023, 18(4): 241-252. doi: 10.7524/AJE.1673-5897.20230410003
Peng Yingbei, Chen Yangsheng, Liu Yiyun, Li Yunping, Xu Li, Xie Qunhui, Zhao Bin. Effect of TCDD on Expression of Cyclooxygenase-2 Gene and Its Biological Role in Glioblastoma[J]. Asian journal of ecotoxicology, 2023, 18(4): 241-252. doi: 10.7524/AJE.1673-5897.20230410003
Citation: Peng Yingbei, Chen Yangsheng, Liu Yiyun, Li Yunping, Xu Li, Xie Qunhui, Zhao Bin. Effect of TCDD on Expression of Cyclooxygenase-2 Gene and Its Biological Role in Glioblastoma[J]. Asian journal of ecotoxicology, 2023, 18(4): 241-252. doi: 10.7524/AJE.1673-5897.20230410003

TCDD对胶质母细胞瘤中环氧合酶2基因表达的影响和生物学作用

    作者简介: 彭颖蓓(1998-),女,硕士研究生,研究方向为环境毒理学,E-mail:ybpeng_st@rcees.ac.cn
    通讯作者: 陈旸升,E-mail:yschen@rcees.ac.cn; 
  • 基金项目:

    国家自然科学基金青年项目(22206202);国家自然科学基金重点项目(21836004);国家重点研发计划项目(2018YFA0901100)

  • 中图分类号: X171.5

Effect of TCDD on Expression of Cyclooxygenase-2 Gene and Its Biological Role in Glioblastoma

    Corresponding author: Chen Yangsheng, yschen@rcees.ac.cn
  • Fund Project:
  • 摘要: 胶质母细胞瘤(glioblastoma, GBM)是最常见的恶性脑肿瘤,其复发率和死亡率居高不下。环氧合酶2(cyclooxygenase 2, COX2)在正常生理条件下几乎不表达,但持续高表达的COX2常见于各种恶性肿瘤和癌前状态,并参与诸多肿瘤发生发展过程,如血管生成、免疫抑制、迁移侵袭以及化疗抵抗等。二噁英类污染物作为一级致癌物,但目前有关二噁英对GBM发展的研究十分有限。本研究旨在探究二噁英暴露影响GBM发展的分子机制。以COX2为标志物,明确二噁英类污染物中毒性最强的2,3,7,8-二苯并-p-二噁英(2,3,7,8-tetrachlorodibenzo-p-dioxin, TCDD)对胶质母细胞瘤U87细胞中COX2基因表达的影响以及芳香烃受体(aryl hydrocarbon receptor, AhR)在之中的作用,并借助转录组测序进一步探究TCDD暴露后U87细胞中COX2参与的生物过程。实验结果显示,TCDD以AhR依赖的方式上调U87细胞中COX2基因表达并具有时间-剂量依赖效应。转录组分析结果表明,TCDD暴露显著改变了U87细胞中细胞黏附、胞外刺激检测以及膜转运等相关通路的基因表达,COX2可能通过影响脂质形成和维持炎症反应参与U87的改变。进一步的互作分析发现COX2基因与IL1B和CYP2E1相关。本研究补充了TCDD在U87细胞中上调COX2表达的可能机制和影响,并为今后对二噁英促癌作用的研究提供参考。
  • 加载中
  • Rodríguez-Camacho A, Flores-Vázquez J G, Moscardini-Martelli J, et al. Glioblastoma treatment:State-of-the-art and future perspectives[J]. International Journal of Molecular Sciences, 2022, 23(13):7207
    Zhai L J, Lauing K L, Chang A L, et al. The role of IDO in brain tumor immunotherapy[J]. Journal of Neuro-Oncology, 2015, 123(3):395-403
    Ladomersky E, Scholtens D M, Kocherginsky M, et al. The coincidence between increasing age, immunosuppression, and the incidence of patients with glioblastoma[J]. Frontiers in Pharmacology, 2019, 10:200
    Rios A, Vargas-Robles H, Gámez-Méndez A M, et al. Cyclooxygenase-2 and kidney failure[J]. Prostaglandins & Other Lipid Mediators, 2012, 98(3-4):86-90
    Cook P J, Thomas R, Kingsley P J, et al. Cox-2-derived PGE2 induces Id1-dependent radiation resistance and self-renewal in experimental glioblastoma[J]. Neuro-Oncology, 2016, 18(10):1379-1389
    Lyons T R, O'Brien J, Borges V F, et al. Postpartum mammary gland involution drives progression of ductal carcinoma in situ through collagen and COX-2[J]. Nature Medicine, 2011, 17(9):1109-1115
    Manchana T, Triratanachat S, Sirisabya N, et al. Prevalence and prognostic significance of COX-2 expression in stage IB cervical cancer[J]. Gynecologic Oncology, 2006, 100(3):556-560
    Gasparini G, Longo R, Sarmiento R, et al. Inhibitors of cyclo-oxygenase 2:A new class of anticancer agents?[J]. The Lancet Oncology, 2003, 4(10):605-615
    Alique M, Calleros L, Luengo A, et al. Changes in extracellular matrix composition regulate cyclooxygenase-2 expression in human mesangial cells[J]. American Journal of Physiology Cell Physiology, 2011, 300(4):C907-C918
    Privorotskiy A, Bhavsar S P, Lang F F, et al. Impact of anesthesia and analgesia techniques on glioblastoma progression. A narrative review[J]. Neuro-Oncology Advances, 2020, 2(1):vdaa123
    Fernandez-Salguero P M, Hilbert D M, Rudikoff S, et al. Aryl-hydrocarbon receptor-deficient mice are resistant to 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced toxicity[J]. Toxicology and Applied Pharmacology, 1996, 140(1):173-179
    Shivanna B, Chu C, Moorthy B. The aryl hydrocarbon receptor (AHR):A novel therapeutic target for pulmonary diseases?[J]. International Journal of Molecular Sciences, 2022, 23(3):1516
    Ochs K, Ott M, Rauschenbach K J, et al. Tryptophan-2,3-dioxygenase is regulated by prostaglandin E2 in malignant glioma via a positive signaling loop involving prostaglandin E receptor-4[J]. Journal of Neurochemistry, 2016, 136(6):1142-1154
    Zhu P Y, Yu H Y, Zhou K, et al. 3,3'-diindolylmethane modulates aryl hydrocarbon receptor of esophageal squamous cell carcinoma to reverse epithelial-mesenchymal transition through repressing RhoA/ROCK1-mediated COX2/PGE2 pathway[J]. Journal of Experimental & Clinical Cancer Research, 2020, 39(1):113
    Hanieh H, Ibrahim H M, Mohammed M, et al. Activation of aryl hydrocarbon receptor signaling by gallic acid suppresses progression of human breast cancer in vitro and in vivo[J]. Phytomedicine:International Journal of Phytotherapy and Phytopharmacology, 2022, 96:153817
    Enan E, El-Sabeawy F, Scott M, et al. Alterations in the growth factor signal transduction pathways and modulators of the cell cycle in endocervical cells from macaques exposed to TCDD[J]. Toxicology and Applied Pharmacology, 1998, 151(2):283-293
    Warner M, Mocarelli P, Samuels S, et al. Dioxin exposure and cancer risk in the Seveso Women's Health Study[J]. Environmental Health Perspectives, 2011, 119(12):1700-1705
    Bui L C, Tomkiewicz C, Pierre S, et al. Regulation of aquaporin 3 expression by the AhR pathway is critical to cell migration[J]. Toxicological Sciences:An Official Journal of the Society of Toxicology, 2016, 149(1):158-166
    Liu Y Y, Chen Y S, Sha R, et al. A new insight into the role of aryl hydrocarbon receptor (AhR) in the migration of glioblastoma by AhR-IL24 axis regulation[J]. Environment International, 2021, 154:106658
    Lee W, Park S, Kang S K, et al. Cancer risk in Vietnam war veterans from the Korean Vietnam war veterans' health study cohort[J]. Frontiers in Oncology, 2023, 13:1048820
    Schug T T, Janesick A, Blumberg B, et al. Endocrine disrupting chemicals and disease susceptibility[J]. The Journal of Steroid Biochemistry and Molecular Biology, 2011, 127(3-5):204-215
    Mesnil M, Defamie N, Naus C, et al. Brain disorders and chemical pollutants:A gap junction link?[J]. Biomolecules, 2020, 11(1):51
    Juricek L, Coumoul X. The aryl hydrocarbon receptor and the nervous system[J]. International Journal of Molecular Sciences, 2018, 19(9):2504
    Gabriely G, Wheeler M A, Takenaka M C, et al. Role of AHR and HIF-1α in glioblastoma metabolism[J]. Trends in Endocrinology and Metabolism, 2017, 28(6):428-436
    Opitz C A, Litzenburger U M, Sahm F, et al. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor[J]. Nature, 2011, 478(7368):197-203
    Wölfle D, Marotzki S, Dartsch D, et al. Induction of cyclooxygenase expression and enhancement of malignant cell transformation by 2,3,7,8-tetrachlorodibenzo-p-dioxin[J]. Carcinogenesis, 2000, 21(1):15-21
    Li Y, Wang K, Zou Q Y, et al. A possible role of aryl hydrocarbon receptor in spontaneous preterm birth[J]. Medical Hypotheses, 2015, 84(5):494-497
    Casado F L, Singh K P, Gasiewicz T A. Aryl hydrocarbon receptor activation in hematopoietic stem/progenitor cells alters cell function and pathway-specific gene modulation reflecting changes in cellular trafficking and migration[J]. Molecular Pharmacology, 2011, 80(4):673-682
    Ho I C, Lee T C. Arsenite pretreatment attenuates benzo[a]pyrene cytotoxicity in a human lung adenocarcinoma cell line by decreasing cyclooxygenase-2 levels[J]. Journal of Toxicology and Environmental Health Part A, 2002, 65(3-4):245-263
    Rebe C, Ghiringhelli F. Interleukin-1beta and cancer[J]. Cancers (Basel), 2020, 12(7):1-31
    Anzenbacher P, Anzenbacherová E. Cytochromes P450 and metabolism of xenobiotics[J]. Cellular and Molecular Life Sciences, 2001, 58(5):737-747
    Pollenz R S. The mechanism of AH receptor protein down-regulation (degradation) and its impact on AH receptor-mediated gene regulation[J]. Chemico-Biological Interactions, 2002, 141(1-2):41-61
    Lim T X, Ahamed M, Reutens D C. The aryl hydrocarbon receptor:A diagnostic and therapeutic target in glioma[J]. Drug Discovery Today, 2022, 27(2):422-435
    Ye Y, Wang X P, Jeschke U, et al. COX-2-PGE2-EPs in gynecological cancers[J]. Archives of Gynecology and Obstetrics, 2020, 301(6):1365-1375
    Eberstål S, Badn W, Fritzell S, et al. Inhibition of cyclooxygenase-2 enhances immunotherapy against experimental brain tumors[J]. Cancer Immunology, Immunotherapy, 2012, 61(8):1191-1199
    Basudhar D, Bharadwaj G, Somasundaram V, et al. Understanding the tumour micro-environment communication network from an NOS2/COX2 perspective[J]. British Journal of Pharmacology, 2019, 176(2):155-176
    Kang K B, Zhu C J, Yong S K, et al. Enhanced sensitivity of celecoxib in human glioblastoma cells:Induction of DNA damage leading to p53-dependent G1 cell cycle arrest and autophagy[J]. Molecular Cancer, 2009, 8:66
    Tu S P, Bhagat G, Cui G L, et al. Overexpression of interleukin-1beta induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice[J]. Cancer Cell, 2008, 14(5):408-419
    Trafalis D T, Panteli E S, Grivas A, et al. CYP2E1 and risk of chemically mediated cancers[J]. Expert Opinion on Drug Metabolism & Toxicology, 2010, 6(3):307-319
  • 加载中
计量
  • 文章访问数:  1275
  • HTML全文浏览数:  1275
  • PDF下载数:  107
  • 施引文献:  0
出版历程
  • 收稿日期:  2023-04-10
彭颖蓓, 陈旸升, 刘奕耘, 李云平, 徐丽, 谢群慧, 赵斌. TCDD对胶质母细胞瘤中环氧合酶2基因表达的影响和生物学作用[J]. 生态毒理学报, 2023, 18(4): 241-252. doi: 10.7524/AJE.1673-5897.20230410003
引用本文: 彭颖蓓, 陈旸升, 刘奕耘, 李云平, 徐丽, 谢群慧, 赵斌. TCDD对胶质母细胞瘤中环氧合酶2基因表达的影响和生物学作用[J]. 生态毒理学报, 2023, 18(4): 241-252. doi: 10.7524/AJE.1673-5897.20230410003
Peng Yingbei, Chen Yangsheng, Liu Yiyun, Li Yunping, Xu Li, Xie Qunhui, Zhao Bin. Effect of TCDD on Expression of Cyclooxygenase-2 Gene and Its Biological Role in Glioblastoma[J]. Asian journal of ecotoxicology, 2023, 18(4): 241-252. doi: 10.7524/AJE.1673-5897.20230410003
Citation: Peng Yingbei, Chen Yangsheng, Liu Yiyun, Li Yunping, Xu Li, Xie Qunhui, Zhao Bin. Effect of TCDD on Expression of Cyclooxygenase-2 Gene and Its Biological Role in Glioblastoma[J]. Asian journal of ecotoxicology, 2023, 18(4): 241-252. doi: 10.7524/AJE.1673-5897.20230410003

TCDD对胶质母细胞瘤中环氧合酶2基因表达的影响和生物学作用

    通讯作者: 陈旸升,E-mail:yschen@rcees.ac.cn; 
    作者简介: 彭颖蓓(1998-),女,硕士研究生,研究方向为环境毒理学,E-mail:ybpeng_st@rcees.ac.cn
  • 1. 中国科学院生态环境研究中心, 环境化学与生态毒理学国家重点实验室, 北京 100085;
  • 2. 中国科学院大学资源与环境学院, 北京 100049;
  • 3. 重庆医科大学公共卫生学院, 重庆 400030;
  • 4. 国科大杭州高等研究院环境学院, 杭州 310024
基金项目:

国家自然科学基金青年项目(22206202);国家自然科学基金重点项目(21836004);国家重点研发计划项目(2018YFA0901100)

摘要: 胶质母细胞瘤(glioblastoma, GBM)是最常见的恶性脑肿瘤,其复发率和死亡率居高不下。环氧合酶2(cyclooxygenase 2, COX2)在正常生理条件下几乎不表达,但持续高表达的COX2常见于各种恶性肿瘤和癌前状态,并参与诸多肿瘤发生发展过程,如血管生成、免疫抑制、迁移侵袭以及化疗抵抗等。二噁英类污染物作为一级致癌物,但目前有关二噁英对GBM发展的研究十分有限。本研究旨在探究二噁英暴露影响GBM发展的分子机制。以COX2为标志物,明确二噁英类污染物中毒性最强的2,3,7,8-二苯并-p-二噁英(2,3,7,8-tetrachlorodibenzo-p-dioxin, TCDD)对胶质母细胞瘤U87细胞中COX2基因表达的影响以及芳香烃受体(aryl hydrocarbon receptor, AhR)在之中的作用,并借助转录组测序进一步探究TCDD暴露后U87细胞中COX2参与的生物过程。实验结果显示,TCDD以AhR依赖的方式上调U87细胞中COX2基因表达并具有时间-剂量依赖效应。转录组分析结果表明,TCDD暴露显著改变了U87细胞中细胞黏附、胞外刺激检测以及膜转运等相关通路的基因表达,COX2可能通过影响脂质形成和维持炎症反应参与U87的改变。进一步的互作分析发现COX2基因与IL1B和CYP2E1相关。本研究补充了TCDD在U87细胞中上调COX2表达的可能机制和影响,并为今后对二噁英促癌作用的研究提供参考。

English Abstract

参考文献 (39)

返回顶部

目录

/

返回文章
返回