多光谱法研究啶虫脒与牛血清白蛋白的相互作用
Study on Interaction Between Acetamiprid and Bovine Serum Albumin by Multispectral Analysis
-
摘要: 啶虫脒(acetamiprid, ACE)是一种广泛使用的新烟碱类杀虫剂,其在环境介质中的残留积累,对哺乳动物产生神经毒性作用,成为一种备受关注的环境污染物。为清晰认识啶虫咪在生物体中的作用过程,本研究利用荧光、紫外可见光(UV-vis)、圆二色光谱法及分子对接技术,探究了ACE和牛血清白蛋白(bovine serum albumin, BSA)的相互作用机制。结果表明:在不同温度下,BSA和ACE的荧光猝灭机制主要为静态猝灭,能够形成基态复合物,且存在至少1个结合位点;热力学研究表明,二者结合过程中的吉布斯自由能(ΔG)为负值,说明ACE与BSA的结合是一个自发过程;焓(ΔH)和熵(ΔS)为负值,表明ACE与BSA相互作用的驱动力是氢键或范德华力;通过荧光光谱法和UV-vis光谱法算出结合距离小于7 nm,表明ACE与BSA之间能发生非辐射能量转移;同步荧光光谱显示ACE对BSA的构象产生影响,主要是对其中酪氨酸残基的影响更为显著;圆二色光谱结果显示ACE使BSA的构象发生一定变化,增加了α-螺旋结构的稳定性和蛋白整体的有序性,使蛋白质的微环境比其天然状态更具疏水性。综上所述,ACE与BSA在环境介质和生物体中能够自发结合,形成稳定的基态复合物,且结合后会影响BSA的结构。本研究为探究ACE在生物体中的致毒过程提供了基础数据。Abstract: Acetamiprid (ACE), a prevalently used neonicotinoid insecticide, has been identified as a notable environmental contaminant due to its neurotoxic accumulation in ecological systems, impacting mammalian health. This research delves into the intricate interaction mechanisms between ACE and bovine serum albumin (BSA), employing a suite of multispectral methodologies, including fluorescence, ultraviolet-visible (UV-vis) spectroscopy, and circular dichroism. The study unveils that the interaction between BSA and ACE, across varying temperature ranges, is predominantly characterized by static fluorescence quenching. This mechanism facilitates the formation of a ground state complex, featuring at least one specific binding site. Thermodynamic analysis reveals a spontaneous nature of the ACE-BSA interaction, as evidenced by negative Gibbs free energy (ΔG). Furthermore, the interaction is thermodynamically driven by hydrogen bonding or van der Waals forces, inferred from the negative values of enthalpy (ΔH) and entropy (ΔS). The binding proximity, determined to be less than 7 nm through fluorescence and UV-vis spectroscopic measurements, suggests a potential non-radiative energy transfer between ACE and BSA. Notably, synchronous fluorescence spectroscopy indicates a significant conformational impact of ACE on BSA, with a pronounced effect on the tyrosine residues. Circular dichroism spectroscopy results corroborate these findings, revealing ACE-induced alterations in BSA's conformation, notably enhancing the stability of the α-helix structure and the overall protein organization, thus rendering the protein's microenvironment more hydrophobic compared to its native state. Collectively, these findings demonstrate the spontaneous and stable complex formation between ACE and BSA in environmental and biological matrices, with consequential structural modifications to BSA. This study lays the groundwork for further exploration into ACE's toxicological mechanisms within biological systems.
-
-
Licht K, Kosar V, Tomašić V, et al. Removal of the neonicotinoid insecticide acetamiprid from wastewater using heterogeneous photocatalysis[J]. Environmental Technology, 2023, 44(8): 1125-1134 Zhang C, Yi X H, Chen C, et al. Contamination of neonicotinoid insecticides in soil-water-sediment systems of the urban and rural areas in a rapidly developing region: Guangzhou, South China[J]. Environment International, 2020, 139: 105719 Jayaprakash R, Elangovan A, Nagaraju P. Fipronil and acetamiprid poisoning: New perils[J]. Indian Journal of Critical Care Medicine: Peer-Reviewed, Official Publication of Indian Society of Critical Care Medicine, 2022, 26(4): 526-527 You Y, Zeng Z H, Zheng J, et al. The toxicity response of Coccinella septempunctata L. (Coleoptera: Coccinellidae) after exposure to sublethal concentrations of acetamiprid[J]. Agriculture, 2022, 12(10): 1642 Shamsi M, Soodi M, Shahbazi S, et al. Effect of acetamiprid on spatial memory and hippocampal glutamatergic system[J]. Environmental Science and Pollution Research International, 2021, 28(22): 27933-27941 Toghan R, Amin Y A, Ali R A, et al. Protective effects of folic acid against reproductive, hematological, hepatic, and renal toxicity induced by acetamiprid in male Albino rats[J]. Toxicology, 2022, 469: 153115 Pirasath S, Senthuran R, Athirayan C, et al. Acute poisoning with acetamiprid: A case report[J]. Journal of Medical Case Reports, 2021, 15(1): 419 Imamura T, Yanagawa Y, Nishikawa K, et al. Two cases of acute poisoning with acetamiprid in humans[J]. Clinical Toxicology, 2010, 48(8): 851-853 于湛, 张微, 吴迪, 等. 柚皮素、柚皮苷与牛血清白蛋白相互作用的机理分析[J]. 沈阳师范大学学报(自然科学版), 2023, 41(2): 108-113 Yu Z, Zhang W, Wu D, et al. Mechanistic analysis the binding interactions of naringenin and naringin with bovine serum albumin[J]. Journal of Shenyang Normal University (Natural Science Edition), 2023, 41(2): 108-113(in Chinese) Nair M S. Spectroscopic studies on the interaction of serum albumins with plant derived natural molecules[J]. Applied Spectroscopy Reviews, 2018, 53(8): 636-666 吴明火, 李尚春, 王丽梅, 等. 邻苯二甲酸二环己酯与牛血清白蛋白相互作用研究[J]. 分析科学学报, 2022, 38(3): 321-326 Wu M H, Li S C, Wang L M, et al. Study on the interaction between dicyclohexyl phthalate and bovine serum albumin[J]. Journal of Analytical Science, 2022, 38(3): 321-326(in Chinese)
Macii F, Biver T. Spectrofluorimetric analysis of the binding of a target molecule to serum albumin: Tricky aspects and tips[J]. Journal of Inorganic Biochemistry, 2021, 216: 111305 Arabpour Shiraz Z, Sohrabi N, Eslami Moghadam M, et al. Molecular docking and spectroscopic study of bovine serum albumin interaction with new anticancer Pt complex with isopentyl dithiocarbamate ligand[J]. Nucleosides, Nucleotides & Nucleic Acids, 2024, 43(1): 65-85 Liang W J, Zhang Z X, Zhu Q Y, et al. Molecular interactions between bovine serum albumin (BSA) and trihalophenol: Insights from spectroscopic, calorimetric and molecular modeling studies[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2023, 287: 122054 Yang Y D, Tian R, Lu N H. Binding of serum albumin to perfluorooctanoic acid reduced cytotoxicity[J]. Science of the Total Environment, 2023, 876: 162738 王军, 王周利, 程晶晶. 多光谱法结合分子对接研究柠檬黄与牛血清白蛋白的相互作用[J]. 光谱学与光谱分析, 2022, 42(3): 904-909 Wang J, Wang Z L, Cheng J J. Interaction between tartrazine and bovine serum albumin using multispectral method and molecular docking[J]. Spectroscopy and Spectral Analysis, 2022, 42(3): 904-909(in Chinese)
李庆舒, 程琳, 邓红, 等. 三种多酚与牛血清蛋白相互作用的初步研究[J]. 食品与发酵工业, 2020, 46(3): 180-187 Li Q S, Cheng L, Deng H, et al. Study of interactions between three polyphenols and bovine serum albumin[J]. Food and Fermentation Industries, 2020, 46(3): 180-187(in Chinese)
Xiao Q, Tu X C, Cao H S, et al. Interaction thermodynamics investigation of bovine serum albumin with black phosphorus quantum dots via spectroscopic and molecular simulation techniques[J]. Journal of Molecular Structure, 2023, 1276: 134725 Hu Z Y, Wang W J, Hu L, et al. Comprehending the intermolecular interaction of dacomitinib with bovine serum albumin: Experimental and theoretical approaches[J]. Journal of Biomolecular Structure & Dynamics, 2023, 1: 1-14 Zhang R J, Kou S B, Hu L, et al. Exploring binding interaction of baricitinib with bovine serum albumin (BSA): Multi-spectroscopic approaches combined with theoretical calculation[J]. Journal of Molecular Liquids, 2022, 354: 118831 Zhang H X, Mei P, Yang X X. Optical, structural and thermodynamic properties of the interaction between tradimefon and serum albumin[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2009, 72(3): 621-626 李金芝. 丁香酚和α藏花素与蛋白相互作用的研究[D]. 天津: 天津科技大学, 2022: 5-6 Li J Z. The interaction between eugenol and α crocin and protein[D]. Tianjin: Tianjin University of Science & Technology, 2022: 5 -6(in Chinese)
Bai J, Sun X K, Geng B, et al. Interaction mechanism of Cu+/Cu2+ on bovine serum albumin: Vitro simulation experiments by spectroscopic methods[J]. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 2023, 293: 122491 McPhie P. Principles of Fluorescence Spectroscopy[M]. Boston, MA: Springer US, 2006: 278-348 任思瑞, 李道亮, 周鸿媛, 等. 二苯-α-吡喃酮类链格孢霉毒素和人血清白蛋白的相互作用及机理探究[J]. 核农学报, 2022, 36(10): 2019-2026 Ren S R, Li D L, Zhou H Y, et al. Investigation on molecular interaction between of alternariol monomethyl ether and alternariol with human serum albumin[J]. Journal of Nuclear Agricultural Sciences, 2022, 36(10): 2019-2026(in Chinese)
吕艳芳, 张紫卿, 梁倩倩, 等. 光谱法和分子对接研究高儿茶酚与牛血清白蛋白的相互作用[J]. 中国食品学报, 2022, 22(12): 72-81 Lv Y F, Zhang Z Q, Liang Q Q, et al. Studies on the interaction between homocatechol and bovine serum albumin using spectroscopic and molecular docking[J]. Journal of Chinese Institute of Food Science and Technology, 2022, 22(12): 72-81(in Chinese)
Zhang G W, Ma Y D, Wang L, et al. Multispectroscopic studies on the interaction of maltol, a food additive, with bovine serum albumin[J]. Food Chemistry, 2012, 133(2): 264-270 Naveenraj S, Anandan S. Binding of serum albumins with bioactive substances: Nanoparticles to drugs[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2013, 14: 53-71 梁雯洁, 蚁嘉颖, 张振轩, 等. 溴代苯酚与牛血清白蛋白的相互作用研究[J]. 化学试剂, 2023, 45(1): 37-45 Liang W J, Yi J Y, Zhang Z X, et al. Study on the binding interactions between bromophenols and bovine serum albumin[J]. Chemical Reagents, 2023, 45(1): 37-45(in Chinese)
Ross P D, Subramanian S. Thermodynamics of protein association reactions: Forces contributing to stability[J]. Biochemistry, 1981, 20(11): 3096-3102 Lv Y F, Liang Q Q, Li Y, et al. Study of the binding mechanism between hydroxytyrosol and bovine serum albumin using multispectral and molecular docking[J]. Food Hydrocolloids, 2022, 122: 107072 Huang F W, Chen C. Insights into the interaction between the kusaginin and bovine serum albumin: Multi-spectroscopic techniques and computational approaches[J]. Journal of Molecular Recognition, 2023, 36(3): e3003 Gu J L, Zheng S Y, Huang X Y, et al. Exploring the mode of binding between butylated hydroxyanisole with bovine serum albumin: Multispectroscopic and molecular docking study[J]. Food Chemistry, 2021, 357: 129771 邹淑君, 许树军, 董黎明, 等. 光谱法比较木犀草素及槲皮素与牛血清白蛋白相互作用[J]. 光谱实验室, 2013, 30(6): 2870-2877 Zou S J, Xu S J, Dong L M, et al. Comparison of the interaction of luteolin and quercetin with bovine serum albumin by spectroscopic methods[J]. Chinese Journal of Spectroscopy Laboratory, 2013, 30(6): 2870-2877(in Chinese)
吴克刚, 周华丽, 柴向华, 等. 光谱法研究芳樟醇与牛血清白蛋白的相互作用[J]. 现代食品科技, 2015, 31(12): 141-148 Wu K G, Zhou H L, Chai X H, et al. Multi-spectroscopic studies of the interaction of linalool with bovine serum albumin[J]. Modern Food Science and Technology, 2015, 31(12): 141-148(in Chinese)
Zhou H Y, Shi X, Fan Y J, et al. Interaction of Prussian blue nanoparticles with bovine serum albumin: A multi-spectroscopic approach[J]. Journal of Biomolecular Structure & Dynamics, 2018, 36(1): 254-261 周家羽, 周光明, 陈蓉, 等. SERS结合光谱法研究正壬酸香草酰胺与人血清白蛋白的相互作用[J]. 分析测试学报, 2022, 41(3): 361-367 Zhou J Y, Zhou G M, Chen R, et al. Spectroscopic studies on interactions between human serum albumin and nonivamide[J]. Journal of Instrumental Analysis, 2022, 41(3): 361-367(in Chinese)
Qi X, Xu D X, Zhu J J, et al. Studying the interaction mechanism between bovine serum albumin and lutein dipalmitate: Multi-spectroscopic and molecular docking techniques[J]. Food Hydrocolloids, 2021, 113: 106513 Su X, Wang L, Xu Y F, et al. Study on the binding mechanism of thiamethoxam with three model proteins: Spectroscopic studies and theoretical simulations[J]. Ecotoxicology and Environmental Safety, 2021, 207: 111280 程靖. 农药与牛血清白蛋白相互作用的研究[D]. 武汉: 武汉大学, 2009: 12-14 Cheng J. Study on the interaction between pesticides and bovine serum albumin[D]. Wuhan: Wuhan University, 2009: 12 -14(in Chinese)
褚千千, 艾健, 方佳琪, 等. 牛血清蛋白与邻苯二酚、间苯三酚相互作用的机理探究[J]. 食品与发酵工业, 2020, 46(11): 61-68 Chu Q Q, Ai J, Fang J Q, et al. Study on the mechanism of interactions between bovine serum albumin with o-dihydroxybenzene and m-trihydroxybenzene[J]. Food and Fermentation Industries, 2020, 46(11): 61-68(in Chinese)
Ansari A. Decoding the binding interaction of steroidal pyridines with bovine serum albumin using spectroscopic and molecular docking techniques[J]. Steroids, 2023, 192: 109156 刘丽莉, 于影, 苏克楠, 等. 植物多酚-牛血清白蛋白相互作用及对蛋白质结构的影响[J]. 农业工程学报, 2023, 39(13): 290-298 Liu L L, Yu Y, Su K N, et al. Polyphenol-bovine serum albumin interaction and its influence on protein structure[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(13): 290-298(in Chinese)
王毅, 那日松, 朱美庆, 等. 二酰胺类杀虫剂与牛血清白蛋白相互作用研究[J]. 广东化工, 2016, 43(15): 23-25 Wang Y, Na R S, Zhu M Q, et al. Study on the interaction between diamide insecticides and bovine serum albumin[J]. Guangdong Chemical Industry, 2016, 43(15): 23-25(in Chinese)
王雪荣, 韩晓锋, 贾风燕, 等. 有机磷农药与牛血清白蛋白的相互作用及分析应用[J]. 烟台大学学报(自然科学与工程版), 2011, 24(3): 194-200 Wang X R, Han X F, Jia F Y, et al. Interactions between organophosphorus pesticides and bovine serum albumin and application[J]. Journal of Yantai University (Natural Science and Engineering Edition), 2011, 24(3): 194-200(in Chinese) Farasati Far B, Asadi S, Naimi-Jamal M R, et al. Insights into the interaction of azinphos-methyl with bovine serum albumin: Experimental and molecular docking studies[J]. Journal of Biomolecular Structure & Dynamics, 2022, 40(22): 11863-11873 吴汉东, 史雪岩, 梁沛. 顺式氰戊菊酯与牛血清白蛋白相互作用的荧光光谱研究[J]. 光谱实验室, 2008, 25(4): 694-699 Wu H D, Shi X Y, Liang P. Study of the interaction between esfenvalerate and bovine serum albumin by fluorescence spectroscopy[J]. Chinese Journal of Spectroscopy Laboratory, 2008, 25(4): 694-699(in Chinese)
Nagtilak M, Pawar S, Labade S, et al. Study of the binding interaction between bovine serum albumin and carbofuran insecticide: Multispectroscopic and molecular docking techniques[J]. Journal of Molecular Structure, 2022, 1249: 131597 刘彬. 低频超声激活光敏化合物损伤蛋白质分子的研究[D]. 沈阳: 东北大学, 2011: 59-61 Liu B. Study on the damage of protein molecules by photosensitive compounds activated by low frequency ultrasound[D]. Shenyang: Northeastern University, 2011: 59 -61(in Chinese)
Mishra S, Zhang W P, Lin Z Q, et al. Carbofuran toxicity and its microbial degradation in contaminated environments[J]. Chemosphere, 2020, 259: 127419 Guo W, Yang Y, Zhou X, et al. Insight into the toxic effects, bioconcentration and oxidative stress of acetamiprid on Rana nigromaculata tadpoles[J]. Chemosphere, 2022, 305: 135380 Westgate P J, Park C. Evaluation of proteins and organic nitrogen in wastewater treatment effluents[J]. Environmental Science & Technology, 2010, 44(14): 5352-5357 Abdelaziz M A, Shaldam M, El-Domany R A, et al. Multi-spectroscopic, thermodynamic and molecular dynamic simulation studies for investigation of interaction of dapagliflozin with bovine serum albumin[J]. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 2022, 264: 120298 Katrahalli U, Shanker G, Pal D, et al. Molecular spectroscopic and docking analysis of the interaction of fluorescent thiadicarbocyanine dye with biomolecule bovine serum albumin[J]. Journal of Biomolecular Structure & Dynamics, 2023, 41(20): 10702-10712 -

计量
- 文章访问数: 898
- HTML全文浏览数: 898
- PDF下载数: 197
- 施引文献: 0