多光谱法研究啶虫脒与牛血清白蛋白的相互作用

李嘉兴, 李坤, 刘世杰, 曾浩宇, 杨娟. 多光谱法研究啶虫脒与牛血清白蛋白的相互作用[J]. 生态毒理学报, 2024, 19(1): 207-222. doi: 10.7524/AJE.1673-5897.20230925002
引用本文: 李嘉兴, 李坤, 刘世杰, 曾浩宇, 杨娟. 多光谱法研究啶虫脒与牛血清白蛋白的相互作用[J]. 生态毒理学报, 2024, 19(1): 207-222. doi: 10.7524/AJE.1673-5897.20230925002
Li Jiaxing, Li Kun, Liu Shijie, Zeng Haoyu, Yang Juan. Study on Interaction Between Acetamiprid and Bovine Serum Albumin by Multispectral Analysis[J]. Asian journal of ecotoxicology, 2024, 19(1): 207-222. doi: 10.7524/AJE.1673-5897.20230925002
Citation: Li Jiaxing, Li Kun, Liu Shijie, Zeng Haoyu, Yang Juan. Study on Interaction Between Acetamiprid and Bovine Serum Albumin by Multispectral Analysis[J]. Asian journal of ecotoxicology, 2024, 19(1): 207-222. doi: 10.7524/AJE.1673-5897.20230925002

多光谱法研究啶虫脒与牛血清白蛋白的相互作用

    作者简介: 李嘉兴(1997-),男,硕士研究生,研究方向为生态毒理学,E-mail:ljx970302@126.com
    通讯作者: 杨娟,E-mail: kittyyangjuan@swfu.edu.cn
  • 基金项目:

    云南省应用基础研究计划面上项目(202101AT070046);国家自然科学基金资助项目(22166033);云南省科技厅重点研发计划项目(202203AC100001);云南省农业联合面上项目(202101BD070001-112)

  • 中图分类号: X171.5

Study on Interaction Between Acetamiprid and Bovine Serum Albumin by Multispectral Analysis

    Corresponding author: Yang Juan, kittyyangjuan@swfu.edu.cn
  • Fund Project:
  • 摘要: 啶虫脒(acetamiprid, ACE)是一种广泛使用的新烟碱类杀虫剂,其在环境介质中的残留积累,对哺乳动物产生神经毒性作用,成为一种备受关注的环境污染物。为清晰认识啶虫咪在生物体中的作用过程,本研究利用荧光、紫外可见光(UV-vis)、圆二色光谱法及分子对接技术,探究了ACE和牛血清白蛋白(bovine serum albumin, BSA)的相互作用机制。结果表明:在不同温度下,BSA和ACE的荧光猝灭机制主要为静态猝灭,能够形成基态复合物,且存在至少1个结合位点;热力学研究表明,二者结合过程中的吉布斯自由能(ΔG)为负值,说明ACE与BSA的结合是一个自发过程;焓(ΔH)和熵(ΔS)为负值,表明ACE与BSA相互作用的驱动力是氢键或范德华力;通过荧光光谱法和UV-vis光谱法算出结合距离小于7 nm,表明ACE与BSA之间能发生非辐射能量转移;同步荧光光谱显示ACE对BSA的构象产生影响,主要是对其中酪氨酸残基的影响更为显著;圆二色光谱结果显示ACE使BSA的构象发生一定变化,增加了α-螺旋结构的稳定性和蛋白整体的有序性,使蛋白质的微环境比其天然状态更具疏水性。综上所述,ACE与BSA在环境介质和生物体中能够自发结合,形成稳定的基态复合物,且结合后会影响BSA的结构。本研究为探究ACE在生物体中的致毒过程提供了基础数据。
  • 加载中
  • Licht K, Kosar V, Tomašić V, et al. Removal of the neonicotinoid insecticide acetamiprid from wastewater using heterogeneous photocatalysis[J]. Environmental Technology, 2023, 44(8): 1125-1134
    Zhang C, Yi X H, Chen C, et al. Contamination of neonicotinoid insecticides in soil-water-sediment systems of the urban and rural areas in a rapidly developing region: Guangzhou, South China[J]. Environment International, 2020, 139: 105719
    Jayaprakash R, Elangovan A, Nagaraju P. Fipronil and acetamiprid poisoning: New perils[J]. Indian Journal of Critical Care Medicine: Peer-Reviewed, Official Publication of Indian Society of Critical Care Medicine, 2022, 26(4): 526-527
    You Y, Zeng Z H, Zheng J, et al. The toxicity response of Coccinella septempunctata L. (Coleoptera: Coccinellidae) after exposure to sublethal concentrations of acetamiprid[J]. Agriculture, 2022, 12(10): 1642
    Shamsi M, Soodi M, Shahbazi S, et al. Effect of acetamiprid on spatial memory and hippocampal glutamatergic system[J]. Environmental Science and Pollution Research International, 2021, 28(22): 27933-27941
    Toghan R, Amin Y A, Ali R A, et al. Protective effects of folic acid against reproductive, hematological, hepatic, and renal toxicity induced by acetamiprid in male Albino rats[J]. Toxicology, 2022, 469: 153115
    Pirasath S, Senthuran R, Athirayan C, et al. Acute poisoning with acetamiprid: A case report[J]. Journal of Medical Case Reports, 2021, 15(1): 419
    Imamura T, Yanagawa Y, Nishikawa K, et al. Two cases of acute poisoning with acetamiprid in humans[J]. Clinical Toxicology, 2010, 48(8): 851-853
    于湛, 张微, 吴迪, 等. 柚皮素、柚皮苷与牛血清白蛋白相互作用的机理分析[J]. 沈阳师范大学学报(自然科学版), 2023, 41(2): 108-113 Yu Z, Zhang W, Wu D, et al. Mechanistic analysis the binding interactions of naringenin and naringin with bovine serum albumin[J]. Journal of Shenyang Normal University (Natural Science Edition), 2023, 41(2): 108-113(in Chinese)
    Nair M S. Spectroscopic studies on the interaction of serum albumins with plant derived natural molecules[J]. Applied Spectroscopy Reviews, 2018, 53(8): 636-666
    吴明火, 李尚春, 王丽梅, 等. 邻苯二甲酸二环己酯与牛血清白蛋白相互作用研究[J]. 分析科学学报, 2022, 38(3): 321-326

    Wu M H, Li S C, Wang L M, et al. Study on the interaction between dicyclohexyl phthalate and bovine serum albumin[J]. Journal of Analytical Science, 2022, 38(3): 321-326(in Chinese)

    Macii F, Biver T. Spectrofluorimetric analysis of the binding of a target molecule to serum albumin: Tricky aspects and tips[J]. Journal of Inorganic Biochemistry, 2021, 216: 111305
    Arabpour Shiraz Z, Sohrabi N, Eslami Moghadam M, et al. Molecular docking and spectroscopic study of bovine serum albumin interaction with new anticancer Pt complex with isopentyl dithiocarbamate ligand[J]. Nucleosides, Nucleotides & Nucleic Acids, 2024, 43(1): 65-85
    Liang W J, Zhang Z X, Zhu Q Y, et al. Molecular interactions between bovine serum albumin (BSA) and trihalophenol: Insights from spectroscopic, calorimetric and molecular modeling studies[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2023, 287: 122054
    Yang Y D, Tian R, Lu N H. Binding of serum albumin to perfluorooctanoic acid reduced cytotoxicity[J]. Science of the Total Environment, 2023, 876: 162738
    王军, 王周利, 程晶晶. 多光谱法结合分子对接研究柠檬黄与牛血清白蛋白的相互作用[J]. 光谱学与光谱分析, 2022, 42(3): 904-909

    Wang J, Wang Z L, Cheng J J. Interaction between tartrazine and bovine serum albumin using multispectral method and molecular docking[J]. Spectroscopy and Spectral Analysis, 2022, 42(3): 904-909(in Chinese)

    李庆舒, 程琳, 邓红, 等. 三种多酚与牛血清蛋白相互作用的初步研究[J]. 食品与发酵工业, 2020, 46(3): 180-187

    Li Q S, Cheng L, Deng H, et al. Study of interactions between three polyphenols and bovine serum albumin[J]. Food and Fermentation Industries, 2020, 46(3): 180-187(in Chinese)

    Xiao Q, Tu X C, Cao H S, et al. Interaction thermodynamics investigation of bovine serum albumin with black phosphorus quantum dots via spectroscopic and molecular simulation techniques[J]. Journal of Molecular Structure, 2023, 1276: 134725
    Hu Z Y, Wang W J, Hu L, et al. Comprehending the intermolecular interaction of dacomitinib with bovine serum albumin: Experimental and theoretical approaches[J]. Journal of Biomolecular Structure & Dynamics, 2023, 1: 1-14
    Zhang R J, Kou S B, Hu L, et al. Exploring binding interaction of baricitinib with bovine serum albumin (BSA): Multi-spectroscopic approaches combined with theoretical calculation[J]. Journal of Molecular Liquids, 2022, 354: 118831
    Zhang H X, Mei P, Yang X X. Optical, structural and thermodynamic properties of the interaction between tradimefon and serum albumin[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2009, 72(3): 621-626
    李金芝. 丁香酚和α藏花素与蛋白相互作用的研究[D]. 天津: 天津科技大学, 2022: 5-6 Li J Z. The interaction between eugenol and α crocin and protein[D]. Tianjin: Tianjin University of Science & Technology, 2022: 5

    -6(in Chinese)

    Bai J, Sun X K, Geng B, et al. Interaction mechanism of Cu+/Cu2+ on bovine serum albumin: Vitro simulation experiments by spectroscopic methods[J]. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 2023, 293: 122491
    McPhie P. Principles of Fluorescence Spectroscopy[M]. Boston, MA: Springer US, 2006: 278-348
    任思瑞, 李道亮, 周鸿媛, 等. 二苯-α-吡喃酮类链格孢霉毒素和人血清白蛋白的相互作用及机理探究[J]. 核农学报, 2022, 36(10): 2019-2026

    Ren S R, Li D L, Zhou H Y, et al. Investigation on molecular interaction between of alternariol monomethyl ether and alternariol with human serum albumin[J]. Journal of Nuclear Agricultural Sciences, 2022, 36(10): 2019-2026(in Chinese)

    吕艳芳, 张紫卿, 梁倩倩, 等. 光谱法和分子对接研究高儿茶酚与牛血清白蛋白的相互作用[J]. 中国食品学报, 2022, 22(12): 72-81

    Lv Y F, Zhang Z Q, Liang Q Q, et al. Studies on the interaction between homocatechol and bovine serum albumin using spectroscopic and molecular docking[J]. Journal of Chinese Institute of Food Science and Technology, 2022, 22(12): 72-81(in Chinese)

    Zhang G W, Ma Y D, Wang L, et al. Multispectroscopic studies on the interaction of maltol, a food additive, with bovine serum albumin[J]. Food Chemistry, 2012, 133(2): 264-270
    Naveenraj S, Anandan S. Binding of serum albumins with bioactive substances: Nanoparticles to drugs[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2013, 14: 53-71
    梁雯洁, 蚁嘉颖, 张振轩, 等. 溴代苯酚与牛血清白蛋白的相互作用研究[J]. 化学试剂, 2023, 45(1): 37-45

    Liang W J, Yi J Y, Zhang Z X, et al. Study on the binding interactions between bromophenols and bovine serum albumin[J]. Chemical Reagents, 2023, 45(1): 37-45(in Chinese)

    Ross P D, Subramanian S. Thermodynamics of protein association reactions: Forces contributing to stability[J]. Biochemistry, 1981, 20(11): 3096-3102
    Lv Y F, Liang Q Q, Li Y, et al. Study of the binding mechanism between hydroxytyrosol and bovine serum albumin using multispectral and molecular docking[J]. Food Hydrocolloids, 2022, 122: 107072
    Huang F W, Chen C. Insights into the interaction between the kusaginin and bovine serum albumin: Multi-spectroscopic techniques and computational approaches[J]. Journal of Molecular Recognition, 2023, 36(3): e3003
    Gu J L, Zheng S Y, Huang X Y, et al. Exploring the mode of binding between butylated hydroxyanisole with bovine serum albumin: Multispectroscopic and molecular docking study[J]. Food Chemistry, 2021, 357: 129771
    邹淑君, 许树军, 董黎明, 等. 光谱法比较木犀草素及槲皮素与牛血清白蛋白相互作用[J]. 光谱实验室, 2013, 30(6): 2870-2877

    Zou S J, Xu S J, Dong L M, et al. Comparison of the interaction of luteolin and quercetin with bovine serum albumin by spectroscopic methods[J]. Chinese Journal of Spectroscopy Laboratory, 2013, 30(6): 2870-2877(in Chinese)

    吴克刚, 周华丽, 柴向华, 等. 光谱法研究芳樟醇与牛血清白蛋白的相互作用[J]. 现代食品科技, 2015, 31(12): 141-148

    Wu K G, Zhou H L, Chai X H, et al. Multi-spectroscopic studies of the interaction of linalool with bovine serum albumin[J]. Modern Food Science and Technology, 2015, 31(12): 141-148(in Chinese)

    Zhou H Y, Shi X, Fan Y J, et al. Interaction of Prussian blue nanoparticles with bovine serum albumin: A multi-spectroscopic approach[J]. Journal of Biomolecular Structure & Dynamics, 2018, 36(1): 254-261
    周家羽, 周光明, 陈蓉, 等. SERS结合光谱法研究正壬酸香草酰胺与人血清白蛋白的相互作用[J]. 分析测试学报, 2022, 41(3): 361-367

    Zhou J Y, Zhou G M, Chen R, et al. Spectroscopic studies on interactions between human serum albumin and nonivamide[J]. Journal of Instrumental Analysis, 2022, 41(3): 361-367(in Chinese)

    Qi X, Xu D X, Zhu J J, et al. Studying the interaction mechanism between bovine serum albumin and lutein dipalmitate: Multi-spectroscopic and molecular docking techniques[J]. Food Hydrocolloids, 2021, 113: 106513
    Su X, Wang L, Xu Y F, et al. Study on the binding mechanism of thiamethoxam with three model proteins: Spectroscopic studies and theoretical simulations[J]. Ecotoxicology and Environmental Safety, 2021, 207: 111280
    程靖. 农药与牛血清白蛋白相互作用的研究[D]. 武汉: 武汉大学, 2009: 12-14 Cheng J. Study on the interaction between pesticides and bovine serum albumin[D]. Wuhan: Wuhan University, 2009: 12

    -14(in Chinese)

    褚千千, 艾健, 方佳琪, 等. 牛血清蛋白与邻苯二酚、间苯三酚相互作用的机理探究[J]. 食品与发酵工业, 2020, 46(11): 61-68

    Chu Q Q, Ai J, Fang J Q, et al. Study on the mechanism of interactions between bovine serum albumin with o-dihydroxybenzene and m-trihydroxybenzene[J]. Food and Fermentation Industries, 2020, 46(11): 61-68(in Chinese)

    Ansari A. Decoding the binding interaction of steroidal pyridines with bovine serum albumin using spectroscopic and molecular docking techniques[J]. Steroids, 2023, 192: 109156
    刘丽莉, 于影, 苏克楠, 等. 植物多酚-牛血清白蛋白相互作用及对蛋白质结构的影响[J]. 农业工程学报, 2023, 39(13): 290-298

    Liu L L, Yu Y, Su K N, et al. Polyphenol-bovine serum albumin interaction and its influence on protein structure[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(13): 290-298(in Chinese)

    王毅, 那日松, 朱美庆, 等. 二酰胺类杀虫剂与牛血清白蛋白相互作用研究[J]. 广东化工, 2016, 43(15): 23-25

    Wang Y, Na R S, Zhu M Q, et al. Study on the interaction between diamide insecticides and bovine serum albumin[J]. Guangdong Chemical Industry, 2016, 43(15): 23-25(in Chinese)

    王雪荣, 韩晓锋, 贾风燕, 等. 有机磷农药与牛血清白蛋白的相互作用及分析应用[J]. 烟台大学学报(自然科学与工程版), 2011, 24(3): 194-200 Wang X R, Han X F, Jia F Y, et al. Interactions between organophosphorus pesticides and bovine serum albumin and application[J]. Journal of Yantai University (Natural Science and Engineering Edition), 2011, 24(3): 194-200(in Chinese)
    Farasati Far B, Asadi S, Naimi-Jamal M R, et al. Insights into the interaction of azinphos-methyl with bovine serum albumin: Experimental and molecular docking studies[J]. Journal of Biomolecular Structure & Dynamics, 2022, 40(22): 11863-11873
    吴汉东, 史雪岩, 梁沛. 顺式氰戊菊酯与牛血清白蛋白相互作用的荧光光谱研究[J]. 光谱实验室, 2008, 25(4): 694-699

    Wu H D, Shi X Y, Liang P. Study of the interaction between esfenvalerate and bovine serum albumin by fluorescence spectroscopy[J]. Chinese Journal of Spectroscopy Laboratory, 2008, 25(4): 694-699(in Chinese)

    Nagtilak M, Pawar S, Labade S, et al. Study of the binding interaction between bovine serum albumin and carbofuran insecticide: Multispectroscopic and molecular docking techniques[J]. Journal of Molecular Structure, 2022, 1249: 131597
    刘彬. 低频超声激活光敏化合物损伤蛋白质分子的研究[D]. 沈阳: 东北大学, 2011: 59-61 Liu B. Study on the damage of protein molecules by photosensitive compounds activated by low frequency ultrasound[D]. Shenyang: Northeastern University, 2011: 59

    -61(in Chinese)

    Mishra S, Zhang W P, Lin Z Q, et al. Carbofuran toxicity and its microbial degradation in contaminated environments[J]. Chemosphere, 2020, 259: 127419
    Guo W, Yang Y, Zhou X, et al. Insight into the toxic effects, bioconcentration and oxidative stress of acetamiprid on Rana nigromaculata tadpoles[J]. Chemosphere, 2022, 305: 135380
    Westgate P J, Park C. Evaluation of proteins and organic nitrogen in wastewater treatment effluents[J]. Environmental Science & Technology, 2010, 44(14): 5352-5357
    Abdelaziz M A, Shaldam M, El-Domany R A, et al. Multi-spectroscopic, thermodynamic and molecular dynamic simulation studies for investigation of interaction of dapagliflozin with bovine serum albumin[J]. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 2022, 264: 120298
    Katrahalli U, Shanker G, Pal D, et al. Molecular spectroscopic and docking analysis of the interaction of fluorescent thiadicarbocyanine dye with biomolecule bovine serum albumin[J]. Journal of Biomolecular Structure & Dynamics, 2023, 41(20): 10702-10712
  • 加载中
计量
  • 文章访问数:  898
  • HTML全文浏览数:  898
  • PDF下载数:  197
  • 施引文献:  0
出版历程
  • 收稿日期:  2023-09-25
李嘉兴, 李坤, 刘世杰, 曾浩宇, 杨娟. 多光谱法研究啶虫脒与牛血清白蛋白的相互作用[J]. 生态毒理学报, 2024, 19(1): 207-222. doi: 10.7524/AJE.1673-5897.20230925002
引用本文: 李嘉兴, 李坤, 刘世杰, 曾浩宇, 杨娟. 多光谱法研究啶虫脒与牛血清白蛋白的相互作用[J]. 生态毒理学报, 2024, 19(1): 207-222. doi: 10.7524/AJE.1673-5897.20230925002
Li Jiaxing, Li Kun, Liu Shijie, Zeng Haoyu, Yang Juan. Study on Interaction Between Acetamiprid and Bovine Serum Albumin by Multispectral Analysis[J]. Asian journal of ecotoxicology, 2024, 19(1): 207-222. doi: 10.7524/AJE.1673-5897.20230925002
Citation: Li Jiaxing, Li Kun, Liu Shijie, Zeng Haoyu, Yang Juan. Study on Interaction Between Acetamiprid and Bovine Serum Albumin by Multispectral Analysis[J]. Asian journal of ecotoxicology, 2024, 19(1): 207-222. doi: 10.7524/AJE.1673-5897.20230925002

多光谱法研究啶虫脒与牛血清白蛋白的相互作用

    通讯作者: 杨娟,E-mail: kittyyangjuan@swfu.edu.cn
    作者简介: 李嘉兴(1997-),男,硕士研究生,研究方向为生态毒理学,E-mail:ljx970302@126.com
  • 西南林业大学生态与环境学院, 昆明 650224
基金项目:

云南省应用基础研究计划面上项目(202101AT070046);国家自然科学基金资助项目(22166033);云南省科技厅重点研发计划项目(202203AC100001);云南省农业联合面上项目(202101BD070001-112)

摘要: 啶虫脒(acetamiprid, ACE)是一种广泛使用的新烟碱类杀虫剂,其在环境介质中的残留积累,对哺乳动物产生神经毒性作用,成为一种备受关注的环境污染物。为清晰认识啶虫咪在生物体中的作用过程,本研究利用荧光、紫外可见光(UV-vis)、圆二色光谱法及分子对接技术,探究了ACE和牛血清白蛋白(bovine serum albumin, BSA)的相互作用机制。结果表明:在不同温度下,BSA和ACE的荧光猝灭机制主要为静态猝灭,能够形成基态复合物,且存在至少1个结合位点;热力学研究表明,二者结合过程中的吉布斯自由能(ΔG)为负值,说明ACE与BSA的结合是一个自发过程;焓(ΔH)和熵(ΔS)为负值,表明ACE与BSA相互作用的驱动力是氢键或范德华力;通过荧光光谱法和UV-vis光谱法算出结合距离小于7 nm,表明ACE与BSA之间能发生非辐射能量转移;同步荧光光谱显示ACE对BSA的构象产生影响,主要是对其中酪氨酸残基的影响更为显著;圆二色光谱结果显示ACE使BSA的构象发生一定变化,增加了α-螺旋结构的稳定性和蛋白整体的有序性,使蛋白质的微环境比其天然状态更具疏水性。综上所述,ACE与BSA在环境介质和生物体中能够自发结合,形成稳定的基态复合物,且结合后会影响BSA的结构。本研究为探究ACE在生物体中的致毒过程提供了基础数据。

English Abstract

参考文献 (54)

返回顶部

目录

/

返回文章
返回