双酚A致文蛤鳃组织氧化损伤

朱龙, 周尚颉, 马雨阳, 陈鑫翎, 王孝天, 许星鸿. 双酚A致文蛤鳃组织氧化损伤[J]. 生态毒理学报, 2024, 19(1): 223-231. doi: 10.7524/AJE.1673-5897.20231017004
引用本文: 朱龙, 周尚颉, 马雨阳, 陈鑫翎, 王孝天, 许星鸿. 双酚A致文蛤鳃组织氧化损伤[J]. 生态毒理学报, 2024, 19(1): 223-231. doi: 10.7524/AJE.1673-5897.20231017004
Zhu Long, Zhou Shangjie, Ma Yuyang, Chen Xinling, Wang Xiaotian, Xu Xinghong. Oxidative Damage of Bisphenol A to Meretrix petechialis Gill Tissues[J]. Asian journal of ecotoxicology, 2024, 19(1): 223-231. doi: 10.7524/AJE.1673-5897.20231017004
Citation: Zhu Long, Zhou Shangjie, Ma Yuyang, Chen Xinling, Wang Xiaotian, Xu Xinghong. Oxidative Damage of Bisphenol A to Meretrix petechialis Gill Tissues[J]. Asian journal of ecotoxicology, 2024, 19(1): 223-231. doi: 10.7524/AJE.1673-5897.20231017004

双酚A致文蛤鳃组织氧化损伤

    作者简介: 朱龙(1992-),男,博士,研究方向为生态毒理学,E-mail:zhulong2021@jou.edu.cn
    通讯作者: 许星鸿,E-mail: xhxu119@163.com
  • 基金项目:

    国家重点研发计划项目(2023YFD2400800);江苏省自然科学基金青年项目(BK20230690);江苏省高等学校自然科学研究项目(23KJB180005);江苏海洋大学研究生科研与实践创新计划项目(KYCX2023-105)

  • 中图分类号: X171.5

Oxidative Damage of Bisphenol A to Meretrix petechialis Gill Tissues

    Corresponding author: Xu Xinghong, xhxu119@163.com
  • Fund Project:
  • 摘要: 双酚A(bisphenol A, BPA)是全球产量最大的化工产品之一,在塑料制品生产中得到广泛应用。然而,BPA的大量应用导致其在水环境中被频繁检出,对水生生物健康构成潜在威胁。相关研究证实BPA对水生生物的生殖和发育具有一定的毒性效应,但对双壳贝类毒性效应研究却十分有限。本研究将文蛤(Meretrix petechialis)分别暴露于1、10、100 μg·L-1 BPA中14 d,检测了文蛤鳃滤水率以及组织病理学变化,同时测定鳃组织过氧化氢(hydrogen peroxide, H2O2)和丙二醛(malondialdehyde, MDA)含量,以及过氧化氢酶(catalase, CAT)、谷胱甘肽-S-转移酶(glutathione-S-transferase, GST)、超氧化物歧化酶(superoxide dismutase, SOD)的活性,并对Nrf2/Keap1信号通路相关基因的表达水平进行分析。结果表明,BPA暴露干扰了文蛤鳃滤水率,导致文蛤鳃组织上皮细胞损伤和增生,并观察有纤毛和鳃丝减少的现象,且BPA浓度越高对文蛤鳃组织的影响越明显。BPA暴露导致文蛤鳃组织H2O2和MDA水平显著升高,1 μg·L-1 BPA处理组鳃组织氧化应激水平最为明显;BPA暴露引起鳃组织CAT活性显著降低,但对SOD活性无显著影响;1 μg·L-1 BPA暴露导致GST活性显著升高。此外,1 μg·L-1 BPA暴露下,文蛤鳃组织中Nrf2Keap1cattnf-α的基因表达水平均受到抑制。10 μg·L-1 BPA暴露显著上调了cat基因表达。总之,本研究发现BPA暴露能诱发文蛤鳃组织出现氧化应激反应并引起组织损伤。
  • 加载中
  • Prueitt R L, Hixon M L, Fan T Y, et al. Systematic review of the potential carcinogenicity of bisphenol A in humans[J]. Regulatory Toxicology and Pharmacology, 2023, 142: 105414
    Wang J, Wu C Y, Zhang X, et al. Developmental neurotoxic effects of bisphenol A and its derivatives in Drosophila melanogaster[J]. Ecotoxicology and Environmental Safety, 2023, 260: 115098
    Loganathan P, Vigneswaran S, Kandasamy J, et al. Bisphenols in water: Occurrence, effects, and mitigation strategies[J]. Chemosphere, 2023, 328: 138560
    Czarny-Krzymińska K, Krawczyk B, Szczukocki D. Bisphenol A and its substitutes in the aquatic environment: Occurrence and toxicity assessment[J]. Chemosphere, 2023, 315: 137763
    Hong T, Zou J, He Y M, et al. Bisphenol A induced hepatic steatosis by disturbing bile acid metabolism and FXR/TGR5 signaling pathways via remodeling the gut microbiota in CD-1 mice[J]. The Science of the Total Environment, 2023, 889: 164307
    Gu Z Y, Jia R, He Q, et al. Alteration of lipid metabolism, autophagy, apoptosis and immune response in the liver of common carp (Cyprinus carpio) after long-term exposure to bisphenol A[J]. Ecotoxicology and Environmental Safety, 2021, 211: 111923
    Zhu W, Su J. Immune functions of phagocytic blood cells in teleost[J]. Reviews in Aquaculture, 2021, 14(2): 630-646
    Xie D M, Li Y W, Liu Z H, et al. Inhibitory effect of cadmium exposure on digestive activity, antioxidant capacity and immune defense in the intestine of yellow catfish (Pelteobagrus fulvidraco)[J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology, 2019, 222: 65-73
    Lee J W, Jo A H, Lee D C, et al. Review of cadmium toxicity effects on fish: Oxidative stress and immune responses[J]. Environmental Research, 2023, 236: 116600
    Li Z Q, Chang X Q, Hu M H, et al. Is microplastic an oxidative stressor? Evidence from a meta-analysis on bivalves[J]. Journal of Hazardous Materials, 2022, 423(Pt B): 127211
    Yang X, Fang Y, Hou J B, et al. The heart as a target for deltamethrin toxicity: Inhibition of Nrf2/HO-1 pathway induces oxidative stress and results in inflammation and apoptosis[J]. Chemosphere, 2022, 300: 134479
    Geertsema S, Bourgonje A R, Fagundes R R, et al. The NRF2/Keap1 pathway as a therapeutic target in inflammatory bowel disease[J]. Trends in Molecular Medicine, 2023, 29(10): 830-842
    Dai X J, Zhang Q Y, Zhang G C, et al. Protective effect of agar oligosaccharide on male Drosophila melanogaster suffering from oxidative stress via intestinal microflora activating the Keap1-Nrf2 signaling pathway[J]. Carbohydrate Polymers, 2023, 313: 120878
    Ke A Y, Chen J, Zhu J, et al. Impacts of leachates from single-use polyethylene plastic bags on the early development of clam Meretrix meretrix (Bivalvia: Veneridae)[J]. Marine Pollution Bulletin, 2019, 142: 54-57
    Li J S, Wang Y P, Du J B, et al. Effects of Meretrix meretrix on sediment thresholds of erosion and deposition on an intertidal flat[J]. Ecohydrology & Hydrobiology, 2021, 21(1): 129-141
    Wu X, Jia Y F, Zhu H J. Bioaccumulation of cadmium bound to ferric hydroxide and particulate organic matter by the bivalve M. meretrix[J]. Environmental Pollution, 2012, 165: 133-139
    Capelle J J, Hartog E, van den Bogaart L, et al. Adaptation of gill-palp ratio by mussels after transplantation to culture plots with different seston conditions[J]. Aquaculture, 2021, 541: 736794
    单袁. 三种新烟碱农药对河蚬行为、组织病理及抗氧化系统的影响[D]. 武汉: 华中农业大学, 2019: 11 Shan Y. Effects of three neonicotinoid pesticides on the behavior, histopatholgy and antioxidant system of Asian freshwater clams (Corbicula fluminea)[D]. Wuhan: Huazhong Agricultural University, 2019: 11(in Chinese)
    Jiang F J, Yue X, Wang H X, et al. Transcriptome profiles of the clam Meretrix petechialis hepatopancreas in response to Vibrio infection[J]. Fish & Shellfish Immunology, 2017, 62: 175-183
    Straquadine N R W, Kudela R M, Gobler C J. Hepatotoxic shellfish poisoning: Accumulation of microcystins in Eastern oysters (Crassostrea virginica) and Asian clams (Corbicula fluminea) exposed to wild and cultured populations of the harmful cyanobacteria, Microcystis[J]. Harmful Algae, 2022, 115: 102236
    Xing S Y, Li P, He S W, et al. Physiological responses in Nile tilapia (Oreochromis niloticus) induced by combined stress of environmental salinity and triphenyltin[J]. Marine Environmental Research, 2022, 180: 105736
    Jenzri M, Gharred C, Bouraoui Z, et al. Assessment of single and combined effects of bisphenol-A and its analogue bisphenol-S on biochemical and histopathological responses of sea cucumber Holothuria poli[J]. Marine Environmental Research, 2023, 188: 106032
    Minaz M, Er A, Ak K, et al. Investigation of long-term bisphenol A exposure on rainbow trout (Oncorhynchus mykiss): Hematological parameters, biochemical indicator, antioxidant activity, and histopathological examination[J]. Chemosphere, 2022, 303(Pt 2): 135136
    仝天衡. BUVSs对河蚬抗氧化系统的影响及其毒性效应[D]. 呼和浩特: 内蒙古大学, 2019: 37-40 Tong T H. Effects of BUVSs on the antioxidant system and toxic effects of the Corbicula fluminea[D]. Huhhot: Inner Mongolia University, 2019: 37

    -40(in Chinese)

    Yan S H, Wu H M, Qin J H, et al. Halogen-free organophosphorus flame retardants caused oxidative stress and multixenobiotic resistance in Asian freshwater clams (Corbicula fluminea)[J]. Environmental Pollution, 2017, 225: 559-568
    Li X Y, Liu Y, Chen Y B, et al. Long-term exposure to bisphenol A and its analogues alters the behavior of marine medaka (Oryzias melastigma) and causes hepatic injury[J]. The Science of the Total Environment, 2022, 841: 156590
    Zorov D B, Juhaszova M, Sollott S J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release[J]. Physiological Reviews, 2014, 94(3): 909-950
    He L, He T, Farrar S, et al. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species[J]. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 2017, 44(2): 532-553
    Zhang X W, Jin Z Y, Shen M L, et al. Accumulation of polyethylene microplastics induces oxidative stress, microbiome dysbiosis and immunoregulation in crayfish[J]. Fish & Shellfish Immunology, 2022, 125: 276-284
    Hoyo-Alvarez E, Arechavala-Lopez P, Jiménez-García M, et al. Effects of pollutants and microplastics ingestion on oxidative stress and monoaminergic activity of seabream brains[J]. Aquatic Toxicology, 2022, 242: 106048
    Yu X, Liu J H, Qiu T L, et al. Ocean acidification induces tissue-specific interactions with copper toxicity on antioxidant defences in viscera and gills of Asiatic hard clam Meretrix petechialis (Lamarck, 1818)[J]. The Science of the Total Environment, 2023, 875: 162634
    Yuan X P, Wu H, Gao J W, et al. Acute deltamethrin exposure induces oxidative stress, triggers endoplasmic reticulum stress, and impairs hypoxic resistance of crucian carp[J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology, 2023, 263: 109508
    Xie D M, Li Y W, Liu Z H, et al. Inhibitory effect of cadmium exposure on digestive activity, antioxidant capacity and immune defense in the intestine of yellow catfish (Pelteobagrus fulvidraco)[J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology, 2019, 222: 65-73
    Hu D C, Tian L L, Li X Y, et al. Tetramethyl bisphenol A inhibits leydig cell function in late puberty by inducing ferroptosis[J]. Ecotoxicology and Environmental Safety, 2022, 236: 113515
    Owagboriaye F, Dedeke G, Bamidele J, et al. Biochemical response and vermiremediation assessment of three earthworm species (Alma millsoni, Eudrilus eugeniae and Libyodrilus violaceus) in soil contaminated with a glyphosate-based herbicide[J]. Ecological Indicators, 2020, 108: 105678
    Wakabayashi N, Itoh K, Wakabayashi J, et al. Keap1-null mutation leads to postnatal lethality due to constitutive Nrf2 activation[J]. Nature Genetics, 2003, 35(3): 238-245
    Zhong C C, Zhao T, Hogstrand C, et al. Copper (Cu) induced changes of lipid metabolism through oxidative stress-mediated autophagy and Nrf2/PPARγ pathways[J]. The Journal of Nutritional Biochemistry, 2022, 100: 108883
    Li Q W, Liao J Z, Zhang K, et al. Toxicological mechanism of large amount of copper supplementation: Effects on endoplasmic reticulum stress and mitochondria-mediated apoptosis by Nrf2/HO-1 pathway-induced oxidative stress in the porcine myocardium[J]. Journal of Inorganic Biochemistry, 2022, 230: 111750
    Motohashi H, Yamamoto M. Nrf2-Keap1 defines a physiologically important stress response mechanism[J]. Trends in Molecular Medicine, 2004, 10(11): 549-557
    Regoli F, Giuliani M E, Benedetti M, et al. Molecular and biochemical biomarkers in environmental monitoring: A comparison of biotransformation and antioxidant defense systems in multiple tissues[J]. Aquatic Toxicology, 2011, 105(3-4): 56-66
    Zhang X L, Chen X, Gao L, et al. Transgenerational effects of microplastics on Nrf2 signaling, GH/IGF, and HPI axis in marine medaka Oryzias melastigma under different salinities[J]. The Science of the Total Environment, 2024, 906: 167170
  • 加载中
计量
  • 文章访问数:  878
  • HTML全文浏览数:  878
  • PDF下载数:  125
  • 施引文献:  0
出版历程
  • 收稿日期:  2023-10-17
朱龙, 周尚颉, 马雨阳, 陈鑫翎, 王孝天, 许星鸿. 双酚A致文蛤鳃组织氧化损伤[J]. 生态毒理学报, 2024, 19(1): 223-231. doi: 10.7524/AJE.1673-5897.20231017004
引用本文: 朱龙, 周尚颉, 马雨阳, 陈鑫翎, 王孝天, 许星鸿. 双酚A致文蛤鳃组织氧化损伤[J]. 生态毒理学报, 2024, 19(1): 223-231. doi: 10.7524/AJE.1673-5897.20231017004
Zhu Long, Zhou Shangjie, Ma Yuyang, Chen Xinling, Wang Xiaotian, Xu Xinghong. Oxidative Damage of Bisphenol A to Meretrix petechialis Gill Tissues[J]. Asian journal of ecotoxicology, 2024, 19(1): 223-231. doi: 10.7524/AJE.1673-5897.20231017004
Citation: Zhu Long, Zhou Shangjie, Ma Yuyang, Chen Xinling, Wang Xiaotian, Xu Xinghong. Oxidative Damage of Bisphenol A to Meretrix petechialis Gill Tissues[J]. Asian journal of ecotoxicology, 2024, 19(1): 223-231. doi: 10.7524/AJE.1673-5897.20231017004

双酚A致文蛤鳃组织氧化损伤

    通讯作者: 许星鸿,E-mail: xhxu119@163.com
    作者简介: 朱龙(1992-),男,博士,研究方向为生态毒理学,E-mail:zhulong2021@jou.edu.cn
  • 1. 江苏海洋大学海洋科学与水产学院, 连云港 222000;
  • 2. 江苏省海洋资源与开发研究院, 连云港 222000
基金项目:

国家重点研发计划项目(2023YFD2400800);江苏省自然科学基金青年项目(BK20230690);江苏省高等学校自然科学研究项目(23KJB180005);江苏海洋大学研究生科研与实践创新计划项目(KYCX2023-105)

摘要: 双酚A(bisphenol A, BPA)是全球产量最大的化工产品之一,在塑料制品生产中得到广泛应用。然而,BPA的大量应用导致其在水环境中被频繁检出,对水生生物健康构成潜在威胁。相关研究证实BPA对水生生物的生殖和发育具有一定的毒性效应,但对双壳贝类毒性效应研究却十分有限。本研究将文蛤(Meretrix petechialis)分别暴露于1、10、100 μg·L-1 BPA中14 d,检测了文蛤鳃滤水率以及组织病理学变化,同时测定鳃组织过氧化氢(hydrogen peroxide, H2O2)和丙二醛(malondialdehyde, MDA)含量,以及过氧化氢酶(catalase, CAT)、谷胱甘肽-S-转移酶(glutathione-S-transferase, GST)、超氧化物歧化酶(superoxide dismutase, SOD)的活性,并对Nrf2/Keap1信号通路相关基因的表达水平进行分析。结果表明,BPA暴露干扰了文蛤鳃滤水率,导致文蛤鳃组织上皮细胞损伤和增生,并观察有纤毛和鳃丝减少的现象,且BPA浓度越高对文蛤鳃组织的影响越明显。BPA暴露导致文蛤鳃组织H2O2和MDA水平显著升高,1 μg·L-1 BPA处理组鳃组织氧化应激水平最为明显;BPA暴露引起鳃组织CAT活性显著降低,但对SOD活性无显著影响;1 μg·L-1 BPA暴露导致GST活性显著升高。此外,1 μg·L-1 BPA暴露下,文蛤鳃组织中Nrf2Keap1cattnf-α的基因表达水平均受到抑制。10 μg·L-1 BPA暴露显著上调了cat基因表达。总之,本研究发现BPA暴露能诱发文蛤鳃组织出现氧化应激反应并引起组织损伤。

English Abstract

参考文献 (41)

返回顶部

目录

/

返回文章
返回