有机磷阻燃剂TCPP和铅联合暴露对斑马鱼发育的影响

张晓顺, 纪秋怡, 向阳, 许永杰, 宋珊珊, 孟晓静. 有机磷阻燃剂TCPP和铅联合暴露对斑马鱼发育的影响[J]. 生态毒理学报, 2024, 19(1): 232-242. doi: 10.7524/AJE.1673-5897.20231017003
引用本文: 张晓顺, 纪秋怡, 向阳, 许永杰, 宋珊珊, 孟晓静. 有机磷阻燃剂TCPP和铅联合暴露对斑马鱼发育的影响[J]. 生态毒理学报, 2024, 19(1): 232-242. doi: 10.7524/AJE.1673-5897.20231017003
Zhang Xiaoshun, Ji Qiuyi, Xiang Yang, Xu Yongjie, Song Shanshan, Meng Xiaojing. Effects of Combined Exposure to Organophosphorus Flame Retardant TCPP and Lead on Zebrafish Development[J]. Asian journal of ecotoxicology, 2024, 19(1): 232-242. doi: 10.7524/AJE.1673-5897.20231017003
Citation: Zhang Xiaoshun, Ji Qiuyi, Xiang Yang, Xu Yongjie, Song Shanshan, Meng Xiaojing. Effects of Combined Exposure to Organophosphorus Flame Retardant TCPP and Lead on Zebrafish Development[J]. Asian journal of ecotoxicology, 2024, 19(1): 232-242. doi: 10.7524/AJE.1673-5897.20231017003

有机磷阻燃剂TCPP和铅联合暴露对斑马鱼发育的影响

    作者简介: 张晓顺(1998-),男,硕士研究生,研究方向为环境毒理学,E-mail:578561315@qq.com
    通讯作者: 孟晓静,E-mail: xiaojingmeng@smu.edu.cn
  • 基金项目:

    国家自然科学基金资助项目(81973071);广东省自然科学基金资助项目(2023A1515012500)

  • 中图分类号: X171.5

Effects of Combined Exposure to Organophosphorus Flame Retardant TCPP and Lead on Zebrafish Development

    Corresponding author: Meng Xiaojing, xiaojingmeng@smu.edu.cn
  • Fund Project:
  • 摘要: 近年来,电子废弃物不断增多,电子废弃物处理厂周边环境污染问题严重,有机磷阻燃剂磷酸三(2-氯丙基)酯(tris(2-chloroisopropyl) phosphate, TCPP)和铅(Pb)是电子废弃物处理厂2种主要的污染物,对周围环境及人群健康造成影响。目前还没有关于TCPP和Pb联合暴露对水生生物及人类发育影响的相关研究。本研究选用斑马鱼模式生物作为研究对象,探讨Pb(190 μg·L-1)、TCPP(200、2 000、6 000 μg·L-1)单独及联合暴露对斑马鱼胚胎发育的影响。结果表明,Pb和低中高3个剂量TCPP单独和联合暴露对斑马鱼的存活率和孵化率无明显影响。同时,Pb和低中2个剂量TCPP单独和联合暴露对斑马鱼脊柱弯曲率和自发运动行为无明显影响。而与TCPP、Pb单独暴露相比,高剂量TCPP联合Pb暴露(Pb: 190 μg·L-1+TCPP: 6 000 μg·L-1)抑制斑马鱼的自发运动(P<0.01),导致其体长下降(P<0.01)、96 hpf(hours post-fertilization, hpf)和120 hpf心率下降(P<0.001)。同时,脊柱发育相关基因(col8a1angsbmp2abmp2brunx2b)和神经发育相关基因(mbp、elavl3、gfap、gap43)表达下调(P<0.05)。以上的实验结果表明,高剂量TCPP联合Pb暴露扰乱脊柱和神经发育相关基因的表达,影响斑马鱼脊柱和神经的早期发育。
  • 加载中
  • Heacock M, Kelly C B, Suk W A. E-waste: The growing global problem and next steps[J]. Reviews on Environmental Health, 2016, 31(1): 131-135
    Li K Q, Liu S S, Yang Q Y, et al. Genotoxic effects and serum abnormalities in residents of regions proximal to e-waste disposal facilities in Jinghai, China[J]. Ecotoxicology and Environmental Safety, 2014, 105: 51-58
    Andeobu L, Wibowo S, Grandhi S. An assessment of e-waste generation and environmental management of selected countries in Africa, Europe and North America: A systematic review[J]. The Science of the Total Environment, 2021, 792: 148078
    万千. 电子废弃物拆解车间重金属和有机磷阻燃剂的分布特征及风险评价[D]. 上海: 上海第二工业大学, 2021: 12 Wan Q. Pollution characteristics and risk assessment of heavy metals and organophosphate flame retardants in indoor dust from e-waste dismantling workshops[D]. Shanghai: Shanghai Polytechnic University, 2021: 12(in Chinese)
    Wang R, Zhang Q, Zhan L, et al. Urgency of technology and equipment upgrades in e-waste dismantling base: Pollution identification and emission reduction[J]. Environmental Pollution, 2022, 308: 119704
    Poma G, Liu Y, Cuykx M, et al. Occurrence of organophosphorus flame retardants and plasticizers in wild insects from a former e-waste recycling site in the Guangdong Province, South China[J]. The Science of the Total Environment, 2019, 650(Pt 1): 709-712
    Dórea J G. Environmental exposure to low-level lead (Pb) co-occurring with other neurotoxicants in early life and neurodevelopment of children[J]. Environmental Research, 2019, 177: 108641
    Li X T, Chen C, He M Y, et al. Lead exposure causes spinal curvature during embryonic development in zebrafish[J]. International Journal of Molecular Sciences, 2022, 23(17): 9571
    Gundacker C, Forsthuber M, Szigeti T, et al. Lead (Pb) and neurodevelopment: A review on exposure and biomarkers of effect (BDNF, HDL) and susceptibility[J]. International Journal of Hygiene and Environmental Health, 2021, 238: 113855
    Xia M, Wang X D, Xu J Q, et al. Tris (1-chloro-2-propyl) phosphate exposure to zebrafish causes neurodevelopmental toxicity and abnormal locomotor behavior[J]. The Science of the Total Environment, 2021, 758: 143694
    Lin F J, Li H, Wu D T, et al. Recent development in zebrafish model for bioactivity and safety evaluation of natural products[J]. Critical Reviews in Food Science and Nutrition, 2022, 62(31): 8646-8674
    He J H, Gao J M, Huang C J, et al. Zebrafish models for assessing developmental and reproductive toxicity[J]. Neurotoxicology and Teratology, 2014, 42: 35-42
    Khan M I, Khisroon M, Khan A, et al. Bioaccumulation of heavy metals in water, sediments, and tissues and their histopathological effects on Anodonta cygnea (Linea, 1876) in Kabul River, Khyber Pakhtunkhwa, Pakistan[J]. BioMed Research International, 2018, 2018: 1910274
    Annabi-Trabelsi N, Guermazi W, Karam Q, et al. Concentrations of trace metals in phytoplankton and zooplankton in the Gulf of Gabès, Tunisia[J]. Marine Pollution Bulletin, 2021, 168: 112392
    Sfakianakis D G, Renieri E, Kentouri M, et al. Effect of heavy metals on fish larvae deformities: A review[J]. Environmental Research, 2015, 137: 246-255
    Pang L, Yang P J, Zhao J H, et al. Comparison of wastewater treatment processes on the removal efficiency of organophosphate esters[J]. Water Science and Technology: A Journal of the International Association on Water Pollution Research, 2016, 74(7): 1602-1609
    Meng Y, Xu X J, Niu D, et al. Organophosphate flame retardants induce oxidative stress and Chop/Caspase 3-related apoptosis via Sod1/p53/Map3k6/Fkbp5 in NCI-1975 cells[J]. The Science of the Total Environment, 2022, 819: 153160
    Saquib Q, Siddiqui M, Al-Khedhairy A. Organophosphorus flame-retardant tris(1-chloro-2-propyl)phosphate is genotoxic and apoptotic inducer in human umbilical vein endothelial cells[J]. Journal of Applied Toxicology, 2021, 41(5): 861-873
    Liu X S, Ji K, Choi K. Endocrine disruption potentials of organophosphate flame retardants and related mechanisms in H295R and MVLN cell lines and in zebrafish[J]. Aquatic Toxicology, 2012, 114-115: 173-181
    Zakaria Z Z, Benslimane F M, Nasrallah G K, et al. Using zebrafish for investigating the molecular mechanisms of drug-induced cardiotoxicity[J]. BioMed Research International, 2018, 2018: 1642684
    Singleman C, Holtzman N G. Analysis of postembryonic heart development and maturation in the zebrafish, Danio rerio[J]. Developmental Dynamics: An Official Publication of the American Association of Anatomists, 2012, 241(12): 1993-2004
    李萍萍, 闫晓涛, 张金花, 等. 铅暴露对斑马鱼胚胎心脏和脊柱发育的影响[J]. 环境与职业医学, 2023, 40(2): 196-201

    , 215 Li P P, Yan X T, Zhang J H, et al. Effects of lead exposure on development of heart and spine in zebrafish embryos[J]. Journal of Environmental and Occupational Medicine, 2023, 40(2): 196-201, 215(in Chinese)

    Alzualde A, Behl M, Sipes N S, et al. Toxicity profiling of flame retardants in zebrafish embryos using a battery of assays for developmental toxicity, neurotoxicity, cardiotoxicity and hepatotoxicity toward human relevance[J]. Neurotoxicology and Teratology, 2018, 70: 40-50
    Liu J X, Xu Y J, Liao G Z, et al. The role of ambra1 in Pb-induced developmental neurotoxicity in zebrafish[J]. Biochemical and Biophysical Research Communications, 2022, 594: 139-145
    Brösamle C, Halpern M E. Characterization of myelination in the developing zebrafish[J]. Glia, 2002, 39(1): 47-57
    Yoshida M, Macklin W B. Oligodendrocyte development and myelination in GFP-transgenic zebrafish[J]. Journal of Neuroscience Research, 2005, 81(1): 1-8
    Xu H, Shao X L, Zhang Z, et al. Effects of di-n-butyl phthalate and diethyl phthalate on acetylcholinesterase activity and neurotoxicity related gene expression in embryonic zebrafish[J]. Bulletin of Environmental Contamination and Toxicology, 2013, 91(6): 635-639
    Nielsen A L, Jørgensen A L. Structural and functional characterization of the zebrafish gene for glial fibrillary acidic protein, GFAP[J]. Gene, 2003, 310: 123-132
    Fan C Y, Cowden J, Simmons S O, et al. Gene expression changes in developing zebrafish as potential markers for rapid developmental neurotoxicity screening[J]. Neurotoxicology and Teratology, 2010, 32(1): 91-98
    Li R W, Wang H Q, Mi C, et al. The adverse effect of TCIPP and TCEP on neurodevelopment of zebrafish embryos/larvae[J]. Chemosphere, 2019, 220: 811-817
    Shi Q P, Wang M, Shi F Q, et al. Developmental neurotoxicity of triphenyl phosphate in zebrafish larvae[J]. Aquatic Toxicology, 2018, 203: 80-87
    Hu H M, Su M L, Ba H X, et al. ZIF-8 nanoparticles induce neurobehavioral disorders through the regulation of ROS-mediated oxidative stress in zebrafish embryos[J]. Chemosphere, 2022, 305: 135453
    Gray R S, Wilm T P, Smith J, et al. Loss of col8a1a function during zebrafish embryogenesis results in congenital vertebral malformations[J]. Developmental Biology, 2014, 386(1): 72-85
    Qian L, Liu J, Lin Z P, et al. Evaluation of the spinal effects of phthalates in a zebrafish embryo assay[J]. Chemosphere, 2020, 249: 126144
    Salazar V S, Gamer L W, Rosen V. BMP signalling in skeletal development, disease and repair[J]. Nature Reviews Endocrinology, 2016, 12: 203-221
    Kim J M, Yang Y S, Park K H, et al. A RUNX2 stabilization pathway mediates physiologic and pathologic bone formation[J]. Nature Communications, 2020, 11: 2289
    Yan R, Ding J, Yang Q L, et al. Lead acetate induces cartilage defects and bone loss in zebrafish embryos by disrupting the GH/IGF-1 axis[J]. Ecotoxicology and Environmental Safety, 2023, 253: 114666
  • 加载中
计量
  • 文章访问数:  830
  • HTML全文浏览数:  830
  • PDF下载数:  162
  • 施引文献:  0
出版历程
  • 收稿日期:  2023-10-17
张晓顺, 纪秋怡, 向阳, 许永杰, 宋珊珊, 孟晓静. 有机磷阻燃剂TCPP和铅联合暴露对斑马鱼发育的影响[J]. 生态毒理学报, 2024, 19(1): 232-242. doi: 10.7524/AJE.1673-5897.20231017003
引用本文: 张晓顺, 纪秋怡, 向阳, 许永杰, 宋珊珊, 孟晓静. 有机磷阻燃剂TCPP和铅联合暴露对斑马鱼发育的影响[J]. 生态毒理学报, 2024, 19(1): 232-242. doi: 10.7524/AJE.1673-5897.20231017003
Zhang Xiaoshun, Ji Qiuyi, Xiang Yang, Xu Yongjie, Song Shanshan, Meng Xiaojing. Effects of Combined Exposure to Organophosphorus Flame Retardant TCPP and Lead on Zebrafish Development[J]. Asian journal of ecotoxicology, 2024, 19(1): 232-242. doi: 10.7524/AJE.1673-5897.20231017003
Citation: Zhang Xiaoshun, Ji Qiuyi, Xiang Yang, Xu Yongjie, Song Shanshan, Meng Xiaojing. Effects of Combined Exposure to Organophosphorus Flame Retardant TCPP and Lead on Zebrafish Development[J]. Asian journal of ecotoxicology, 2024, 19(1): 232-242. doi: 10.7524/AJE.1673-5897.20231017003

有机磷阻燃剂TCPP和铅联合暴露对斑马鱼发育的影响

    通讯作者: 孟晓静,E-mail: xiaojingmeng@smu.edu.cn
    作者简介: 张晓顺(1998-),男,硕士研究生,研究方向为环境毒理学,E-mail:578561315@qq.com
  • 南方医科大学公共卫生学院职业卫生与职业医学系, 广东 510515
基金项目:

国家自然科学基金资助项目(81973071);广东省自然科学基金资助项目(2023A1515012500)

摘要: 近年来,电子废弃物不断增多,电子废弃物处理厂周边环境污染问题严重,有机磷阻燃剂磷酸三(2-氯丙基)酯(tris(2-chloroisopropyl) phosphate, TCPP)和铅(Pb)是电子废弃物处理厂2种主要的污染物,对周围环境及人群健康造成影响。目前还没有关于TCPP和Pb联合暴露对水生生物及人类发育影响的相关研究。本研究选用斑马鱼模式生物作为研究对象,探讨Pb(190 μg·L-1)、TCPP(200、2 000、6 000 μg·L-1)单独及联合暴露对斑马鱼胚胎发育的影响。结果表明,Pb和低中高3个剂量TCPP单独和联合暴露对斑马鱼的存活率和孵化率无明显影响。同时,Pb和低中2个剂量TCPP单独和联合暴露对斑马鱼脊柱弯曲率和自发运动行为无明显影响。而与TCPP、Pb单独暴露相比,高剂量TCPP联合Pb暴露(Pb: 190 μg·L-1+TCPP: 6 000 μg·L-1)抑制斑马鱼的自发运动(P<0.01),导致其体长下降(P<0.01)、96 hpf(hours post-fertilization, hpf)和120 hpf心率下降(P<0.001)。同时,脊柱发育相关基因(col8a1angsbmp2abmp2brunx2b)和神经发育相关基因(mbp、elavl3、gfap、gap43)表达下调(P<0.05)。以上的实验结果表明,高剂量TCPP联合Pb暴露扰乱脊柱和神经发育相关基因的表达,影响斑马鱼脊柱和神经的早期发育。

English Abstract

参考文献 (37)

返回顶部

目录

/

返回文章
返回