浮游生物对持久性有机污染物迁移和转化影响的研究进展
Research Progress on Effects of Plankton on Transport and Transformation of Persistent Organic Pollutants
-
摘要: 持久性有机污染物(persistent organic pollutants,POPs)被持续排放到自然环境中,严重危害环境安全和生命健康。海洋、河流等水环境是POPs重要的"汇",作为水生食物链的起点,浮游生物在水生生态系统的物质循环和能量流动中扮演着重要的角色,其对POPs的吸附、吸收、转化及运输,在很大程度上影响了POPs的环境行为。本文将浮游生物对POPs迁移和转化的可能影响进行了总结,综合分析了浮游植物和浮游动物对POPs的吸附-吸收和生物富集/放大过程及影响以上过程的生物和环境因素,从脱卤代谢、氧化代谢和微生物联合代谢3个方面阐述了浮游生物对POPs的降解及转化机制,最后讨论了浮游生物的生物泵作用对POPs垂直迁移的影响。本文能够为水生生物影响POPs迁移和转化的研究提供重要参考。Abstract: Persistent organic pollutants (POPs) are continuously released into the natural environments, causing severe threats to the environmental safety and health. As the entrance of the aquatic food chain, plankton play an important role in the material cycle and energy flow of aquatic ecosystems, and their adsorption, uptake, transformation and transportation of POPs could greatly affect the environmental behavior of POPs. This paper summarizes the possible effects of plankton on the transportation and transformation of POPs in aquatic environments, comprehensively analyzes the adsorption-absorption and bioconcentration/amplification processes of POPs by phytoplankton and zooplankton, as well as the biological and environmental factors affecting the above processes in aquatic environments. Furthermore, the degradation and transformation mechanisms of POPs by plankton were discussed in terms of dehalogenation metabolism, oxidative metabolism, and microbial co-metabolism. Finally, the biological pump effect of plankton on the vertical transport of POPs was discussed. This paper provides important references for the research about the influence of aquatic organisms on the migration and transformation of POPs.
-
Key words:
- persistent organic pollutants /
- plankton /
- bioaccumulation /
- biological metabolism /
- biological pump
-
Jones K C.Persistent organic pollutants (POPs) and related chemicals in the global environment:Some personalreflections[J].Environmental Science&Technology,2021,55(14):9400-9412 Wang N,Lai C,Xu F H,et al.A review of polybrominated diphenyl ethers and novel brominated flame retardantsin Chinese aquatic environment:Source,occurrence,distribution,and ecological risk assessment[J].The Science of the Total Environment,2023,904:166180 Ben Othman H,Pick F R,Sakka Hlaili A,et al.Effects of polycyclic aromatic hydrocarbons on marine and freshwater microalgae:A review[J].Journal of Hazardous Materials,2023,441:129869 Nizzetto L,Gioia R,Li J,et al.Biological pump control of the fate and distribution of hydrophobic organic pollutants in water and plankton[J].Environmental Science&Technology,2012,46(6):3204-3211 Lenka S P,Kah M,Padhye L P.A review of the occurrence,transformation,and removal of poly-and perfluoroalkyl substances (PFAS) in wastewater treatment plants[J].Water Research,2021,199:117187 Ashraf M A.Persistent organic pollutants (POPs):Aglobal issue,a global challenge[J].Environmental Science and Pollution Research,2017,24(5):4223-4227 Breivik K,Alcock R,Li Y F,et al.Primary sources of selected POPs:Regional and global scale emission inventories[J].Environmental Pollution,2004,128(1-2):3-16 Vijayanand M,Ramakrishnan A,Subramanian R,et al.Polyaromatic hydrocarbons (PAHs) in the water environment:A review on toxicity,microbial biodegradation,systematic biological advancements,and environmental fate[J].Environmental Research,2023,227:115716 Lohmann R,Breivik K,Dachs J,et al.Global fate of POPs:Current and future research directions[J].Environmental Pollution,2007,150(1):150-165 Ilyina T,Pohlmann T,Lammel G,et al.A fate and transport ocean model for persistent organic pollutants and itsapplication to the North Sea[J].Journal of Marine Systems,2006,63(1-2):1-19 Zhang X M,Lohmann R,Sunderland E M.Poly-and perfluoroalkyl substances in seawater and plankton from thenorthwestern Atlantic margin[J].Environmental Science&Technology,2019,53(21):12348-12356 Shaw S D,Berger M L,Brenner D,et al.Bioaccumulation of polybrominated diphenyl ethers and hexabromocyclododecane in the northwest Atlantic marine food web[J].The Science of the Total Environment,2009,407(10):3323-3329 Corsolini S,SaràG.The trophic transfer of persistent pollutants (HCB,DDTs,PCBs) within polar marine foodwebs[J].Chemosphere,2017,177:189-199 Sanganyado E,Chingono K E,Gwenzi W,et al.Organicpollutants in deep sea:Occurrence,fate,and ecologicalimplications[J].Water Research,2021,205:117658 Varnosfaderany M N,Bakhtiari A R,Gu Z Y,et al.Vertical distribution and source identification of polycyclic aromatic hydrocarbons (PAHs) in southwest of the CaspianSea:Most petrogenic events during the late Little Ice Age[J].Marine Pollution Bulletin,2014,87(1-2):152-163 Lohmann R,Klanova J,Kukucka P,et al.Concentrations,fluxes,and residence time of PBDEs across the tropicalAtlantic Ocean[J].Environmental Science&Technology,2013,47(24):13967-13975 Ockende W A,Breivik K,Meijer S N,et al.The globalre-cycling of persistent organic pollutants is strongly retarded by soils[J].Environmental Pollution,2003,121(1):75-80 Odabasi M,Dumanoglu Y,Kara M,et al.Spatial variation of PAHs and PCBs in coastal air,seawater,and sedimentsin a heavily industrialized region[J].Environmental Science and Pollution Research International,2017,24(15):13749-13759 Xin X Y,Chen B,Yang M,et al.A critical review on theinteraction of polymer particles and co-existing contaminants:Adsorption mechanism,exposure factors,effects onplankton species[J].Journal of Hazardous Materials,2023,445:130463 Falkowski P.Ocean Science:The power of plankton[J].Nature,2012,483(7387):S17-S20 Dachs J,Eisenreich S J,Baker J E,et al.Coupling of phytoplankton uptake and air-water exchange of persistentorganic pollutants[J].Environmental Science and Technology,1999,33(20):3653-3660 Chia W Y,Tang D Y Y,Khoo K S,et al.Nature's fightagainst plastic pollution:Algae for plastic biodegradationand bioplastics production[J].Environmental Science andEcotechnology,2020,4:100065 Abdelfattah A,Ali S S,Ramadan H,et al.Microalgaebased wastewater treatment:Mechanisms,challenges,recent advances,and future prospects[J].EnvironmentalScience and Ecotechnology,2023,13:100205 Fan C W,Reinfelder J R.Phenanthrene accumulation kinetics in marine diatoms[J].Environmental Science&Technology,2003,37(15):3405-3412 Lv M C,Tang X X,Zhao Y R,et al.The toxicity,bioaccumulation and debromination of BDE-47 and BDE-209in Chlorella sp.under multiple exposure modes[J].TheScience of the Total Environment,2020,723:138086 Po B H,Ho K L,Lam M H,et al.Uptake and biotransformation of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) in four marine microalgae species[J].Scientific Reports,2017,7:44263 Skoglund R S,Stange K,Swackhamer D L.A kineticsmodel for predicting the accumulation of PCBs in phytoplankton[J].Environmental Science&Technology,1996,30(7):2113-2120 Koelmans A A,Lijklema L,Jiménez C S.Sorption of chlorobenzenes to mineralizing phytoplankton[J].Environmental Toxicology and Chemistry,1993,12(8):1425-1439 Ko F C,Baker J E,Tew K S.Kinetics of polychlorinatedbiphenyl partitioning to marine Chrysophyte Isochrysisgalbana[J].The Science of the Total Environment,2012,416:410-417 Dong D M,Zhang L W,Guo Z Y,et al.The role of extracellular polymeric substances on the sorption of pentachlorophenol onto natural biofilms in different incubationtimes:A fluorescence study[J].Chemistry and Ecology,2017,33(2):131-142 Lei A P,Hu Z L,Wong Y S,et al.Removal of fluoranthene and pyrene by different microalgal species[J].Bioresource Technology,2007,98(2):273-280 Zhang D N,Ran C Y,Yang Y,et al.Biosorption of phenanthrene by pure algae and field-collected planktons andtheir fractions[J].Chemosphere,2013,93(1):61-68 Hu C W,Luo Q,Huang Q G.Ecotoxicological effects of perfluorooctanoic acid on freshwater microalgaeChlamydomonas reinhardtii and Scenedesmus obliquus[J].Environmental Toxicology and Chemistry,2014,33(5):1129-1134 Xiao R,Zheng Y.Overview of microalgal extracellularpolymeric substances (EPS) and their applications[J].Biotechnology Advances,2016,34(7):1225-1244 Ghaffar I,Hussain A,Hasan,et al.Microalgal-induced remediation of wastewaters loaded with organic and inorganic pollutants:An overview[J].Chemosphere,2023,320:137921 Lv M C,Zhao Y R,Li D R,et al.The adsorption and absorption kinetics of BDE-47 by Chlorella sp.and the role of extracellular polymer substances influenced by environmental factors[J].Environmental Research,2023,216(Pt 3):114698 Bielmyer-Fraser G K,Jarvis T A,Lenihan H S,et al.Cellular partitioning of nanoparticulate versus dissolved metals in marine phytoplankton[J].Environmental Science&Technology,2014,48(22):13443-13450 Sutherland D L,Ralph P J.Microalgal bioremediation of emerging contaminants:Opportunities and challenges[J].Water Research,2019,164:114921 Del Vento S,Dachs J.Prediction of uptake dynamics of persistent organic pollutants by bacteria and phytoplankton[J].Environmental Toxicology and Chemistry,2002,21(10):2099-2107 Chan S M N,Luan T G,Wong M H,et al.Removal andbiodegradation of polycyclic aromatic hydrocarbons bySelenastrum capricornutum[J].Environmental Toxicologyand Chemistry,2006,25(7):1772-1779 Hu Y,Meng F L,Hu Y Y,et al.Concentration-and nutrient-dependent cellular responses of microalgae Chlorellapyrenoidosa to perfluorooctanoic acid[J].Water Research,2020,185:116248 Khan B,Burgess R M,Cantwell M G.Occurrence andbioaccumulation patterns of per-and polyfluoroalkyl substances (PFAS) in the marine environment[J].ACSES&T Water,2023,3(5):1243-1259 Subashchandrabose S R,Krishnan K,Gratton E,et al.Potential of fluorescence imaging techniques to monitor mutagenic PAH uptake by microalga[J].Environmental Science&Technology,2014,48(16):9152-9160 Chai C,Ge W,Yin X D.Variation of bioaccumulation ability of 2,2',4,4'-tetrabromodiphenyl ether by marinediatom Skeletonema costatum under different N:P ratios[J].Journal of Ocean University of China,2014,13(3):523-530 Lynn S G,Price D J,Birge W J,et al.Effect of nutrientavailability on the uptake of PCB congener 2,2',6,6'-tetrachlorobiphenyl by a diatom (Stephanodiscus minutulus) and transfer to a zooplankton (Daphnia pulicaria)[J].Aquatic Toxicology,2007,83(1):24-32 Magnusson K,Magnusson M,Ostberg P,et al.Bioaccumulation of 14C-PCB 101 and 14C-PBDE 99 in the marine planktonic copepod Calanus finmarchicus under different food regimes[J].Marine Environmental Research,2007,63(1):67-81 Breitholtz M,Wollenberger L.Effects of three PBDEs ondevelopment,reproduction and population growth rate of the harpacticoid copepod Nitocra spinipes[J].AquaticToxicology,2003,64(1):85-96 Agersted M D,Møller E F,Gustavson K.Bioaccumulation of oil compounds in the high-Arctic copepod Calanushyperboreus[J].Aquatic Toxicology (Amsterdam,Netherlands),2018,195:8-14 Hansen B H,Sørensen L,Størseth T R,et al.The use of PAH,metabolite and lipid profiling to assess exposureand effects of produced water discharges on pelagic copepods[J].The Science of the Total Environment,2020,714:136674 Berrojalbiz N,Dachs J,Del Vento S,et al.Persistent organic pollutants in Mediterranean seawater and processesaffecting their accumulation in plankton[J].Environmental Science&Technology,2011,45(10):4315-4322 Conder J M,Hoke R A,de Wolf W,et al.Are PFCAs bioaccumulative?A critical review and comparison withregulatory criteria and persistent lipophilic compounds[J].Environmental Science&Technology,2008,42(4):995-1003 Banks R E,Smart B E,Tatlow J C.OrganofluorineChemistry:Principles and Commercial Applications[M].New York:Plenum Press,1994:57-88 Jabusch T W,Swackhamer D L.Subcellular accumulation of polychlorinated biphenyls in the green alga Chlamydomonas reinhardtii[J].Environmental Toxicology andChemistry,2004,23(12):2823-2830 Saiz E,Calbet A.Copepod feeding in the ocean:Scalingpatterns,composition of their diet and the bias of estimates due to microzooplankton grazing during incubations[J].Hydrobiologia,2011,666(1):181-196 Peltonen H,Ruokojärvi P,Korhonen M,et al.PCDD/Fs,PCBs and PBDEs in zooplankton in the Baltic Sea:Spatial and temporal shifts in the congener-specific concentrations[J].Chemosphere,2014,114:172-180 Burkhard L P.Evaluation of published bioconcentrationfactor (BCF) and bioaccumulation factor (BAF) data forper-and polyfluoroalkyl substances across aquatic species[J].Environmental Toxicology and Chemistry,2021,40(6):1530-1543 Qiu Y W,Zeng E Y,Qiu H L,et al.Bioconcentration of polybrominated diphenyl ethers and organochlorine pesticides in algae is an important contaminant route to highertrophic levels[J].The Science of the Total Environment,2017,579:1885-1893 Berrojalbiz N,Lacorte S,Calbet A,et al.Accumulationand cycling of polycyclic aromatic hydrocarbons in zooplankton[J].Environmental Science&Technology,2009,43(7):2295-2301 Liu B L,Gao L,Ding L J,et al.Trophodynamics and bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) in marine food web from Laizhou Bay,China[J].MarinePollution Bulletin,2023,194(Pt B):115307 Li H Y,Duan D D,Beckingham B,et al.Impact of trophic levels on partitioning and bioaccumulation of polycyclic aromatic hydrocarbons in particulate organic matterand plankton[J].Marine Pollution Bulletin,2020,160:111527 Frouin H,Dangerfield N,MacDonald R W,et al.Partitioning and bioaccumulation of PCBs and PBDEs in marineplankton from the Strait of Georgia,British Columbia,Canada[J].Progress in Oceanography,2013,115:65-75 Liu Y H,Feng Y M,Li J R,et al.The bioaccumulation,elimination,and trophic transfer of BDE-47 in the aquaticfood chain of Chlorella pyrenoidosa-Daphnia magna[J].Environmental Pollution,2020,258:113720 Pouch A,Zaborska A,Dąbrowska A M,et al.Bioaccumulation of PCBs,HCB and PAHs in the summer plankton from West Spitsbergen fjords[J].Marine PollutionBulletin,2022,177:113488 Wan Y,Jin X H,Hu J Y,et al.Trophic dilution of polycyclic aromatic hydrocarbons (PAHs) in a marine food webfrom Bohai Bay,North China[J].Environmental Science&Technology,2007,41(9):3109-3114 Qadeer A,Liu M,Yang J,et al.Trophodynamics and parabolic behaviors of polycyclic aromatic hydrocarbons inan urbanized lake food web,Shanghai[J].Ecotoxicologyand Environmental Safety,2019,178:17-24 Tao Y Q,Yu J,Liu X R,et al.Factors affecting annualoccurrence,bioaccumulation,and biomagnification of polycyclic aromatic hydrocarbons in plankton food webs of subtropical eutrophic lakes[J].Water Research,2018,132:1-11 Hsieh H Y,Huang K C,Cheng J O,et al.Environmentaleffects on the bioaccumulation of PAHs in marine zooplankton in Gaoping coastal waters,Taiwan:Concentration,distribution,profile,and sources[J].Marine Pollution Bulletin,2019,144:68-78 Fan S R,Wang B L,Liu H,et al.Trophodynamics of organic pollutants in pelagic and benthic food webs of LakeDianchi:Importance of ingested sediment As uptake route[J].Environmental Science&Technology,2017,51(24):14135-14143 Zhang L J,Zhang L L,Sun D.Considering zooplanktonas a black box in determining PAH concentrations couldresult in misjudging their bioaccumulation[J].Environmental Pollution (Barking,Essex:1987),2023,316(Pt 1):120672 Almeda R,Wambaugh Z,Chai C,et al.Effects of crudeoil exposure on bioaccumulation of polycyclic aromatichydrocarbons and survival of adult and larval stages of gelatinous zooplankton[J].PLoS One,2013,8(10):e74476 Øverjordet I B,Nepstad R,Hansen B H,et al.Toxicokinetics of crude oil components in Arctic copepods[J].Environmental Science&Technology,2018,52(17):9899-9907 Castro-Jiménez J,Bǎnaru D,Chen C T,et al.Persistentorganic pollutants burden,trophic magnification and riskin a pelagic food web from coastal NW MediterraneanSea[J].Environmental Science&Technology,2021,55(14):9557-9568 Liu Y H,Cui S,Ma Y,et al.Brominated flame retardants (BFRs) in marine food webs from Bohai Sea,China[J].The Science of the Total Environment,2021,772:145036 Shao M H,Tao P,Wang M,et al.Trophic magnification of polybrominated diphenyl ethers in the marine food webfrom coastal area of Bohai Bay,North China[J].Environmental Pollution,2016,213:379-385 Poma G,Volta P,Roscioli C,et al.Concentrations andtrophic interactions of novel brominated flame retardants,HBCD,and PBDEs in zooplankton and fish from LakeMaggiore (Northern Italy)[J].The Science of the TotalEnvironment,2014,481:401-408 Gewurtz S B,Gandhi N,Christensen G N,et al.Use of afood web model to evaluate the factors responsible forhigh PCB fish concentrations in Lake Ellasjøen,a highArctic Lake[J].Environmental Science and Pollution Research International,2009,16(2):176-190 Huang Z F,Qadeer A,Zheng S S,et al.Fatty acid profileas an efficient bioindicator of PCB bioaccumulation in afreshwater lake food web:A stable isotope guided investigation[J].Journal of Hazardous Materials,2022,423(PtB):127121 Figueiredo K,MäenpääK,Leppänen M T,et al.Trophictransfer of polychlorinated biphenyls (PCB) in a boreallake ecosystem:Testing of bioaccumulation models[J].The Science of the Total Environment,2014,466-467:690-698 Zhou S S,Zhu H B,Huang S R,et al.Biomagnificationand risk assessment of polychlorinated biphenyls in foodweb components from Zhoushan fishing ground,China[J].Marine Pollution Bulletin,2019,142:613-619 MacKintosh C E,Maldonado J,Jing H W,et al.Distribution of phthalate esters in a marine aquatic food web:Comparison to polychlorinated biphenyls[J].Environmental Science&Technology,2004,38(7):2011-2020 Xie J Q,Tu S Y,Hayat K,et al.Trophodynamics of halogenated organic pollutants (HOPs) in aquatic food webs[J].The Science of the Total Environment,2023,899:166426 Goutte A,Alliot F,Budzinski H,et al.Trophic transfer of micropollutants and their metabolites in an urban riverinefood web[J].Environmental Science&Technology,2020,54(13):8043-8050 Loi E I, Yeung L W, Taniyasu S, et al. Trophic magnification of poly-and perfluorinated compounds in a subtropical food web[J]. Environmental Science&Technology,2011, 45(13):5506-5513 Munoz G, Budzinski H, Babut M, et al. Evidence for thetrophic transfer of perfluoroalkylated substances in a temperate macrotidal estuary[J]. Environmental Science&Technology, 2017, 51(15):8450-8459 Xu J, Guo C S, Zhang Y, et al. Bioaccumulation andtrophic transfer of perfluorinated compounds in a eutrophic freshwater food web[J]. Environmental Pollution (Barking, Essex:1987), 2014, 184:254-261 Tomy G T, Budakowski W, Halldorson T, et al. Fluorinated organic compounds in an eastern Arctic marine foodweb[J]. Environmental Science&Technology, 2004, 38(24):6475-6481 Casal P, González-Gaya B, Zhang Y F, et al. Accumulation of perfluoroalkylated substances in oceanic plankton[J]. Environmental Science&Technology, 2017, 51(5):2766-2775 Powley C R, George S W, Russell M H, et al. Polyfluorinated chemicals in a spatially and temporally integratedfood web in the Western Arctic[J]. Chemosphere, 2008,70(4):664-672 郑晓波,罗孝俊,麦碧娴.持久性卤代有机污染物(PHCs)在食物网中的生物放大研究进展[J].矿物岩石地球化学通报, 2020, 39(1):30-43 , 4Zheng X B, Luo X J, Mai B X. Research progress on biomagnification of persistent halogenated compounds (PHCs) in food webs[J]. Bulletin of Mineralogy, Petrologyand Geochemistry, 2020, 39(1):30-43, 4(in Chinese)
Guo Y, Li Y, Wang Z W. Electrocatalytic hydro-dehalogenation of halogenated organic pollutants from wastewater:A critical review[J]. Water Research, 2023, 234:119810 Peng F Q, Ying G G, Yang B, et al. Biotransformation of the flame retardant tetrabromobisphenol-A (TBBPA) byfreshwater microalgae[J]. Environmental Toxicology andChemistry, 2014, 33(8):1705-1711 Deng D, Chen H X, Wong Y S, et al. Physiological response and oxidative transformation of 2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47) by a Chlorella isolate[J].The Science of the Total Environment, 2020, 744:140869 El-Bestawy E A, El-Salam A Z A, Mansy A E R H. Potential use of environmental cyanobacterial species inbioremediation of lindane-contaminated effluents[J]. International Biodeterioration&Biodegradation, 2007, 59(3):180-192 Kuritz T, Wolk C P. Use of filamentous cyanobacteria forbiodegradation of organic pollutants[J]. Applied and Environmental Microbiology, 1995, 61(1):234-238 Matamoros V, Rodríguez Y. Batch vs continuous-feedingoperational mode for the removal of pesticides from agricultural run-off by microalgae systems:A laboratory scalestudy[J]. Journal of Hazardous Materials, 2016, 309:126-132 Lal S, Lal R, Saxena D M. Bioconcentration and metabolism of DDT, fenitrothion and chlorpyrifos by the bluegreen algae Anabaena sp. and Aulosira fertilissima[J].Environmental Pollution (Barking, Essex:1987), 1987, 46(3):187-196 Zhao C H, Yan M, Zhong H, et al. Biodegradation of polybrominated diphenyl ethers and strategies for acceleration:A review[J]. International Biodeterioration&Biodegradation, 2018, 129:23-32 Borja J, Taleon D M, Auresenia J, et al. Polychlorinatedbiphenyls and their biodegradation[J]. Process Biochemistry, 2005, 40(6):1999-2013 Kim R O, Kim B M, Jeong C B, et al. Expression pattern of entire cytochrome P450 genes and response of defensomes in the benzo[a]pyrene-exposed monogonont rotiferBrachionus koreanus[J]. Environmental Science&Technology, 2013, 47(23):13804-13812 Torres M A, Barros M P, Campos S C, et al. Biochemicalbiomarkers in algae and marine pollution:A review[J].Ecotoxicology and Environmental Safety, 2008, 71(1):1-15 Han J, Won E J, Kim H S, et al. Identification of the full46 cytochrome P450(CYP) complement and modulation of CYP expression in response to water-accommodatedfractions of crude oil in the cyclopoid copepod Paracyclopina nana[J]. Environmental Science&Technology,2015, 49(11):6982-6992 Satpati G G, Gupta S, Biswas R K, et al. Microalgae mediated bioremediation of polycyclic aromatic hydrocarbons:Strategies, advancement and regulations[J]. Chemosphere, 2023, 344:140337 Luo L J, Xiao Z Y, Zhou X Y, et al. Quantum chemicalcalculation to elucidate the biodegradation pathway of methylphenanthrene by green microalgae[J]. Water Research, 2020, 173:115598 Tomar R S, Jajoo A. Enzymatic pathway involved in thedegradation of fluoranthene by microalgae Chlorella vulgaris[J]. Ecotoxicology (London, England), 2021, 30(2):268-276 Cerniglia C E, Gibson D T, Van Baalen C. Oxidation of naphthalene by cyanobacteria and microalgae[J]. Microbiology, 1980, 116(2):495-500 Cerniglia C E, Van Baalen C, Gibson D T. Metabolism of naphthalene by the Cyanobacterium oscillatoria sp., strainJCM[J]. Microbiology, 1980, 116(2):485-494 Crini G, Lichtfouse E. Green Adsorbents for PollutantRemoval:Fundamentals and Design[M]. Berlin:SpringerInternational Publishing, 2018:215-240 Ke L, Luo L J, Wang P, et al. Effects of metals on biosorption and biodegradation of mixed polycyclic aromatichydrocarbons by a freshwater green alga Selenastrum capricornutum[J]. Bioresource Technology, 2010, 101(18):6961-6972 Becerril Mercado J E, García de Llasera M P, MéndezGarcía M. Size exclusion chromatography protein profile of Selenastrum capricornutum culture extracts degradingbenzo (a) pyrene[J]. Polycyclic Aromatic Compounds,2023, 43(10):9193-9209 SureshKumar P, Thomas J, Poornima V. Structural insights on bioremediation of polycyclic aromatic hydrocarbons using microalgae:A modelling-based computationalstudy[J]. Environmental Monitoring and Assessment,2018, 190:1-16 Luo J, Deng J L, Cui L L, et al. The potential assessment of green alga Chlamydomonas reinhardtii CC-503 in thebiodegradation of benz (a) anthracene and the relatedmechanism analysis[J]. Chemosphere, 2020, 249:126097 Wolfe D A. Fate and effects of petroleum hydrocarbonsin marine ecosystems and organisms[R]. Washington DC:US Environmental Protection Agency, 1977:286-304 Corner E D S, Harris R P, Kilvington C C, et al. Petroleum compounds in the marine food web:Short-term experiments on the fate of naphthalene in Calanus[J]. Journal of the Marine Biological Association of the UnitedKingdom, 1976, 56(1):121-133 Lee R F. Fate of petroleum hydrocarbons in marine zooplankton[J]. International Oil Spill Conference Proceedings, 1975, 1975(1):549-553 Kim B M, Rhee J S, Hwang U K, et al. Dose-and timedependent expression of aryl hydrocarbon receptor (AhR) and aryl hydrocarbon receptor nuclear translocator (ARNT) in PCB-, B[a]P-, and TBT-exposed intertidal copepod Tigriopus japonicus[J]. Chemosphere, 2015, 120:398-406 Han J, Park J C, Hagiwara A, et al. Identification of thefull 26 cytochrome P450(CYP) genes and analysis of their expression in response to benzo[α]pyrene in the marine rotifer Brachionus rotundiformis[J]. Comparative Biochemistry and Physiology Part D, Genomics&Proteomics, 2019, 29:185-192 Sun H Z, Li Y M, Wang P, et al. First report on hydroxylated and methoxylated polybrominated diphenyl ethersin terrestrial environment from the Arctic and Antarctica[J]. Journal of Hazardous Materials, 2022, 424(Pt D):127644 Tehrani R, Van Aken B. Hydroxylated polychlorinated biphenyls in the environment:Sources, fate, and toxicities[J]. Environmental Science and Pollution Research International, 2014, 21(10):6334-6345 Wang X X, Yang H Y, Hu X X, et al. Effects of HO-/MeO-PBDEs on androgen receptor:in vitro investigationand Helix 12-involved MD simulation[J]. EnvironmentalScience&Technology, 2013, 47(20):11802-11809 Cantón R F, Sanderson J T, Letcher R J, et al. Inhibitionand induction of aromatase (CYP19) activity by brominated flame retardants in H295R human adrenocortical carcinoma cells[J]. Toxicological Sciences:An Official Journal of the Society of Toxicology, 2005, 88(2):447-455 Marsh G, Athanasiadou M, Bergman A, et al. Identification of hydroxylated and methoxylated polybrominateddiphenyl ethers in Baltic Sea salmon (Salmo salar) blood[J]. Environmental Science&Technology, 2004, 38(1):10-18 Singh K S, Singh A. Chemical diversities, biological activities and chemical synthesis of marine diphenyl etherand their derivatives[J]. Journal of Molecular Structure,2022, 1265:133302 Han J, Kim D H, Seo J S, et al. Assessing the identityand expression level of the cytochrome P45020A1(CYP20A1) gene in the BPA-, BDE-47, and WAF-exposed copepods Tigriopus japonicus and Paracyclopinanana[J]. Comparative Biochemistry and Physiology Toxicology&Pharmacology, 2017, 193:42-49 Watanabe K, Takihana N, Aoyagi H, et al. Symbiotic association in Chlorella culture[J]. FEMS Microbiology Ecology, 2005, 51(2):187-196 Méndez García M, García de Llasera M P. A review onthe enzymes and metabolites identified by mass spectrometry from bacteria and microalgae involved in the degradation of high molecular weight PAHs[J]. The Science of the Total Environment, 2021, 797:149035 Luo S S, Chen B W, Lin L, et al. Pyrene degradation accelerated by constructed consortium of bacterium and microalga:Effects of degradation products on the microalgalgrowth[J]. Environmental Science&Technology, 2014,48(23):13917-13924 Patel J G, Nirmal Kumar J I, Kumar R N, et al. Enhancement of pyrene degradation efficacy of Synechocystis sp.,by construction of an artificial microalgal-bacterial consortium[J]. Cogent Chemistry, 2015, 1(1):1064193 Muñoz R, Guieysse B, Mattiasson B. Phenanthrene biodegradation by an algal-bacterial consortium in two-phasepartitioning bioreactors[J]. Applied Microbiology and Biotechnology, 2003, 61(3):261-267 Kumari M, Ghosh P, Swati, et al. Development of artificial consortia of microalgae and bacteria for efficient biodegradation and detoxification of lindane[J]. BioresourceTechnology Reports, 2020, 10:100415 Jurado E, Lohmann R, Meijer S, et al. Latitudinal andseasonal capacity of the surface oceans as a reservoir of polychlorinated biphenyls[J]. Environmental Pollution,2004, 128(1-2):149-162 Lohmann R, Markham E, Klanova J, et al. Trends of diverse POPs in air and water across the western AtlanticOcean:Strong gradients in the ocean but not in the air[J].Environmental Science&Technology, 2021, 55(14):9498-9507 Gao K, Miao X, Fu J, et al. Occurrence and trophic transfer of per-and polyfluoroalkyl substances in an Antarcticecosystem[J]. Environmental Pollution, 2020, 257:113383 武晓果,谢周清.气候变化背景下极地海洋和陆地生态系统中持久性有机污染物的迁移和分布[J].极地研究, 2014, 26(4):433-440 Wu X G, Xie Z Q. Influence of climate change on the distribution and transportation of persistent organic pollutantsin marine and terrestrial ecosystems in polar regions[J].Chinese Journal of Polar Research, 2014, 26(4):433-440(in Chinese)
Archibald K M, Siegel D A, Doney S C. Modeling theimpact of zooplankton diel vertical migration on the carbon export flux of the biological pump[J]. Global Biogeochemical Cycles, 2019, 33(2):181-199 Herndl G J, Reinthaler T. Microbial control of the darkend of the biological pump[J]. Nature Geoscience, 2013,6(9):718-724 Paerl H W, Xu H, McCarthy M J, et al. Controllingharmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China):The need for a dual nutrient (N&P) management strategy[J]. Water Research, 2011, 45(5):1973-1983 Tao Y Q, Liu D H. Trophic status affects the distribution of polycyclic aromatic hydrocarbons in the water columns, surface sediments, and plankton of twenty ChineseLakes[J]. Environmental Pollution (Barking, Essex:1987), 2019, 252(Pt A):666-674 Everaert G, De Laender F, Goethals P L, et al. Multidecadal field data support intimate links between phytoplankton dynamics and PCB concentrations in marine sediments and biota[J]. Environmental Science&Technology, 2015, 49(14):8704-8711 Cai M G, Duan M S, Guo J Q, et al. PAHs in the Northern South China Sea:Horizontal transport and downwardexport on the continental shelf[J]. Marine Chemistry,2018, 202:121-129 Cheng Z N, Lin T, Xu W H, et al. A preliminary assessment of polychlorinated biphenyls and polybrominated diphenyl ethers in deep-sea sediments from the Indian Ocean[J]. Marine Pollution Bulletin, 2015, 94(1-2):323-328 Qiu Y W, Wang D X, Zhang G. Assessment of persistentorganic pollutants (POPs) in sediments of the Eastern Indian Ocean[J]. The Science of the Total Environment,2020, 710:136335 Jin M Q, Fu J, Xue B, et al. Distribution and enantiomeric profiles of organochlorine pesticides in surface sediments from the Bering Sea, Chukchi Sea and adjacentArctic areas[J]. Environmental Pollution, 2017, 222:109-117 Ge M L, Wang X T, Yang G, et al. Persistent organic pollutants (POPs) in deep-sea sediments of the tropical Western Pacific Ocean[J]. Chemosphere, 2021, 277:130267 Dasgupta S, Peng X, Chen S, et al. Toxic anthropogenicpollutants reach the deepest ocean on Earth[J]. Geochemical Perspectives Letters, 2018, 1:22-26 Kuzyk Z Z A, MacDonald R W, Johannessen S C, et al.Biogeochemical controls on PCB deposition in HudsonBay[J]. Environmental Science&Technology, 2010, 44(9):3280-3285 Galbán-Malagón C, Berrojalbiz N, Ojeda M J, et al. Theoceanic biological pump modulates the atmospheric transport of persistent organic pollutants to the Arctic[J]. Nature Communications, 2012, 3:862 González-Gaya B, Martínez-Varela A, Vila-Costa M, etal. Biodegradation as an important sink of aromatic hydrocarbons in the oceans[J]. Nature Geoscience, 2019,12:119-125
计量
- 文章访问数: 1164
- HTML全文浏览数: 1164
- PDF下载数: 199
- 施引文献: 0