浮游生物对持久性有机污染物迁移和转化影响的研究进展

刘溱, 赵妍, 吕梦晨, 唐学玺. 浮游生物对持久性有机污染物迁移和转化影响的研究进展[J]. 生态毒理学报, 2024, 19(2): 126-139. doi: 10.7524/AJE.1673-5897.20231125001
引用本文: 刘溱, 赵妍, 吕梦晨, 唐学玺. 浮游生物对持久性有机污染物迁移和转化影响的研究进展[J]. 生态毒理学报, 2024, 19(2): 126-139. doi: 10.7524/AJE.1673-5897.20231125001
Liu Zhen, Zhao Yan, LÜ Mengchen, Tang Xuexi. Research Progress on Effects of Plankton on Transport and Transformation of Persistent Organic Pollutants[J]. Asian Journal of Ecotoxicology, 2024, 19(2): 126-139. doi: 10.7524/AJE.1673-5897.20231125001
Citation: Liu Zhen, Zhao Yan, LÜ Mengchen, Tang Xuexi. Research Progress on Effects of Plankton on Transport and Transformation of Persistent Organic Pollutants[J]. Asian Journal of Ecotoxicology, 2024, 19(2): 126-139. doi: 10.7524/AJE.1673-5897.20231125001

浮游生物对持久性有机污染物迁移和转化影响的研究进展

    作者简介: 刘溱(1999-),男,硕士研究生,研究方向为海洋生态学,E-mail:1120694670@qq.com
    通讯作者: 赵妍(1987-),女,博士,副教授,主要研究方向为海洋生态学。E-mail:zhaoyan@ouc.edu.cn; 
  • 基金项目:

    山东省自然科学基金面上项目(ZR2022MD006)

  • 中图分类号: X171.5

Research Progress on Effects of Plankton on Transport and Transformation of Persistent Organic Pollutants

    Corresponding author: Zhao Yan, zhaoyan@ouc.edu.cn
  • Fund Project:
  • 摘要: 持久性有机污染物(persistent organic pollutants,POPs)被持续排放到自然环境中,严重危害环境安全和生命健康。海洋、河流等水环境是POPs重要的"汇",作为水生食物链的起点,浮游生物在水生生态系统的物质循环和能量流动中扮演着重要的角色,其对POPs的吸附、吸收、转化及运输,在很大程度上影响了POPs的环境行为。本文将浮游生物对POPs迁移和转化的可能影响进行了总结,综合分析了浮游植物和浮游动物对POPs的吸附-吸收和生物富集/放大过程及影响以上过程的生物和环境因素,从脱卤代谢、氧化代谢和微生物联合代谢3个方面阐述了浮游生物对POPs的降解及转化机制,最后讨论了浮游生物的生物泵作用对POPs垂直迁移的影响。本文能够为水生生物影响POPs迁移和转化的研究提供重要参考。
  • 加载中
  • Jones K C.Persistent organic pollutants (POPs) and related chemicals in the global environment:Some personalreflections[J].Environmental Science&Technology,2021,55(14):9400-9412
    Wang N,Lai C,Xu F H,et al.A review of polybrominated diphenyl ethers and novel brominated flame retardantsin Chinese aquatic environment:Source,occurrence,distribution,and ecological risk assessment[J].The Science of the Total Environment,2023,904:166180
    Ben Othman H,Pick F R,Sakka Hlaili A,et al.Effects of polycyclic aromatic hydrocarbons on marine and freshwater microalgae:A review[J].Journal of Hazardous Materials,2023,441:129869
    Nizzetto L,Gioia R,Li J,et al.Biological pump control of the fate and distribution of hydrophobic organic pollutants in water and plankton[J].Environmental Science&Technology,2012,46(6):3204-3211
    Lenka S P,Kah M,Padhye L P.A review of the occurrence,transformation,and removal of poly-and perfluoroalkyl substances (PFAS) in wastewater treatment plants[J].Water Research,2021,199:117187
    Ashraf M A.Persistent organic pollutants (POPs):Aglobal issue,a global challenge[J].Environmental Science and Pollution Research,2017,24(5):4223-4227
    Breivik K,Alcock R,Li Y F,et al.Primary sources of selected POPs:Regional and global scale emission inventories[J].Environmental Pollution,2004,128(1-2):3-16
    Vijayanand M,Ramakrishnan A,Subramanian R,et al.Polyaromatic hydrocarbons (PAHs) in the water environment:A review on toxicity,microbial biodegradation,systematic biological advancements,and environmental fate[J].Environmental Research,2023,227:115716
    Lohmann R,Breivik K,Dachs J,et al.Global fate of POPs:Current and future research directions[J].Environmental Pollution,2007,150(1):150-165
    Ilyina T,Pohlmann T,Lammel G,et al.A fate and transport ocean model for persistent organic pollutants and itsapplication to the North Sea[J].Journal of Marine Systems,2006,63(1-2):1-19
    Zhang X M,Lohmann R,Sunderland E M.Poly-and perfluoroalkyl substances in seawater and plankton from thenorthwestern Atlantic margin[J].Environmental Science&Technology,2019,53(21):12348-12356
    Shaw S D,Berger M L,Brenner D,et al.Bioaccumulation of polybrominated diphenyl ethers and hexabromocyclododecane in the northwest Atlantic marine food web[J].The Science of the Total Environment,2009,407(10):3323-3329
    Corsolini S,SaràG.The trophic transfer of persistent pollutants (HCB,DDTs,PCBs) within polar marine foodwebs[J].Chemosphere,2017,177:189-199
    Sanganyado E,Chingono K E,Gwenzi W,et al.Organicpollutants in deep sea:Occurrence,fate,and ecologicalimplications[J].Water Research,2021,205:117658
    Varnosfaderany M N,Bakhtiari A R,Gu Z Y,et al.Vertical distribution and source identification of polycyclic aromatic hydrocarbons (PAHs) in southwest of the CaspianSea:Most petrogenic events during the late Little Ice Age[J].Marine Pollution Bulletin,2014,87(1-2):152-163
    Lohmann R,Klanova J,Kukucka P,et al.Concentrations,fluxes,and residence time of PBDEs across the tropicalAtlantic Ocean[J].Environmental Science&Technology,2013,47(24):13967-13975
    Ockende W A,Breivik K,Meijer S N,et al.The globalre-cycling of persistent organic pollutants is strongly retarded by soils[J].Environmental Pollution,2003,121(1):75-80
    Odabasi M,Dumanoglu Y,Kara M,et al.Spatial variation of PAHs and PCBs in coastal air,seawater,and sedimentsin a heavily industrialized region[J].Environmental Science and Pollution Research International,2017,24(15):13749-13759
    Xin X Y,Chen B,Yang M,et al.A critical review on theinteraction of polymer particles and co-existing contaminants:Adsorption mechanism,exposure factors,effects onplankton species[J].Journal of Hazardous Materials,2023,445:130463
    Falkowski P.Ocean Science:The power of plankton[J].Nature,2012,483(7387):S17-S20
    Dachs J,Eisenreich S J,Baker J E,et al.Coupling of phytoplankton uptake and air-water exchange of persistentorganic pollutants[J].Environmental Science and Technology,1999,33(20):3653-3660
    Chia W Y,Tang D Y Y,Khoo K S,et al.Nature's fightagainst plastic pollution:Algae for plastic biodegradationand bioplastics production[J].Environmental Science andEcotechnology,2020,4:100065
    Abdelfattah A,Ali S S,Ramadan H,et al.Microalgaebased wastewater treatment:Mechanisms,challenges,recent advances,and future prospects[J].EnvironmentalScience and Ecotechnology,2023,13:100205
    Fan C W,Reinfelder J R.Phenanthrene accumulation kinetics in marine diatoms[J].Environmental Science&Technology,2003,37(15):3405-3412
    Lv M C,Tang X X,Zhao Y R,et al.The toxicity,bioaccumulation and debromination of BDE-47 and BDE-209in Chlorella sp.under multiple exposure modes[J].TheScience of the Total Environment,2020,723:138086
    Po B H,Ho K L,Lam M H,et al.Uptake and biotransformation of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) in four marine microalgae species[J].Scientific Reports,2017,7:44263
    Skoglund R S,Stange K,Swackhamer D L.A kineticsmodel for predicting the accumulation of PCBs in phytoplankton[J].Environmental Science&Technology,1996,30(7):2113-2120
    Koelmans A A,Lijklema L,Jiménez C S.Sorption of chlorobenzenes to mineralizing phytoplankton[J].Environmental Toxicology and Chemistry,1993,12(8):1425-1439
    Ko F C,Baker J E,Tew K S.Kinetics of polychlorinatedbiphenyl partitioning to marine Chrysophyte Isochrysisgalbana[J].The Science of the Total Environment,2012,416:410-417
    Dong D M,Zhang L W,Guo Z Y,et al.The role of extracellular polymeric substances on the sorption of pentachlorophenol onto natural biofilms in different incubationtimes:A fluorescence study[J].Chemistry and Ecology,2017,33(2):131-142
    Lei A P,Hu Z L,Wong Y S,et al.Removal of fluoranthene and pyrene by different microalgal species[J].Bioresource Technology,2007,98(2):273-280
    Zhang D N,Ran C Y,Yang Y,et al.Biosorption of phenanthrene by pure algae and field-collected planktons andtheir fractions[J].Chemosphere,2013,93(1):61-68
    Hu C W,Luo Q,Huang Q G.Ecotoxicological effects of perfluorooctanoic acid on freshwater microalgaeChlamydomonas reinhardtii and Scenedesmus obliquus[J].Environmental Toxicology and Chemistry,2014,33(5):1129-1134
    Xiao R,Zheng Y.Overview of microalgal extracellularpolymeric substances (EPS) and their applications[J].Biotechnology Advances,2016,34(7):1225-1244
    Ghaffar I,Hussain A,Hasan,et al.Microalgal-induced remediation of wastewaters loaded with organic and inorganic pollutants:An overview[J].Chemosphere,2023,320:137921
    Lv M C,Zhao Y R,Li D R,et al.The adsorption and absorption kinetics of BDE-47 by Chlorella sp.and the role of extracellular polymer substances influenced by environmental factors[J].Environmental Research,2023,216(Pt 3):114698
    Bielmyer-Fraser G K,Jarvis T A,Lenihan H S,et al.Cellular partitioning of nanoparticulate versus dissolved metals in marine phytoplankton[J].Environmental Science&Technology,2014,48(22):13443-13450
    Sutherland D L,Ralph P J.Microalgal bioremediation of emerging contaminants:Opportunities and challenges[J].Water Research,2019,164:114921
    Del Vento S,Dachs J.Prediction of uptake dynamics of persistent organic pollutants by bacteria and phytoplankton[J].Environmental Toxicology and Chemistry,2002,21(10):2099-2107
    Chan S M N,Luan T G,Wong M H,et al.Removal andbiodegradation of polycyclic aromatic hydrocarbons bySelenastrum capricornutum[J].Environmental Toxicologyand Chemistry,2006,25(7):1772-1779
    Hu Y,Meng F L,Hu Y Y,et al.Concentration-and nutrient-dependent cellular responses of microalgae Chlorellapyrenoidosa to perfluorooctanoic acid[J].Water Research,2020,185:116248
    Khan B,Burgess R M,Cantwell M G.Occurrence andbioaccumulation patterns of per-and polyfluoroalkyl substances (PFAS) in the marine environment[J].ACSES&T Water,2023,3(5):1243-1259
    Subashchandrabose S R,Krishnan K,Gratton E,et al.Potential of fluorescence imaging techniques to monitor mutagenic PAH uptake by microalga[J].Environmental Science&Technology,2014,48(16):9152-9160
    Chai C,Ge W,Yin X D.Variation of bioaccumulation ability of 2,2',4,4'-tetrabromodiphenyl ether by marinediatom Skeletonema costatum under different N:P ratios[J].Journal of Ocean University of China,2014,13(3):523-530
    Lynn S G,Price D J,Birge W J,et al.Effect of nutrientavailability on the uptake of PCB congener 2,2',6,6'-tetrachlorobiphenyl by a diatom (Stephanodiscus minutulus) and transfer to a zooplankton (Daphnia pulicaria)[J].Aquatic Toxicology,2007,83(1):24-32
    Magnusson K,Magnusson M,Ostberg P,et al.Bioaccumulation of 14C-PCB 101 and 14C-PBDE 99 in the marine planktonic copepod Calanus finmarchicus under different food regimes[J].Marine Environmental Research,2007,63(1):67-81
    Breitholtz M,Wollenberger L.Effects of three PBDEs ondevelopment,reproduction and population growth rate of the harpacticoid copepod Nitocra spinipes[J].AquaticToxicology,2003,64(1):85-96
    Agersted M D,Møller E F,Gustavson K.Bioaccumulation of oil compounds in the high-Arctic copepod Calanushyperboreus[J].Aquatic Toxicology (Amsterdam,Netherlands),2018,195:8-14
    Hansen B H,Sørensen L,Størseth T R,et al.The use of PAH,metabolite and lipid profiling to assess exposureand effects of produced water discharges on pelagic copepods[J].The Science of the Total Environment,2020,714:136674
    Berrojalbiz N,Dachs J,Del Vento S,et al.Persistent organic pollutants in Mediterranean seawater and processesaffecting their accumulation in plankton[J].Environmental Science&Technology,2011,45(10):4315-4322
    Conder J M,Hoke R A,de Wolf W,et al.Are PFCAs bioaccumulative?A critical review and comparison withregulatory criteria and persistent lipophilic compounds[J].Environmental Science&Technology,2008,42(4):995-1003
    Banks R E,Smart B E,Tatlow J C.OrganofluorineChemistry:Principles and Commercial Applications[M].New York:Plenum Press,1994:57-88
    Jabusch T W,Swackhamer D L.Subcellular accumulation of polychlorinated biphenyls in the green alga Chlamydomonas reinhardtii[J].Environmental Toxicology andChemistry,2004,23(12):2823-2830
    Saiz E,Calbet A.Copepod feeding in the ocean:Scalingpatterns,composition of their diet and the bias of estimates due to microzooplankton grazing during incubations[J].Hydrobiologia,2011,666(1):181-196
    Peltonen H,Ruokojärvi P,Korhonen M,et al.PCDD/Fs,PCBs and PBDEs in zooplankton in the Baltic Sea:Spatial and temporal shifts in the congener-specific concentrations[J].Chemosphere,2014,114:172-180
    Burkhard L P.Evaluation of published bioconcentrationfactor (BCF) and bioaccumulation factor (BAF) data forper-and polyfluoroalkyl substances across aquatic species[J].Environmental Toxicology and Chemistry,2021,40(6):1530-1543
    Qiu Y W,Zeng E Y,Qiu H L,et al.Bioconcentration of polybrominated diphenyl ethers and organochlorine pesticides in algae is an important contaminant route to highertrophic levels[J].The Science of the Total Environment,2017,579:1885-1893
    Berrojalbiz N,Lacorte S,Calbet A,et al.Accumulationand cycling of polycyclic aromatic hydrocarbons in zooplankton[J].Environmental Science&Technology,2009,43(7):2295-2301
    Liu B L,Gao L,Ding L J,et al.Trophodynamics and bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) in marine food web from Laizhou Bay,China[J].MarinePollution Bulletin,2023,194(Pt B):115307
    Li H Y,Duan D D,Beckingham B,et al.Impact of trophic levels on partitioning and bioaccumulation of polycyclic aromatic hydrocarbons in particulate organic matterand plankton[J].Marine Pollution Bulletin,2020,160:111527
    Frouin H,Dangerfield N,MacDonald R W,et al.Partitioning and bioaccumulation of PCBs and PBDEs in marineplankton from the Strait of Georgia,British Columbia,Canada[J].Progress in Oceanography,2013,115:65-75
    Liu Y H,Feng Y M,Li J R,et al.The bioaccumulation,elimination,and trophic transfer of BDE-47 in the aquaticfood chain of Chlorella pyrenoidosa-Daphnia magna[J].Environmental Pollution,2020,258:113720
    Pouch A,Zaborska A,Dąbrowska A M,et al.Bioaccumulation of PCBs,HCB and PAHs in the summer plankton from West Spitsbergen fjords[J].Marine PollutionBulletin,2022,177:113488
    Wan Y,Jin X H,Hu J Y,et al.Trophic dilution of polycyclic aromatic hydrocarbons (PAHs) in a marine food webfrom Bohai Bay,North China[J].Environmental Science&Technology,2007,41(9):3109-3114
    Qadeer A,Liu M,Yang J,et al.Trophodynamics and parabolic behaviors of polycyclic aromatic hydrocarbons inan urbanized lake food web,Shanghai[J].Ecotoxicologyand Environmental Safety,2019,178:17-24
    Tao Y Q,Yu J,Liu X R,et al.Factors affecting annualoccurrence,bioaccumulation,and biomagnification of polycyclic aromatic hydrocarbons in plankton food webs of subtropical eutrophic lakes[J].Water Research,2018,132:1-11
    Hsieh H Y,Huang K C,Cheng J O,et al.Environmentaleffects on the bioaccumulation of PAHs in marine zooplankton in Gaoping coastal waters,Taiwan:Concentration,distribution,profile,and sources[J].Marine Pollution Bulletin,2019,144:68-78
    Fan S R,Wang B L,Liu H,et al.Trophodynamics of organic pollutants in pelagic and benthic food webs of LakeDianchi:Importance of ingested sediment As uptake route[J].Environmental Science&Technology,2017,51(24):14135-14143
    Zhang L J,Zhang L L,Sun D.Considering zooplanktonas a black box in determining PAH concentrations couldresult in misjudging their bioaccumulation[J].Environmental Pollution (Barking,Essex:1987),2023,316(Pt 1):120672
    Almeda R,Wambaugh Z,Chai C,et al.Effects of crudeoil exposure on bioaccumulation of polycyclic aromatichydrocarbons and survival of adult and larval stages of gelatinous zooplankton[J].PLoS One,2013,8(10):e74476
    Øverjordet I B,Nepstad R,Hansen B H,et al.Toxicokinetics of crude oil components in Arctic copepods[J].Environmental Science&Technology,2018,52(17):9899-9907
    Castro-Jiménez J,Bǎnaru D,Chen C T,et al.Persistentorganic pollutants burden,trophic magnification and riskin a pelagic food web from coastal NW MediterraneanSea[J].Environmental Science&Technology,2021,55(14):9557-9568
    Liu Y H,Cui S,Ma Y,et al.Brominated flame retardants (BFRs) in marine food webs from Bohai Sea,China[J].The Science of the Total Environment,2021,772:145036
    Shao M H,Tao P,Wang M,et al.Trophic magnification of polybrominated diphenyl ethers in the marine food webfrom coastal area of Bohai Bay,North China[J].Environmental Pollution,2016,213:379-385
    Poma G,Volta P,Roscioli C,et al.Concentrations andtrophic interactions of novel brominated flame retardants,HBCD,and PBDEs in zooplankton and fish from LakeMaggiore (Northern Italy)[J].The Science of the TotalEnvironment,2014,481:401-408
    Gewurtz S B,Gandhi N,Christensen G N,et al.Use of afood web model to evaluate the factors responsible forhigh PCB fish concentrations in Lake Ellasjøen,a highArctic Lake[J].Environmental Science and Pollution Research International,2009,16(2):176-190
    Huang Z F,Qadeer A,Zheng S S,et al.Fatty acid profileas an efficient bioindicator of PCB bioaccumulation in afreshwater lake food web:A stable isotope guided investigation[J].Journal of Hazardous Materials,2022,423(PtB):127121
    Figueiredo K,MäenpääK,Leppänen M T,et al.Trophictransfer of polychlorinated biphenyls (PCB) in a boreallake ecosystem:Testing of bioaccumulation models[J].The Science of the Total Environment,2014,466-467:690-698
    Zhou S S,Zhu H B,Huang S R,et al.Biomagnificationand risk assessment of polychlorinated biphenyls in foodweb components from Zhoushan fishing ground,China[J].Marine Pollution Bulletin,2019,142:613-619
    MacKintosh C E,Maldonado J,Jing H W,et al.Distribution of phthalate esters in a marine aquatic food web:Comparison to polychlorinated biphenyls[J].Environmental Science&Technology,2004,38(7):2011-2020
    Xie J Q,Tu S Y,Hayat K,et al.Trophodynamics of halogenated organic pollutants (HOPs) in aquatic food webs[J].The Science of the Total Environment,2023,899:166426
    Goutte A,Alliot F,Budzinski H,et al.Trophic transfer of micropollutants and their metabolites in an urban riverinefood web[J].Environmental Science&Technology,2020,54(13):8043-8050
    Loi E I, Yeung L W, Taniyasu S, et al. Trophic magnification of poly-and perfluorinated compounds in a subtropical food web[J]. Environmental Science&Technology,2011, 45(13):5506-5513
    Munoz G, Budzinski H, Babut M, et al. Evidence for thetrophic transfer of perfluoroalkylated substances in a temperate macrotidal estuary[J]. Environmental Science&Technology, 2017, 51(15):8450-8459
    Xu J, Guo C S, Zhang Y, et al. Bioaccumulation andtrophic transfer of perfluorinated compounds in a eutrophic freshwater food web[J]. Environmental Pollution (Barking, Essex:1987), 2014, 184:254-261
    Tomy G T, Budakowski W, Halldorson T, et al. Fluorinated organic compounds in an eastern Arctic marine foodweb[J]. Environmental Science&Technology, 2004, 38(24):6475-6481
    Casal P, González-Gaya B, Zhang Y F, et al. Accumulation of perfluoroalkylated substances in oceanic plankton[J]. Environmental Science&Technology, 2017, 51(5):2766-2775
    Powley C R, George S W, Russell M H, et al. Polyfluorinated chemicals in a spatially and temporally integratedfood web in the Western Arctic[J]. Chemosphere, 2008,70(4):664-672
    郑晓波,罗孝俊,麦碧娴.持久性卤代有机污染物(PHCs)在食物网中的生物放大研究进展[J].矿物岩石地球化学通报, 2020, 39(1):30-43

    , 4Zheng X B, Luo X J, Mai B X. Research progress on biomagnification of persistent halogenated compounds (PHCs) in food webs[J]. Bulletin of Mineralogy, Petrologyand Geochemistry, 2020, 39(1):30-43, 4(in Chinese)

    Guo Y, Li Y, Wang Z W. Electrocatalytic hydro-dehalogenation of halogenated organic pollutants from wastewater:A critical review[J]. Water Research, 2023, 234:119810
    Peng F Q, Ying G G, Yang B, et al. Biotransformation of the flame retardant tetrabromobisphenol-A (TBBPA) byfreshwater microalgae[J]. Environmental Toxicology andChemistry, 2014, 33(8):1705-1711
    Deng D, Chen H X, Wong Y S, et al. Physiological response and oxidative transformation of 2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47) by a Chlorella isolate[J].The Science of the Total Environment, 2020, 744:140869
    El-Bestawy E A, El-Salam A Z A, Mansy A E R H. Potential use of environmental cyanobacterial species inbioremediation of lindane-contaminated effluents[J]. International Biodeterioration&Biodegradation, 2007, 59(3):180-192
    Kuritz T, Wolk C P. Use of filamentous cyanobacteria forbiodegradation of organic pollutants[J]. Applied and Environmental Microbiology, 1995, 61(1):234-238
    Matamoros V, Rodríguez Y. Batch vs continuous-feedingoperational mode for the removal of pesticides from agricultural run-off by microalgae systems:A laboratory scalestudy[J]. Journal of Hazardous Materials, 2016, 309:126-132
    Lal S, Lal R, Saxena D M. Bioconcentration and metabolism of DDT, fenitrothion and chlorpyrifos by the bluegreen algae Anabaena sp. and Aulosira fertilissima[J].Environmental Pollution (Barking, Essex:1987), 1987, 46(3):187-196
    Zhao C H, Yan M, Zhong H, et al. Biodegradation of polybrominated diphenyl ethers and strategies for acceleration:A review[J]. International Biodeterioration&Biodegradation, 2018, 129:23-32
    Borja J, Taleon D M, Auresenia J, et al. Polychlorinatedbiphenyls and their biodegradation[J]. Process Biochemistry, 2005, 40(6):1999-2013
    Kim R O, Kim B M, Jeong C B, et al. Expression pattern of entire cytochrome P450 genes and response of defensomes in the benzo[a]pyrene-exposed monogonont rotiferBrachionus koreanus[J]. Environmental Science&Technology, 2013, 47(23):13804-13812
    Torres M A, Barros M P, Campos S C, et al. Biochemicalbiomarkers in algae and marine pollution:A review[J].Ecotoxicology and Environmental Safety, 2008, 71(1):1-15
    Han J, Won E J, Kim H S, et al. Identification of the full46 cytochrome P450(CYP) complement and modulation of CYP expression in response to water-accommodatedfractions of crude oil in the cyclopoid copepod Paracyclopina nana[J]. Environmental Science&Technology,2015, 49(11):6982-6992
    Satpati G G, Gupta S, Biswas R K, et al. Microalgae mediated bioremediation of polycyclic aromatic hydrocarbons:Strategies, advancement and regulations[J]. Chemosphere, 2023, 344:140337
    Luo L J, Xiao Z Y, Zhou X Y, et al. Quantum chemicalcalculation to elucidate the biodegradation pathway of methylphenanthrene by green microalgae[J]. Water Research, 2020, 173:115598
    Tomar R S, Jajoo A. Enzymatic pathway involved in thedegradation of fluoranthene by microalgae Chlorella vulgaris[J]. Ecotoxicology (London, England), 2021, 30(2):268-276
    Cerniglia C E, Gibson D T, Van Baalen C. Oxidation of naphthalene by cyanobacteria and microalgae[J]. Microbiology, 1980, 116(2):495-500
    Cerniglia C E, Van Baalen C, Gibson D T. Metabolism of naphthalene by the Cyanobacterium oscillatoria sp., strainJCM[J]. Microbiology, 1980, 116(2):485-494
    Crini G, Lichtfouse E. Green Adsorbents for PollutantRemoval:Fundamentals and Design[M]. Berlin:SpringerInternational Publishing, 2018:215-240
    Ke L, Luo L J, Wang P, et al. Effects of metals on biosorption and biodegradation of mixed polycyclic aromatichydrocarbons by a freshwater green alga Selenastrum capricornutum[J]. Bioresource Technology, 2010, 101(18):6961-6972
    Becerril Mercado J E, García de Llasera M P, MéndezGarcía M. Size exclusion chromatography protein profile of Selenastrum capricornutum culture extracts degradingbenzo (a) pyrene[J]. Polycyclic Aromatic Compounds,2023, 43(10):9193-9209
    SureshKumar P, Thomas J, Poornima V. Structural insights on bioremediation of polycyclic aromatic hydrocarbons using microalgae:A modelling-based computationalstudy[J]. Environmental Monitoring and Assessment,2018, 190:1-16
    Luo J, Deng J L, Cui L L, et al. The potential assessment of green alga Chlamydomonas reinhardtii CC-503 in thebiodegradation of benz (a) anthracene and the relatedmechanism analysis[J]. Chemosphere, 2020, 249:126097
    Wolfe D A. Fate and effects of petroleum hydrocarbonsin marine ecosystems and organisms[R]. Washington DC:US Environmental Protection Agency, 1977:286-304
    Corner E D S, Harris R P, Kilvington C C, et al. Petroleum compounds in the marine food web:Short-term experiments on the fate of naphthalene in Calanus[J]. Journal of the Marine Biological Association of the UnitedKingdom, 1976, 56(1):121-133
    Lee R F. Fate of petroleum hydrocarbons in marine zooplankton[J]. International Oil Spill Conference Proceedings, 1975, 1975(1):549-553
    Kim B M, Rhee J S, Hwang U K, et al. Dose-and timedependent expression of aryl hydrocarbon receptor (AhR) and aryl hydrocarbon receptor nuclear translocator (ARNT) in PCB-, B[a]P-, and TBT-exposed intertidal copepod Tigriopus japonicus[J]. Chemosphere, 2015, 120:398-406
    Han J, Park J C, Hagiwara A, et al. Identification of thefull 26 cytochrome P450(CYP) genes and analysis of their expression in response to benzo[α]pyrene in the marine rotifer Brachionus rotundiformis[J]. Comparative Biochemistry and Physiology Part D, Genomics&Proteomics, 2019, 29:185-192
    Sun H Z, Li Y M, Wang P, et al. First report on hydroxylated and methoxylated polybrominated diphenyl ethersin terrestrial environment from the Arctic and Antarctica[J]. Journal of Hazardous Materials, 2022, 424(Pt D):127644
    Tehrani R, Van Aken B. Hydroxylated polychlorinated biphenyls in the environment:Sources, fate, and toxicities[J]. Environmental Science and Pollution Research International, 2014, 21(10):6334-6345
    Wang X X, Yang H Y, Hu X X, et al. Effects of HO-/MeO-PBDEs on androgen receptor:in vitro investigationand Helix 12-involved MD simulation[J]. EnvironmentalScience&Technology, 2013, 47(20):11802-11809
    Cantón R F, Sanderson J T, Letcher R J, et al. Inhibitionand induction of aromatase (CYP19) activity by brominated flame retardants in H295R human adrenocortical carcinoma cells[J]. Toxicological Sciences:An Official Journal of the Society of Toxicology, 2005, 88(2):447-455
    Marsh G, Athanasiadou M, Bergman A, et al. Identification of hydroxylated and methoxylated polybrominateddiphenyl ethers in Baltic Sea salmon (Salmo salar) blood[J]. Environmental Science&Technology, 2004, 38(1):10-18
    Singh K S, Singh A. Chemical diversities, biological activities and chemical synthesis of marine diphenyl etherand their derivatives[J]. Journal of Molecular Structure,2022, 1265:133302
    Han J, Kim D H, Seo J S, et al. Assessing the identityand expression level of the cytochrome P45020A1(CYP20A1) gene in the BPA-, BDE-47, and WAF-exposed copepods Tigriopus japonicus and Paracyclopinanana[J]. Comparative Biochemistry and Physiology Toxicology&Pharmacology, 2017, 193:42-49
    Watanabe K, Takihana N, Aoyagi H, et al. Symbiotic association in Chlorella culture[J]. FEMS Microbiology Ecology, 2005, 51(2):187-196
    Méndez García M, García de Llasera M P. A review onthe enzymes and metabolites identified by mass spectrometry from bacteria and microalgae involved in the degradation of high molecular weight PAHs[J]. The Science of the Total Environment, 2021, 797:149035
    Luo S S, Chen B W, Lin L, et al. Pyrene degradation accelerated by constructed consortium of bacterium and microalga:Effects of degradation products on the microalgalgrowth[J]. Environmental Science&Technology, 2014,48(23):13917-13924
    Patel J G, Nirmal Kumar J I, Kumar R N, et al. Enhancement of pyrene degradation efficacy of Synechocystis sp.,by construction of an artificial microalgal-bacterial consortium[J]. Cogent Chemistry, 2015, 1(1):1064193
    Muñoz R, Guieysse B, Mattiasson B. Phenanthrene biodegradation by an algal-bacterial consortium in two-phasepartitioning bioreactors[J]. Applied Microbiology and Biotechnology, 2003, 61(3):261-267
    Kumari M, Ghosh P, Swati, et al. Development of artificial consortia of microalgae and bacteria for efficient biodegradation and detoxification of lindane[J]. BioresourceTechnology Reports, 2020, 10:100415
    Jurado E, Lohmann R, Meijer S, et al. Latitudinal andseasonal capacity of the surface oceans as a reservoir of polychlorinated biphenyls[J]. Environmental Pollution,2004, 128(1-2):149-162
    Lohmann R, Markham E, Klanova J, et al. Trends of diverse POPs in air and water across the western AtlanticOcean:Strong gradients in the ocean but not in the air[J].Environmental Science&Technology, 2021, 55(14):9498-9507
    Gao K, Miao X, Fu J, et al. Occurrence and trophic transfer of per-and polyfluoroalkyl substances in an Antarcticecosystem[J]. Environmental Pollution, 2020, 257:113383
    武晓果,谢周清.气候变化背景下极地海洋和陆地生态系统中持久性有机污染物的迁移和分布[J].极地研究, 2014, 26(4):433-440

    Wu X G, Xie Z Q. Influence of climate change on the distribution and transportation of persistent organic pollutantsin marine and terrestrial ecosystems in polar regions[J].Chinese Journal of Polar Research, 2014, 26(4):433-440(in Chinese)

    Archibald K M, Siegel D A, Doney S C. Modeling theimpact of zooplankton diel vertical migration on the carbon export flux of the biological pump[J]. Global Biogeochemical Cycles, 2019, 33(2):181-199
    Herndl G J, Reinthaler T. Microbial control of the darkend of the biological pump[J]. Nature Geoscience, 2013,6(9):718-724
    Paerl H W, Xu H, McCarthy M J, et al. Controllingharmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China):The need for a dual nutrient (N&P) management strategy[J]. Water Research, 2011, 45(5):1973-1983
    Tao Y Q, Liu D H. Trophic status affects the distribution of polycyclic aromatic hydrocarbons in the water columns, surface sediments, and plankton of twenty ChineseLakes[J]. Environmental Pollution (Barking, Essex:1987), 2019, 252(Pt A):666-674
    Everaert G, De Laender F, Goethals P L, et al. Multidecadal field data support intimate links between phytoplankton dynamics and PCB concentrations in marine sediments and biota[J]. Environmental Science&Technology, 2015, 49(14):8704-8711
    Cai M G, Duan M S, Guo J Q, et al. PAHs in the Northern South China Sea:Horizontal transport and downwardexport on the continental shelf[J]. Marine Chemistry,2018, 202:121-129
    Cheng Z N, Lin T, Xu W H, et al. A preliminary assessment of polychlorinated biphenyls and polybrominated diphenyl ethers in deep-sea sediments from the Indian Ocean[J]. Marine Pollution Bulletin, 2015, 94(1-2):323-328
    Qiu Y W, Wang D X, Zhang G. Assessment of persistentorganic pollutants (POPs) in sediments of the Eastern Indian Ocean[J]. The Science of the Total Environment,2020, 710:136335
    Jin M Q, Fu J, Xue B, et al. Distribution and enantiomeric profiles of organochlorine pesticides in surface sediments from the Bering Sea, Chukchi Sea and adjacentArctic areas[J]. Environmental Pollution, 2017, 222:109-117
    Ge M L, Wang X T, Yang G, et al. Persistent organic pollutants (POPs) in deep-sea sediments of the tropical Western Pacific Ocean[J]. Chemosphere, 2021, 277:130267
    Dasgupta S, Peng X, Chen S, et al. Toxic anthropogenicpollutants reach the deepest ocean on Earth[J]. Geochemical Perspectives Letters, 2018, 1:22-26
    Kuzyk Z Z A, MacDonald R W, Johannessen S C, et al.Biogeochemical controls on PCB deposition in HudsonBay[J]. Environmental Science&Technology, 2010, 44(9):3280-3285
    Galbán-Malagón C, Berrojalbiz N, Ojeda M J, et al. Theoceanic biological pump modulates the atmospheric transport of persistent organic pollutants to the Arctic[J]. Nature Communications, 2012, 3:862
    González-Gaya B, Martínez-Varela A, Vila-Costa M, etal. Biodegradation as an important sink of aromatic hydrocarbons in the oceans[J]. Nature Geoscience, 2019,12:119-125
  • 加载中
计量
  • 文章访问数:  1164
  • HTML全文浏览数:  1164
  • PDF下载数:  199
  • 施引文献:  0
出版历程
  • 收稿日期:  2023-11-25
  • 录用日期:  2024-02-07
刘溱, 赵妍, 吕梦晨, 唐学玺. 浮游生物对持久性有机污染物迁移和转化影响的研究进展[J]. 生态毒理学报, 2024, 19(2): 126-139. doi: 10.7524/AJE.1673-5897.20231125001
引用本文: 刘溱, 赵妍, 吕梦晨, 唐学玺. 浮游生物对持久性有机污染物迁移和转化影响的研究进展[J]. 生态毒理学报, 2024, 19(2): 126-139. doi: 10.7524/AJE.1673-5897.20231125001
Liu Zhen, Zhao Yan, LÜ Mengchen, Tang Xuexi. Research Progress on Effects of Plankton on Transport and Transformation of Persistent Organic Pollutants[J]. Asian Journal of Ecotoxicology, 2024, 19(2): 126-139. doi: 10.7524/AJE.1673-5897.20231125001
Citation: Liu Zhen, Zhao Yan, LÜ Mengchen, Tang Xuexi. Research Progress on Effects of Plankton on Transport and Transformation of Persistent Organic Pollutants[J]. Asian Journal of Ecotoxicology, 2024, 19(2): 126-139. doi: 10.7524/AJE.1673-5897.20231125001

浮游生物对持久性有机污染物迁移和转化影响的研究进展

    通讯作者: 赵妍(1987-),女,博士,副教授,主要研究方向为海洋生态学。E-mail:zhaoyan@ouc.edu.cn; 
    作者简介: 刘溱(1999-),男,硕士研究生,研究方向为海洋生态学,E-mail:1120694670@qq.com
  • 1. 中国海洋大学海洋生命学院,青岛 266003;
  • 2. 青岛海洋科技中心海洋生态与环境科学功能实验室,青岛 266003
基金项目:

山东省自然科学基金面上项目(ZR2022MD006)

摘要: 持久性有机污染物(persistent organic pollutants,POPs)被持续排放到自然环境中,严重危害环境安全和生命健康。海洋、河流等水环境是POPs重要的"汇",作为水生食物链的起点,浮游生物在水生生态系统的物质循环和能量流动中扮演着重要的角色,其对POPs的吸附、吸收、转化及运输,在很大程度上影响了POPs的环境行为。本文将浮游生物对POPs迁移和转化的可能影响进行了总结,综合分析了浮游植物和浮游动物对POPs的吸附-吸收和生物富集/放大过程及影响以上过程的生物和环境因素,从脱卤代谢、氧化代谢和微生物联合代谢3个方面阐述了浮游生物对POPs的降解及转化机制,最后讨论了浮游生物的生物泵作用对POPs垂直迁移的影响。本文能够为水生生物影响POPs迁移和转化的研究提供重要参考。

English Abstract

参考文献 (147)

返回顶部

目录

/

返回文章
返回