锌离子转运蛋白1参与铜死亡途径的机制研究

吴越, 杨颋芸, 闫博, 艾有为, 陈芳, 马娟, 刘思金. 锌离子转运蛋白1参与铜死亡途径的机制研究[J]. 生态毒理学报, 2024, 19(4): 53-70. doi: 10.7524/AJE.1673-5897.20240309001
引用本文: 吴越, 杨颋芸, 闫博, 艾有为, 陈芳, 马娟, 刘思金. 锌离子转运蛋白1参与铜死亡途径的机制研究[J]. 生态毒理学报, 2024, 19(4): 53-70. doi: 10.7524/AJE.1673-5897.20240309001
Wu Yue, Yang Tingyun, Yan Bo, Ai Youwei, Chen Fang, Ma Juan, Liu Sijin. ZNT1 Involves Cuproptosis through Regulating MTF1-conduced Expression of MT1X under Copper Overload[J]. Asian Journal of Ecotoxicology, 2024, 19(4): 53-70. doi: 10.7524/AJE.1673-5897.20240309001
Citation: Wu Yue, Yang Tingyun, Yan Bo, Ai Youwei, Chen Fang, Ma Juan, Liu Sijin. ZNT1 Involves Cuproptosis through Regulating MTF1-conduced Expression of MT1X under Copper Overload[J]. Asian Journal of Ecotoxicology, 2024, 19(4): 53-70. doi: 10.7524/AJE.1673-5897.20240309001

锌离子转运蛋白1参与铜死亡途径的机制研究

    作者简介: 吴越(1998-),女,硕士研究生,研究方向为环境毒理学,E-mail:yuewuhj@126.com
    通讯作者: 陈芳,E-mail:fangchen@genetics.ac.cn;  马娟,E-mail:juanm@rcees.ac.cn; 
  • 基金项目:

    国家自然科学基金资助项目(22076210,22150006,22021003);中国科学院青年创新促进会资助项目(2022042);国家重点研发计划(2018YFA0901101,2021YFE0101500)

  • 中图分类号: X171.5

ZNT1 Involves Cuproptosis through Regulating MTF1-conduced Expression of MT1X under Copper Overload

    Corresponding authors: Chen Fang ;  Ma Juan ; 
  • Fund Project: This work was supported under grants from the National Natural Science Foundation of China (grant numbers: 22076210, 22150006, and 22021003), the Youth Innovation Promotion Association of Chinese Academy of Sciences (2022042), the National Key Research and Development Program of China (grant number: 2018YFA0901101 and 2021YFE0101500).
  • 摘要: 冶炼排放、矿物燃烧和工业废水排放等工业活动都可能导致环境中的铜污染。铜污染可能通过直接或间接接触对水生生物、植物和动物产生有害影响。然而,目前对铜的毒性的认识相当有限,部分研究表明铜负荷会扰乱细胞内稳态,引起氧化应激甚至细胞死亡。最近,一种新的细胞死亡形式被发现并命名为“铜死亡”,这是一种依赖铜的线粒体氧化应激诱导的细胞死亡类型。本研究发现锌离子转运蛋白1(zinc transporter 1, ZNT1)在铜死亡过程中是一个重要的调节因子。首先,研究通过在HeLa细胞中过表达铜转运载体SLC31A1蛋白,构建了铜过载细胞模型。利用该细胞模型,进行了全基因组CRISPR-Cas9筛。研究结果显示,在A和B质粒库中,ZNT1基因都显著富集,经验证,敲除HeLa细胞中的ZNT1可显著抑制铜死亡。随后在ZNT1缺失细胞中敲除金属转录因子1(metal transcription factor 1, MTF1),细胞几乎丧失了抵抗铜死亡的能力。然而,在双敲除细胞中,过表达金属硫蛋白1X (metallothionein 1X, MT1X)部分恢复对铜死亡的抗性。从机制上讲,敲除ZNT1蛋白后铜暴露会显著激活MTF1转录活性,促进MT1X的表达,此时,MT1X与自由态铜离子的相互作用增强,减少了进入线粒体的铜,消除了线粒体损伤。综上所述,本研究揭示了ZNT1在铜死亡中的重要作用,并显示了MTF1-MT1X轴介导的铜死亡抵抗机制。此外,本研究将有助于了解铜过载时细胞和全身铜稳态的调节机制,并为遗传性铜过载疾病和环境铜污染引起的铜中毒疾病提供新的治疗方法。
  • 加载中
  • Steffens G C, Biewald R, Buse G. Cytochrome c oxidase is a three-copper, two-heme: A protein[J]. European Journal of Biochemistry, 1987, 164(2): 295-300
    Helman S L, Zhou J, Fuqua B K, et al. The biology of mammalian multi-copper ferroxidases[J].Biometals, 2023, 36(2): 263-281
    Bertinato J, L’Abbé M R. Copper modulates the degradation of copper chaperone for Cu, Zn superoxide dismutase by the 26 S proteosome[J]. The Journal of Biological Chemistry, 2003, 278(37): 35071-35078
    Xue Q, Kang R, Klionsky D J, et al. Copper metabolism in cell death and autophagy[J]. Autophagy, 2023, 19(8): 2175-2195
    Zhi M Y, Tang P, Liu Y, et al. Effects of organic copper on growth performance and oxidative stress in mice[J]. Biological Trace Element Research, 2020, 194(2): 455-462
    Denoyer D, Clatworthy S A S, Cater M A. Copper complexes in cancer therapy[J]. Metal Ions in Life Sciences, 2018, 18. doi: 10.1515/9783110470734-022
    Jiang Y C, Huo Z Y, Qi X L, et al. Copper-induced tumor cell death mechanisms and antitumor theragnostic applications of copper complexes[J]. Nanomedicine, 2022, 17(5): 303-324
    Perlatti F, Martins E P, de Oliveira D P, et al. Copper release from waste rocks in an abandoned mine (NE, Brazil) and its impacts on ecosystem environmental quality[J]. Chemosphere, 2021, 262: 127843
    Donnachie R L, Johnson A C, Moeckel C, et al. Using risk-ranking of metals to identify which poses the greatest threat to freshwater organisms in the UK[J]. Environmental Pollution, 2014, 194: 17-23
    Li Y, Mu D, Wu H Q, et al. Derivation of copper water quality criteria in the Bohai Sea of China considering the effects of multiple environmental factors on copper toxicity[J]. Environmental Pollution, 2022, 308: 119666
    Li C M, Wang H C, Liao X L, et al. Heavy metal pollution in coastal wetlands: A systematic review of studies globally over the past three decades[J]. Journal of Hazardous Materials, 2022, 424(Pt A): 127312
    Gaetke L M, Chow-Johnson H S, Chow C K. Copper: Toxicological relevance and mechanisms[J]. Archives of Toxicology, 2014, 88(11): 1929-1938
    Lizaola-Mayo B C, Dickson R C, Lam-Himlin D M, et al. Exogenous copper exposure causing clinical Wilson disease in a patient with copper deficiency[J]. BMC Gastroenterology, 2021, 21(1): 278
    Chen L Y, Min J X, Wang F D. Copper homeostasis and cuproptosis in health and disease[J]. Signal Transduction and Targeted Therapy, 2022, 7(1): 378
    Yuan H J, Xue Y T, Liu Y. Cuproptosis, the novel therapeutic mechanism for heart failure: A narrative review[J]. Cardiovascular Diagnosis and Therapy, 2022, 12(5): 681-692
    Ge E J, Bush A I, Casini A, et al. Connecting copper and cancer: From transition metal signalling to metalloplasia[J]. Nature Reviews Cancer, 2022, 22(2): 102-113
    Feng J F, Lu L, Zeng P, et al. Serum total oxidant/antioxidant status and trace element levels in breast cancer patients[J]. International Journal of Clinical Oncology, 2012, 17(6): 575-583
    Bremner I. Manifestations of copper excess[J]. The American Journal of Clinical Nutrition, 1998, 67(5 Suppl.): 1069S-1073S
    Ejaz H W, Wang W, Lang M L. Copper toxicity links to pathogenesis of Alzheimer’s disease and therapeutics approaches[J]. International Journal of Molecular Sciences, 2020, 21(20): 7660
    Shribman S, Marjot T, Sharif A, et al. Investigation and management of Wilson’s disease: A practical guide from the British Association for the Study of the Liver[J]. The Lancet Gastroenterology & Hepatology, 2022, 7(6): 560-575
    Shribman S, Poujois A, Bandmann O, et al. Wilson’s disease: Update on pathogenesis, biomarkers and treatments[J]. Journal of Neurology, Neurosurgery, and Psychiatry, 2021, 92(10): 1053-1061
    Tsvetkov P, Coy S, Petrova B, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins[J]. Science, 2022, 375(6586): 1254-1261
    Rowland E A, Snowden C K, Cristea I M. Protein lipoylation: An evolutionarily conserved metabolic regulator of health and disease[J]. Current Opinion in Chemical Biology, 2018, 42: 76-85
    Vallières C, Holland S L, Avery S V. Mitochondrial ferredoxin determines vulnerability of cells to copper excess[J]. Cell Chemical Biology, 2017, 24(10): 1228-1237.e3
    Brancaccio D, Gallo A, Piccioli M, et al.[4Fe-4S]cluster assembly in mitochondria and its impairment by copper[J]. Journal of the American Chemical Society, 2017, 139(2): 719-730
    Chen J, Jiang Y H, Shi H, et al. The molecular mechanisms of copper metabolism and its roles in human diseases[J]. European Journal of Physiology, 2020, 472(10): 1415-1429
    Radtke F, Heuchel R, Georgiev O, et al. Cloned transcription factor MTF-1 activates the mouse metallothionein I promoter[J]. The EMBO Journal, 1993, 12(4): 1355-1362
    Qi Y, Wei S T, Xin T, et al. Passage of exogeneous fine particles from the lung into the brain in humans and animals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(26): e2117083119
    Han H, Nakaoka H J, Hofmann L, et al. The Hippo pathway kinases LATS1 and LATS2 attenuate cellular responses to heavy metals through phosphorylating MTF1[J]. Nature Cell Biology, 2022, 24(1): 74-87
    Liu W, Zhang S P, Li Q J, et al. Lactate modulates iron metabolism by binding soluble adenylyl cyclase[J]. Cell Metabolism, 2023, 35(9): 1597-1612.e6
    Lai Y R, Sugawara N. Outputs of hepatic copper and cadmium stimulated by tetrathiomolybdate (TTM) injection in Long-Evans Cinnamon (LEC) rats pretreated with cadmium, and in Fischer rats pretreated with copper and cadmium[J]. Toxicology, 1997, 120(1): 47-54
    Ostrakhovitch E A, Cherian M G. Role of p53 and reactive oxygen species in apoptotic response to copper and zinc in epithelial breast cancer cells[J]. Apoptosis: An International Journal on Programmed Cell Death, 2005, 10(1): 111-121
    Liao Y, Zhao J J, Bulek K, et al. Inflammation mobilizes copper metabolism to promote colon tumorigenesis via an IL-17-STEAP4-XIAP axis[J]. Nature Communications, 2020, 11(1): 900
    Li G N, Zhao X J, Wang Z, et al. Elaiophylin triggers paraptosis and preferentially kills ovarian cancer drug-resistant cells by inducing MAPK hyperactivation[J]. Signal Transduction and Targeted Therapy, 2022, 7(1): 317
    Liao J Z, Hu Z Y, Li Q W, et al. Endoplasmic reticulum stress contributes to copper-induced pyroptosis via regulating the IRE1α-XBP1 pathway in pig jejunal epithelial cells[J]. Journal of Agricultural and Food Chemistry, 2022, 70(4): 1293-1303
    Gao W, Huang Z, Duan J F, et al. Elesclomol induces copper-dependent ferroptosis in colorectal cancer cells via degradation of ATP7A[J]. Molecular Oncology, 2021, 15(12): 3527-3544
    Li Y Q, Chen F F, Chen J, et al. Disulfiram/copper induces antitumor activity against both nasopharyngeal cancer cells and cancer-associated fibroblasts through ROS/MAPK and ferroptosis pathways[J]. Cancers, 2020, 12(1): 138
    Liu J, Liu Y, Wang Y, et al. HMGB1 is a mediator of cuproptosis-related sterile inflammation[J]. Frontiers in Cell and Developmental Biology, 2022, 10: 996307
    Nishito Y, Kambe T. Zinc transporter 1 (ZNT1) expression on the cell surface is elaborately controlled by cellular zinc levels[J]. The Journal of Biological Chemistry, 2019, 294(43): 15686-15697
    Li Y, Kimura T, Huyck R W, et al. Zinc-induced formation of a coactivator complex containing the zinc-sensing transcription factor MTF-1, p300/CBP, and Sp1[J]. Molecular and Cellular Biology, 2008, 28(13): 4275-4284
    Hardyman J E, Tyson J, Jackson K A, et al. Zinc sensing by metal-responsive transcription factor 1 (MTF1) controls metallothionein and ZnT1 expression to buffer the sensitivity of the transcriptome response to zinc[J]. Metallomics: Integrated Biometal Science, 2016, 8(3): 337-343
    Heuchel R, Radtke F, Georgiev O, et al. The transcription factor MTF-1 is essential for basal and heavy metal-induced metallothionein gene expression[J]. The EMBO Journal, 1994, 13(12): 2870-2875
    Amiard J C, Amiard-Triquet C, Barka S, et al. Metallothioneins in aquatic invertebrates: Their role in metal detoxification and their use as biomarkers[J]. Aquatic Toxicology, 2006, 76(2): 160-202
    Zhang B, Georgiev O, Hagmann M, et al. Activity of metal-responsive transcription factor 1 by toxic heavy metals and H2O2 in vitro is modulated by metallothionein[J]. Molecular and Cellular Biology, 2003, 23(23): 8471-8485
    Si M F, Lang J H. The roles of metallothioneins in carcinogenesis[J]. Journal of Hematology & Oncology, 2018, 11(1): 107
    Chandhok G, Schmitt N, Sauer V, et al. The effect of zinc and D-penicillamine in a stable human hepatoma ATP7B knockout cell line[J]. PLoS One, 2014, 9(6): e98809
    Keenan J, Meleady P, O’Doherty C, et al. Copper toxicity of inflection point in human intestinal cell line Caco-2 dissected: Influence of temporal expression patterns[J]. In Vitro Cellular & Developmental Biology Animal, 2021, 57(3): 359-371
    Liu H R. Pan-cancer profiles of the cuproptosis gene set[J]. American Journal of Cancer Research, 2022, 12(8): 4074-4081
    Andrews G K. Cellular zinc sensors: MTF-1 regulation of gene expression[J]. Biometals, 2001, 14(3/4): 223-237
    Priante E, Pietropoli E, Piva E, et al. Cadmium-zinc interaction in Mus musculus fibroblasts[J]. International Journal of Molecular Sciences, 2022, 23(19): 12001
    Santovito G, Boldrin F, Irato P. Metal and metallothionein distribution in different tissues of the Mediterranean clam Venerupis philippinarum during copper treatment and detoxification[J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology, 2015, 174/175: 46-53
    Nolte C, Gore A, Sekler I, et al. ZnT-1 expression in astroglial cells protects against zinc toxicity and slows the accumulation of intracellular zinc[J]. Glia, 2004, 48(2): 145-155
    Kręz[DD(-1.8mm][HT6"]·[HT5"][]el A, Maret W. Thionein/metallothionein control Zn(Ⅱ) availability and the activity of enzymes[J]. JBIC Journal of Biological Inorganic Chemistry, 2008, 13(3): 401-409
    Meacham K A, Cortés M P, Wiggins E M, et al. Altered zinc balance in the Atp7b-/- mouse reveals a mechanism of copper toxicity in Wilson disease[J]. Metallomics: Integrated Biometal Science, 2018, 10(11): 1595-1606
    Li Y Q. Copper homeostasis: Emerging target for cancer treatment[J]. IUBMB Life, 2020, 72(9): 1900-1908
    Jomova K, Valko M. Advances in metal-induced oxidative stress and human disease[J]. Toxicology, 2011, 283(2/3): 65-87
    Luedde T, Kaplowitz N, Schwabe R F. Cell death and cell death responses in liver disease: Mechanisms and clinical relevance[J]. Gastroenterology, 2014, 147(4): 765-783.e4
  • 加载中
计量
  • 文章访问数:  365
  • HTML全文浏览数:  365
  • PDF下载数:  140
  • 施引文献:  0
出版历程
  • 收稿日期:  2024-03-09
吴越, 杨颋芸, 闫博, 艾有为, 陈芳, 马娟, 刘思金. 锌离子转运蛋白1参与铜死亡途径的机制研究[J]. 生态毒理学报, 2024, 19(4): 53-70. doi: 10.7524/AJE.1673-5897.20240309001
引用本文: 吴越, 杨颋芸, 闫博, 艾有为, 陈芳, 马娟, 刘思金. 锌离子转运蛋白1参与铜死亡途径的机制研究[J]. 生态毒理学报, 2024, 19(4): 53-70. doi: 10.7524/AJE.1673-5897.20240309001
Wu Yue, Yang Tingyun, Yan Bo, Ai Youwei, Chen Fang, Ma Juan, Liu Sijin. ZNT1 Involves Cuproptosis through Regulating MTF1-conduced Expression of MT1X under Copper Overload[J]. Asian Journal of Ecotoxicology, 2024, 19(4): 53-70. doi: 10.7524/AJE.1673-5897.20240309001
Citation: Wu Yue, Yang Tingyun, Yan Bo, Ai Youwei, Chen Fang, Ma Juan, Liu Sijin. ZNT1 Involves Cuproptosis through Regulating MTF1-conduced Expression of MT1X under Copper Overload[J]. Asian Journal of Ecotoxicology, 2024, 19(4): 53-70. doi: 10.7524/AJE.1673-5897.20240309001

锌离子转运蛋白1参与铜死亡途径的机制研究

    通讯作者: 陈芳,E-mail:fangchen@genetics.ac.cn;  马娟,E-mail:juanm@rcees.ac.cn; 
    作者简介: 吴越(1998-),女,硕士研究生,研究方向为环境毒理学,E-mail:yuewuhj@126.com
  • 1. 中国科学院生态环境研究中心, 环境化学与生态毒理学国家重点实验室, 北京 100085;
  • 2. 中国科学院大学, 北京 100049;
  • 3. 中国科学院遗传与发育生物学研究所, 北京 100101;
  • 4. 山东第一医科大学, 山东省医学科学院科技创新中心, 济南 250117
基金项目:

国家自然科学基金资助项目(22076210,22150006,22021003);中国科学院青年创新促进会资助项目(2022042);国家重点研发计划(2018YFA0901101,2021YFE0101500)

摘要: 冶炼排放、矿物燃烧和工业废水排放等工业活动都可能导致环境中的铜污染。铜污染可能通过直接或间接接触对水生生物、植物和动物产生有害影响。然而,目前对铜的毒性的认识相当有限,部分研究表明铜负荷会扰乱细胞内稳态,引起氧化应激甚至细胞死亡。最近,一种新的细胞死亡形式被发现并命名为“铜死亡”,这是一种依赖铜的线粒体氧化应激诱导的细胞死亡类型。本研究发现锌离子转运蛋白1(zinc transporter 1, ZNT1)在铜死亡过程中是一个重要的调节因子。首先,研究通过在HeLa细胞中过表达铜转运载体SLC31A1蛋白,构建了铜过载细胞模型。利用该细胞模型,进行了全基因组CRISPR-Cas9筛。研究结果显示,在A和B质粒库中,ZNT1基因都显著富集,经验证,敲除HeLa细胞中的ZNT1可显著抑制铜死亡。随后在ZNT1缺失细胞中敲除金属转录因子1(metal transcription factor 1, MTF1),细胞几乎丧失了抵抗铜死亡的能力。然而,在双敲除细胞中,过表达金属硫蛋白1X (metallothionein 1X, MT1X)部分恢复对铜死亡的抗性。从机制上讲,敲除ZNT1蛋白后铜暴露会显著激活MTF1转录活性,促进MT1X的表达,此时,MT1X与自由态铜离子的相互作用增强,减少了进入线粒体的铜,消除了线粒体损伤。综上所述,本研究揭示了ZNT1在铜死亡中的重要作用,并显示了MTF1-MT1X轴介导的铜死亡抵抗机制。此外,本研究将有助于了解铜过载时细胞和全身铜稳态的调节机制,并为遗传性铜过载疾病和环境铜污染引起的铜中毒疾病提供新的治疗方法。

English Abstract

参考文献 (57)

返回顶部

目录

/

返回文章
返回