新兴污染物对抗生素抗性基因水平转移的影响

杨会, 崔鹏飞, 汝少国. 新兴污染物对抗生素抗性基因水平转移的影响[J]. 生态毒理学报, 2024, 19(4): 71-87. doi: 10.7524/AJE.1673-5897.20240328001
引用本文: 杨会, 崔鹏飞, 汝少国. 新兴污染物对抗生素抗性基因水平转移的影响[J]. 生态毒理学报, 2024, 19(4): 71-87. doi: 10.7524/AJE.1673-5897.20240328001
Yang Hui, Cui Pengfei, Ru Shaoguo. Effects of Emerging Pollutants on Horizontal Transfer of Antibiotic Resistance Genes[J]. Asian Journal of Ecotoxicology, 2024, 19(4): 71-87. doi: 10.7524/AJE.1673-5897.20240328001
Citation: Yang Hui, Cui Pengfei, Ru Shaoguo. Effects of Emerging Pollutants on Horizontal Transfer of Antibiotic Resistance Genes[J]. Asian Journal of Ecotoxicology, 2024, 19(4): 71-87. doi: 10.7524/AJE.1673-5897.20240328001

新兴污染物对抗生素抗性基因水平转移的影响

    作者简介: 杨会(2000-),女,硕士研究生,研究方向为生态毒理学,E-mail:yanghui011685@163.com
    通讯作者: 崔鹏飞(1988-),男,博士,副教授,主要研究方向为生态毒理学。E-mail:cuipengfei@ouc.edu.cn; 
  • 中图分类号: X171.5

Effects of Emerging Pollutants on Horizontal Transfer of Antibiotic Resistance Genes

    Corresponding author: Cui Pengfei, cuipengfei@ouc.edu.cn
  • 摘要: 抗生素抗性基因(antibiotic resistance genes, ARGs)引起的抗生素耐药性问题被列为新兴环境污染问题,对生态环境和人类健康构成严重威胁。当前备受关注的环境新兴污染物(如内分泌干扰物、重金属、微塑料、纳米塑料等)都可以通过水平基因转移单独或协同促进ARGs在环境中的传播、转移和扩散。新兴污染物如何影响ARGs的水平转移过程已成为备受关注的研究热点。本文全面综述了ARGs的来源及水平基因转移的3种经典方式(接合、自然转化和转导),总结了新兴污染物影响ARGs水平转移的规律及潜在机制,以充分认识ARGs在生态系统中的传播动态与最终命运,有助于全面了解新兴污染物在ARGs传播中的作用。最后提出了目前ARGs水平转移的阻断措施和研究的局限性,并为未来研究提出了相关建议,以便制定有效策略防控并阻断ARGs在环境中的传播过程。
  • 加载中
  • Gothwal R, Shashidhar T. Antibiotic pollution in the environment: A review [J]. Clean - Soil, Air, Water, 2015, 43(4): 479-489
    Nadeem S F, Gohar U F, Tahir S F, et al. Antimicrobial resistance: More than 70 years of war between humans and bacteria [J]. Critical Reviews in Microbiology, 2020, 46(5): 578-599
    Maurya A P, Rajkumari J, Pandey P. Enrichment of antibiotic resistance genes (ARGs) in polyaromatic hydrocarbon-contaminated soils: A major challenge for environmental health [J]. Environmental Science and Pollution Research International, 2021, 28(10): 12178-12189
    Patangia D V, Ryan C A, Dempsey E, et al. Vertical transfer of antibiotics and antibiotic resistant strains across the mother/baby axis [J]. Trends in Microbiology, 2022, 30(1): 47-56
    Zarei-Baygi A, Smith A L. Intracellular versus extracellular antibiotic resistance genes in the environment: Prevalence, horizontal transfer, and mitigation strategies [J]. Bioresource Technology, 2021, 319: 124181
    von Wintersdorff C J, Penders J, van Niekerk J M, et al. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer [J]. Frontiers in Microbiology, 2016, 7: 173
    Jin M, Lu J, Chen Z Y, et al. Antidepressant fluoxetine induces multiple antibiotics resistance in Escherichia coli via ROS-mediated mutagenesis [J]. Environment International, 2018, 120: 421-430
    D’Costa V M, King C E, Kalan L, et al. Antibiotic resistance is ancient [J]. Nature, 2011, 477(7365): 457-461
    Darby E M, Trampari E, Siasat P, et al. Molecular mechanisms of antibiotic resistance revisited [J]. Nature Reviews Microbiology, 2023, 21(5): 280-295
    Yan W F, Bai R, Wang S Q, et al. Antibiotic resistance genes are increased by combined exposure to sulfamethoxazole and naproxen but relieved by low-salinity [J]. Environment International, 2020, 139: 105742
    Fujimoto M, Carey D E, McNamara P J. Metagenomics reveal triclosan-induced changes in the antibiotic resistome of anaerobic digesters [J]. Environmental Pollution, 2018, 241: 1182-1190
    Andersson D I, Hughes D. Microbiological effects of sublethal levels of antibiotics [J]. Nature Reviews Microbiology, 2014, 12(7): 465-478
    Zhang H P, Chen S Y, Zhang Q K, et al. Fungicides enhanced the abundance of antibiotic resistance genes in greenhouse soil [J]. Environmental Pollution, 2020, 259: 113877
    Kurenbach B, Marjoshi D, Amábile-Cuevas C F, et al. Sublethal exposure to commercial formulations of the herbicides dicamba, 2,4-dichlorophenoxyacetic acid, and glyphosate cause changes in antibiotic susceptibility in Escherichia coli and Salmonella enterica serovar Typhimurium [J]. mBio, 2015, 6(2): e00009-e00015
    Kurenbach B, Gibson P S, Hill A M, et al. Herbicide ingredients change Salmonella enterica sv. Typhimurium and Escherichia coli antibiotic responses [J]. Microbiology, 2017, 163(12): 1791-1801
    Kurenbach B, Hill A M, Godsoe W, et al. Agrichemicals and antibiotics in combination increase antibiotic resistance evolution [J]. PeerJ, 2018, 6: e5801
    Lu J, Zhang Y X, Wu J, et al. Effects of microplastics on distribution of antibiotic resistance genes in recirculating aquaculture system [J]. Ecotoxicology and Environmental Safety, 2019, 184: 109631
    Feng G Q, Huang H N, Chen Y G. Effects of emerging pollutants on the occurrence and transfer of antibiotic resistance genes: A review [J]. Journal of Hazardous Materials, 2021, 420: 126602
    Wang Y H, Yang Y N, Liu X, et al. Interaction of microplastics with antibiotics in aquatic environment: Distribution, adsorption, and toxicity [J]. Environmental Science & Technology, 2021, 55(23): 15579-15595
    Lu X M, Lu P Z, Liu X P. Fate and abundance of antibiotic resistance genes on microplastics in facility vegetable soil [J]. The Science of the Total Environment, 2020, 709: 136276
    Sørensen S J, Bailey M, Hansen L H, et al. Studying plasmid horizontal transfer in situ: A critical review [J]. Nature Reviews Microbiology, 2005, 3(9): 700-710
    Arnold B J, Huang I T, Hanage W P. Horizontal gene transfer and adaptive evolution in bacteria [J]. Nature Reviews Microbiology, 2022, 20(4): 206-218
    Davies J, Davies D. Origins and evolution of antibiotic resistance [J]. Microbiology and Molecular Biology Reviews, 2010, 74(3): 417-433
    Zhao R X, Yu K, Zhang J Y, et al. Deciphering the mobility and bacterial hosts of antibiotic resistance genes under antibiotic selection pressure by metagenomic assembly and binning approaches [J]. Water Research, 2020, 186: 116318
    McInnes R S, McCallum G E, Lamberte L E, et al. Horizontal transfer of antibiotic resistance genes in the human gut microbiome [J]. Current Opinion in Microbiology, 2020, 53: 35-43
    Fan X T, Li H, Chen Q L, et al. Fate of antibiotic resistant Pseudomonas putida and broad host range plasmid in natural soil microcosms [J]. Frontiers in Microbiology, 2019, 10: 194
    Klümper U, Dechesne A, Riber L, et al. Metal stressors consistently modulate bacterial conjugal plasmid uptake potential in a phylogenetically conserved manner [J]. The ISME Journal, 2017, 11(1): 152-165
    Grahn A M, Haase J, Bamford D H, et al. Components of the RP4 conjugative transfer apparatus form an envelope structure bridging inner and outer membranes of donor cells: Implications for related macromolecule transport systems [J]. Journal of Bacteriology, 2000, 182(6): 1564-1574
    Liu W, Huang Y H, Zhang H, et al. Factors and mechanisms influencing conjugation in vivo in the gastrointestinal tract environment: A review [J]. International Journal of Molecular Sciences, 2023, 24(6): 5919
    de la Cruz F, Frost L S, Meyer R J, et al. Conjugative DNA metabolism in Gram-negative bacteria [J]. FEMS Microbiology Reviews, 2010, 34(1): 18-40
    Christie P J, Whitaker N, González-Rivera C. Mechanism and structure of the bacterial type Ⅳ secretion systems [J]. Biochimica et Biophysica Acta, 2014, 1843(8): 1578-1591
    Liu G, Thomsen L E, Olsen J E. Antimicrobial-induced horizontal transfer of antimicrobial resistance genes in bacteria: A mini-review [J]. The Journal of Antimicrobial Chemotherapy, 2022, 77(3): 556-567
    Beaber J W, Hochhut B, Waldor M K. SOS response promotes horizontal dissemination of antibiotic resistance genes [J]. Nature, 2004, 427(6969): 72-74
    Wang Y, Lu J, Mao L K, et al. Antiepileptic drug carbamazepine promotes horizontal transfer of plasmid-borne multi-antibiotic resistance genes within and across bacterial genera [J]. The ISME Journal, 2019, 13(2): 509-522
    Wang Q, Mao D Q, Luo Y. Ionic liquid facilitates the conjugative transfer of antibiotic resistance genes mediated by plasmid RP4 [J]. Environmental Science & Technology, 2015, 49(14): 8731-8740
    Lu J, Yu Z G, Ding P B, et al. Triclosan promotes conjugative transfer of antibiotic resistance genes to opportunistic pathogens in environmental microbiome [J]. Environmental Science & Technology, 2022, 56(21): 15108-15119
    Li X, Wen C, Liu C, et al. Herbicide promotes the conjugative transfer of multi-resistance genes by facilitating cellular contact and plasmid transfer [J]. Journal of Environmental Sciences (China), 2022, 115: 363-373
    Zhang H N, Liu J B, Wang L, et al. Glyphosate escalates horizontal transfer of conjugative plasmid harboring antibiotic resistance genes [J]. Bioengineered, 2021, 12(1): 63-69
    Guo A Y, Zhou Q X, Bao Y Y, et al. Prochloraz alone or in combination with nano-CuO promotes the conjugative transfer of antibiotic resistance genes between Escherichia coli in pure water [J]. Journal of Hazardous Materials, 2022, 424(Pt D): 127761
    Yu Z G, Henderson I R, Guo J H. Non-caloric artificial sweeteners modulate conjugative transfer of multi-drug resistance plasmid in the gut microbiota [J]. Gut Microbes, 2023, 15(1): 2157698
    Cen T Y, Zhang X Y, Xie S S, et al. Preservatives accelerate the horizontal transfer of plasmid-mediated antimicrobial resistance genes via differential mechanisms [J]. Environment International, 2020, 138: 105544
    Yu Z G, Wang Y, Lu J, et al. Nonnutritive sweeteners can promote the dissemination of antibiotic resistance through conjugative gene transfer [J]. The ISME Journal, 2021, 15(7): 2117-2130
    Yang Y T, Yang X B, Zhou H R, et al. Bisphenols promote the pheromone-responsive plasmid-mediated conjugative transfer of antibiotic resistance genes in Enterococcus faecalis [J]. Environmental Science & Technology, 2022, 56(24): 17653-17662
    Zhang Y X, Lu J, Wu J, et al. Potential risks of microplastics combined with superbugs: Enrichment of antibiotic resistant bacteria on the surface of microplastics in mariculture system [J]. Ecotoxicology and Environmental Safety, 2020, 187: 109852
    Yu X, Zhou Z C, Shuai X Y, et al. Microplastics exacerbate co-occurrence and horizontal transfer of antibiotic resistance genes [J]. Journal of Hazardous Materials, 2023, 451: 131130
    Cheng Y, Lu J R, Fu S S, et al. Enhanced propagation of intracellular and extracellular antibiotic resistance genes in municipal wastewater by microplastics [J]. Environmental Pollution, 2022, 292(Pt A): 118284
    Zha Y Y, Li Z W, Zhong Z, et al. Size-dependent enhancement on conjugative transfer of antibiotic resistance genes by micro/nanoplastics [J]. Journal of Hazardous Materials, 2022, 431: 128561
    Gu H, Kolewe K W, Ren D C. Conjugation in Escherichia coli biofilms on poly(dimethylsiloxane) surfaces with microtopographic patterns [J]. Langmuir, 2017, 33(12): 3142-3150
    Wu J, Zhou J H, Liu D F, et al. Phthalates promote dissemination of antibiotic resistance genes: An overlooked environmental risk [J]. Environmental Science & Technology, 2023, 57(17): 6876-6887
    Li J, Cao J J, Zhu Y G, et al. Global survey of antibiotic resistance genes in air [J]. Environmental Science & Technology, 2018, 52(19): 10975-10984
    Xie S S, Gu A Z, Cen T Y, et al. The effect and mechanism of urban fine particulate matter (PM2.5) on horizontal transfer of plasmid-mediated antimicrobial resistance genes [J]. The Science of the Total Environment, 2019, 683: 116-123
    Zhou H, Wang X L, Li Z H, et al. Occurrence and distribution of urban dust-associated bacterial antibiotic resistance in northern China [J]. Environmental Science & Technology Letters, 2018, 5(2): 50-55
    Liao J Q, Huang H N, Chen Y G. CO2 promotes the conjugative transfer of multiresistance genes by facilitating cellular contact and plasmid transfer [J]. Environment International, 2019, 129: 333-342
    Thomas C M, Nielsen K M. Mechanisms of, and barriers to, horizontal gene transfer between bacteria [J]. Nature Reviews Microbiology, 2005, 3(9): 711-721
    Macé K, Vadakkepat A K, Redzej A, et al. Cryo-EM structure of a type Ⅳ secretion system [J]. Nature, 2022, 607(7917): 191-196
    Griffith F. The significance of pneumococcal types [J]. The Journal of Hygiene, 1966, 64(2): 129-i4
    Meier P, Berndt C, Weger N, et al. Natural transformation of Pseudomonas stutzeri by single-stranded DNA requires type Ⅳ pili, competence state and comA [J]. FEMS Microbiology Letters, 2002, 207(1): 75-80
    Stingl K, Müller S, Scheidgen-Kleyboldt G, et al. Composite system mediates two-step DNA uptake into Helicobacter pylori [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(3): 1184-1189
    Chen I, Dubnau D. DNA uptake during bacterial transformation [J]. Nature Reviews Microbiology, 2004, 2(3): 241-249
    Draskovic I, Dubnau D. Biogenesis of a putative channel protein, ComEC, required for DNA uptake: Membrane topology, oligomerization and formation of disulphide bonds [J]. Molecular Microbiology, 2005, 55(3): 881-896
    Yadav T, Carrasco B, Hejna J, et al. Bacillus subtilis DprA recruits RecA onto single-stranded DNA and mediates annealing of complementary strands coated by SsbB and SsbA [J]. The Journal of Biological Chemistry, 2013, 288(31): 22437-22450
    Johnston C, Martin B, Fichant G, et al. Bacterial transformation: Distribution, shared mechanisms and divergent control [J]. Nature Reviews Microbiology, 2014, 12(3): 181-196
    Prudhomme M, Attaiech L, Sanchez G, et al. Antibiotic stress induces genetic transformability in the human pathogen Streptococcus pneumoniae [J]. Science, 2006, 313(5783): 89-92
    Wang Y, Lu J, Engelstädter J, et al. Non-antibiotic pharmaceuticals enhance the transmission of exogenous antibiotic resistance genes through bacterial transformation [J]. The ISME Journal, 2020, 14(8): 2179-2196
    Lu J, Wang Y, Zhang S, et al. Triclosan at environmental concentrations can enhance the spread of extracellular antibiotic resistance genes through transformation [J]. The Science of the Total Environment, 2020, 713: 136621
    Yu Z G, Wang Y, Henderson I R, et al. Artificial sweeteners stimulate horizontal transfer of extracellular antibiotic resistance genes through natural transformation [J]. The ISME Journal, 2022, 16(2): 543-554
    Hu X J, Waigi M G, Yang B, et al. Impact of plastic particles on the horizontal transfer of antibiotic resistance genes to bacterium: Dependent on particle sizes and antibiotic resistance gene vector replication capacities [J]. Environmental Science & Technology, 2022, 56(21): 14948-14959
    Balcázar J L. How do bacteriophages promote antibiotic resistance in the environment? [J]. Clinical Microbiology and Infection, 2018, 24(5): 447-449
    Zinder N D, Lederberg J. Genetic exchange in Salmonella [J]. Journal of Bacteriology, 1952, 64: 679-699
    Zhang Y, Guo Y J, Qiu T L, et al. Bacteriophages: Underestimated vehicles of antibiotic resistance genes in the soil [J]. Frontiers in Microbiology, 2022, 13: 936267
    Mazaheri Nezhad Fard R, Barton M D, Heuzenroeder M W. Bacteriophage-mediated transduction of antibiotic resistance in enterococci [J]. Letters in Applied Microbiology, 2011, 52(6): 559-564
    Billard-Pomares T, Fouteau S, Jacquet M E, et al. Characterization of a P1-like bacteriophage carrying an SHV-2 extended-spectrum β-lactamase from an Escherichia coli strain [J]. Antimicrobial Agents and Chemotherapy, 2014, 58(11): 6550-6557
    Brown-Jaque M, Calero-Cáceres W, Muniesa M. Transfer of antibiotic-resistance genes via phage-related mobile elements [J]. Plasmid, 2015, 79: 1-7
    Sander M, Schmieger H. Method for host-independent detection of generalized transducing bacteriophages in natural habitats [J]. Applied and Environmental Microbiology, 2001, 67(4): 1490-1493
    Penadés J R, Chen J, Quiles-Puchalt N, et al. Bacteriophage-mediated spread of bacterial virulence genes [J]. Current Opinion in Microbiology, 2015, 23: 171-178
    Debroas D, Siguret C. Viruses as key reservoirs of antibiotic resistance genes in the environment [J]. The ISME Journal, 2019, 13(11): 2856-2867
    Larrañaga O, Brown-Jaque M, Quirós P, et al. Phage particles harboring antibiotic resistance genes in fresh-cut vegetables and agricultural soil [J]. Environment International, 2018, 115: 133-141
    Colomer-Lluch M, Jofre J, Muniesa M. Antibiotic resistance genes in the bacteriophage DNA fraction of environmental samples [J]. PLoS One, 2011, 6(3): e17549
    Marti E, Variatza E, Balcázar J L. Bacteriophages as a reservoir of extended-spectrum β-lactamase and fluoroquinolone resistance genes in the environment [J]. Clinical Microbiology and Infection, 2014, 20(7): O456-O459
    Calero-Cáceres W, Melgarejo A, Colomer-Lluch M, et al. Sludge as a potential important source of antibiotic resistance genes in both the bacterial and bacteriophage fractions [J]. Environmental Science & Technology, 2014, 48(13): 7602-7611
    Xiao X, Ma X L, Han X, et al. TiO2 photoexcitation promoted horizontal transfer of resistance genes mediated by phage transduction [J]. The Science of the Total Environment, 2021, 760: 144040
    Wang Y, Lu J, Zhang S, et al. Non-antibiotic pharmaceuticals promote the transmission of multidrug resistance plasmids through intra- and intergenera conjugation [J]. The ISME Journal, 2021, 15(9): 2493-2508
    Lu J, Wang Y, Li J, et al. Triclosan at environmentally relevant concentrations promotes horizontal transfer of multidrug resistance genes within and across bacterial genera [J]. Environment International, 2018, 121(Pt 2): 1217-1226
    Yang B Q, Wang Z Q, Jia Y Q, et al. Paclitaxel and its derivative facilitate the transmission of plasmid-mediated antibiotic resistance genes through conjugative transfer [J]. The Science of the Total Environment, 2022, 810: 152245
    Zhang H P, Song J J, Zheng Z R, et al. Fungicide exposure accelerated horizontal transfer of antibiotic resistance genes via plasmid-mediated conjugation [J]. Water Research, 2023, 233: 119789
    Liao H P, Li X, Yang Q E, et al. Herbicide selection promotes antibiotic resistance in soil microbiomes [J]. Molecular Biology and Evolution, 2021, 38(6): 2337-2350
    Li W, Zhang W G, Zhang M S, et al. Environmentally relevant concentrations of mercury facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes [J]. The Science of the Total Environment, 2022, 852: 158272
    Wang Q, Liu L, Hou Z L, et al. Heavy metal copper accelerates the conjugative transfer of antibiotic resistance genes in freshwater microcosms [J]. The Science of the Total Environment, 2020, 717: 137055
    Zhang Y, Gu A Z, Cen T Y, et al. Sub-inhibitory concentrations of heavy metals facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes in water environment [J]. Environmental Pollution, 2018, 237: 74-82
    Song Z, Zuo L, Li C, et al. Copper ions facilitate the conjugative transfer of SXT/R391 integrative and conjugative element across bacterial genera [J]. Frontiers in Microbiology, 2020, 11: 616792
    Wang X L, Yang F X, Zhao J, et al. Bacterial exposure to ZnO nanoparticles facilitates horizontal transfer of antibiotic resistance genes [J]. NanoImpact, 2018, 10: 61-67
    Qiu Z G, Yu Y M, Chen Z L, et al. Nanoalumina promotes the horizontal transfer of multiresistance genes mediated by plasmids across genera [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(13): 4944-4949
    Lu J, Wang Y, Jin M, et al. Both silver ions and silver nanoparticles facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes [J]. Water Research, 2020, 169: 115229
    Zhang S, Wang Y, Song H L, et al. Copper nanoparticles and copper ions promote horizontal transfer of plasmid-mediated multi-antibiotic resistance genes across bacterial genera [J]. Environment International, 2019, 129: 478-487
    Yu K Q, Chen F R, Yue L, et al. CeO2 nanoparticles regulate the propagation of antibiotic resistance genes by altering cellular contact and plasmid transfer [J]. Environmental Science & Technology, 2020, 54(16): 10012-10021
    Li G Y, Chen X F, Yin H L, et al. Natural sphalerite nanoparticles can accelerate horizontal transfer of plasmid-mediated antibiotic-resistance genes [J]. Environment International, 2020, 136: 105497
    Zhang Y, Gu A Z, He M, et al. Subinhibitory concentrations of disinfectants promote the horizontal transfer of multidrug resistance genes within and across genera [J]. Environmental Science & Technology, 2017, 51(1): 570-580
    Zhang S, Lu J, Wang Y, et al. Insights of metallic nanoparticles and ions in accelerating the bacterial uptake of antibiotic resistance genes [J]. Journal of Hazardous Materials, 2022, 421: 126728
    Wang X X, Li H, Chen Y, et al. A neglected risk of nanoplastics as revealed by the promoted transformation of plasmid-borne ampicillin resistance gene by Escherichia coli [J]. Environmental Microbiology, 2022, 24(10): 4946-4959
    Jin M, Liu L, Wang D N, et al. Chlorine disinfection promotes the exchange of antibiotic resistance genes across bacterial genera by natural transformation [J]. The ISME Journal, 2020, 14(7): 1847-1856
    Zhang S, Wang Y, Lu J, et al. Chlorine disinfection facilitates natural transformation through ROS-mediated oxidative stress [J]. The ISME Journal, 2021, 15(10): 2969-2985
    Zhu S Y, Yang B Q, Wang Z Q, et al. Augmented dissemination of antibiotic resistance elicited by non-antibiotic factors [J]. Ecotoxicology and Environmental Safety, 2023, 262: 115124
    Graf F E, Palm M, Warringer J, et al. Inhibiting conjugation as a tool in the fight against antibiotic resistance [J]. Drug Development Research, 2019, 80(1): 19-23
    Carattoli A. Resistance plasmid families in Enterobacteriaceae [J]. Antimicrobial Agents and Chemotherapy, 2009, 53(6): 2227-2238
    Garcillán-Barcia M P, Jurado P, González-Pérez B, et al. Conjugative transfer can be inhibited by blocking relaxase activity within recipient cells with intrabodies [J]. Molecular Microbiology, 2007, 63(2): 404-416
    Shaffer C L, Good J A, Kumar S, et al. Peptidomimetic small molecules disrupt type Ⅳ secretion system activity in diverse bacterial pathogens [J]. mBio, 2016, 7(2): e00221-e00216
    Ripoll-Rozada J, García-Cazorla Y, Getino M, et al. Type Ⅳ traffic ATPase TrwD as molecular target to inhibit bacterial conjugation [J]. Molecular Microbiology, 2016, 100(5): 912-921
    Ren C Y, Wu E L, Hartmann E M, et al. Biological mitigation of antibiotic resistance gene dissemination by antioxidant-producing microorganisms in activated sludge systems [J]. Environmental Science & Technology, 2021, 55(23): 15831-15842
    Huang H N, Liao J Q, Zheng X, et al. Low-level free nitrous acid efficiently inhibits the conjugative transfer of antibiotic resistance by altering intracellular ions and disabling transfer apparatus [J]. Water Research, 2019, 158: 383-391
    Fang J, Jin L, Meng Q K, et al. Biochar effectively inhibits the horizontal transfer of antibiotic resistance genes via transformation [J]. Journal of Hazardous Materials, 2022, 423(Pt B): 127150
    Wang H G, Qi H C, Zhu M, et al. MoS2 decorated nanocomposite: Fe2O3@MoS2 inhibits the conjugative transfer of antibiotic resistance genes [J]. Ecotoxicology and Environmental Safety, 2019, 186: 109781
    Getino M, Sanabria-Ríos D J, Fernández-López R, et al. Synthetic fatty acids prevent plasmid-mediated horizontal gene transfer [J]. mBio, 2015, 6(5): e01032-e01015
    Lujan S A, Guogas L M, Ragonese H, et al. Disrupting antibiotic resistance propagation by inhibiting the conjugative DNA relaxase [J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(30): 12282-12287
    Lin W F, Li S, Zhang S T, et al. Reduction in horizontal transfer of conjugative plasmid by UV irradiation and low-level chlorination [J]. Water Research, 2016, 91: 331-338
  • 加载中
计量
  • 文章访问数:  867
  • HTML全文浏览数:  867
  • PDF下载数:  173
  • 施引文献:  0
出版历程
  • 收稿日期:  2024-03-28
杨会, 崔鹏飞, 汝少国. 新兴污染物对抗生素抗性基因水平转移的影响[J]. 生态毒理学报, 2024, 19(4): 71-87. doi: 10.7524/AJE.1673-5897.20240328001
引用本文: 杨会, 崔鹏飞, 汝少国. 新兴污染物对抗生素抗性基因水平转移的影响[J]. 生态毒理学报, 2024, 19(4): 71-87. doi: 10.7524/AJE.1673-5897.20240328001
Yang Hui, Cui Pengfei, Ru Shaoguo. Effects of Emerging Pollutants on Horizontal Transfer of Antibiotic Resistance Genes[J]. Asian Journal of Ecotoxicology, 2024, 19(4): 71-87. doi: 10.7524/AJE.1673-5897.20240328001
Citation: Yang Hui, Cui Pengfei, Ru Shaoguo. Effects of Emerging Pollutants on Horizontal Transfer of Antibiotic Resistance Genes[J]. Asian Journal of Ecotoxicology, 2024, 19(4): 71-87. doi: 10.7524/AJE.1673-5897.20240328001

新兴污染物对抗生素抗性基因水平转移的影响

    通讯作者: 崔鹏飞(1988-),男,博士,副教授,主要研究方向为生态毒理学。E-mail:cuipengfei@ouc.edu.cn; 
    作者简介: 杨会(2000-),女,硕士研究生,研究方向为生态毒理学,E-mail:yanghui011685@163.com
  • 中国海洋大学海洋生命学院, 青岛 266003

摘要: 抗生素抗性基因(antibiotic resistance genes, ARGs)引起的抗生素耐药性问题被列为新兴环境污染问题,对生态环境和人类健康构成严重威胁。当前备受关注的环境新兴污染物(如内分泌干扰物、重金属、微塑料、纳米塑料等)都可以通过水平基因转移单独或协同促进ARGs在环境中的传播、转移和扩散。新兴污染物如何影响ARGs的水平转移过程已成为备受关注的研究热点。本文全面综述了ARGs的来源及水平基因转移的3种经典方式(接合、自然转化和转导),总结了新兴污染物影响ARGs水平转移的规律及潜在机制,以充分认识ARGs在生态系统中的传播动态与最终命运,有助于全面了解新兴污染物在ARGs传播中的作用。最后提出了目前ARGs水平转移的阻断措施和研究的局限性,并为未来研究提出了相关建议,以便制定有效策略防控并阻断ARGs在环境中的传播过程。

English Abstract

参考文献 (114)

返回顶部

目录

/

返回文章
返回