生理动力学模型及其在健康风险评估中的应用进展和展望

管娜, 朱斌, 赵申升, 隋海霞, 刘兆平, 王子健. 生理动力学模型及其在健康风险评估中的应用进展和展望[J]. 生态毒理学报, 2024, 19(4): 1-12. doi: 10.7524/AJE.1673-5897.20240701001
引用本文: 管娜, 朱斌, 赵申升, 隋海霞, 刘兆平, 王子健. 生理动力学模型及其在健康风险评估中的应用进展和展望[J]. 生态毒理学报, 2024, 19(4): 1-12. doi: 10.7524/AJE.1673-5897.20240701001
Guan Na, Zhu Bin, Zhao Shensheng, Sui Haixia, Liu Zhaoping, Wang Zijian. The Development and Future Prospective of Physiologically Based Kinetic Models and Its Applications in Risk Assessment[J]. Asian journal of ecotoxicology, 2024, 19(4): 1-12. doi: 10.7524/AJE.1673-5897.20240701001
Citation: Guan Na, Zhu Bin, Zhao Shensheng, Sui Haixia, Liu Zhaoping, Wang Zijian. The Development and Future Prospective of Physiologically Based Kinetic Models and Its Applications in Risk Assessment[J]. Asian journal of ecotoxicology, 2024, 19(4): 1-12. doi: 10.7524/AJE.1673-5897.20240701001

生理动力学模型及其在健康风险评估中的应用进展和展望

    作者简介: 管娜(1975-),女,博士,研究方向为毒理学和风险评估,E-mail:nguan@dow.com
    通讯作者: 隋海霞(1975-),女,博士,研究员,主要研究方向为食品安全风险评估。E-mail:suihaixia@cfsa.net.cn;  刘兆平(1971-),男,博士,研究员,主要研究方向为食品安全风险评估。E-mail:liuzhaoping@cfsa.net.cn; 
  • 基金项目:

    国家重点研发计划项目(2023YFF1103900);国家自然科学基金资助项目(32372445)

  • 中图分类号: X171.5

The Development and Future Prospective of Physiologically Based Kinetic Models and Its Applications in Risk Assessment

    Corresponding authors: Sui Haixia ;  Liu Zhaoping ; 
  • Fund Project:
  • 摘要: 基于生理的动力学(physiologically based kinetic, PBK)模型是一种用于模拟化学物质在有机体(如人类和其他动物物种)中的生物过程(吸收、分布、代谢和排泄,简称ADME)和推导体内、外剂量或靶器官剂量的工具。相较于PBK在药物研发的不同阶段的广泛应用,近几年来PBK在化学物质管理中应用的发展更为迅速。在过去十几年中,化学品安全管理领域的不同国际组织和权威机构相继发布了关于合理构建和使用PBK模型的指导文件。本文主要总结了人类/哺乳动物的PBK模型构建、化学物质健康风险评估中常用的软件和平台,以及PBK模型软件在化学物质管理中的应用和相关案例,简述了基于PBK和体外-体内外推(IVIVE)方法在下一代健康风险评估中的应用潜力,并对PBK在中国化学物质管理应用中需要解决的科学问题进行了讨论,以期为PBK在我国化学物质管理应用提供借鉴。
  • 加载中
  • Organisation for Economic Co-operation and Development (OECD). Guidance Document on the Characterisation, Validation and Reporting of Physiologically Based Kinetic (PBK) Models for Regulatory Purposes [S]. Environment, Health and Safety, Environment Directorate, OECD, 2021
    Zhuang X M, Lu C. PBPK modeling and simulation in drug research and development [J]. Acta Pharmaceutica Sinica B, 2016, 6(5): 430-440
    Jia Q Y, He Q F, Yao L, et al. Utilization of physiologically based pharmacokinetic modeling in pharmacokinetic study of natural medicine: An overview [J]. Molecules, 2022, 27(24): 8670
    Zhao P, Zhang L, Grillo J A, et al. Applications of physiologically based pharmacokinetic (PBPK) modeling and simulation during regulatory review [J]. Clinical Pharmacology and Therapeutics, 2011, 89(2): 259-267
    Gehring P J, Watanabe P G, Park C N. Resolution of dose-response toxicity data for chemicals requiring metabolic activation: Example—vinyl chloride [J]. Toxicology and Applied Pharmacology, 1978, 44(3): 581-591
    Andersen M E, Clewell H J 3rd, Gargas M L, et al. Physiologically based pharmacokinetics and the risk assessment process for methylene chloride [J]. Toxicology and Applied Pharmacology, 1987, 87(2): 185-205
    Gehring P J, Watanabe P G, Blau G E. Pharmacokinetic Studies in Evaluation of the Toxicological and Environmental Hazard of Chemicals [M]// New Concepts in Safety Evaluation, Advances in Modern Toxicology. Auburn, CA: Hemisphere Publishing Corp, 1976: 193-270
    Gehring P J, Watanabe P G, Young J D. The Relevance of Dose-dependent Pharmacokinetics in the Assessment of Carcinogenic Hazard of Chemicals [M]// Origins of Human Cancer. Vol 4. Book A: Incidence of Cancer in Humans. Long Island, NY: Cold Spring Harbor Laboratory, 1977: 187-203
    Lin Z, Li M, Wang Y, et al. Physiological parameter values for physiologically based pharmacokinetic models in food-producing animals. Part Ⅰ: Cattle and swine [J]. Journal of Veterinary Pharmacology and Therapeutics, 2020, 43(5): 385-420
    Najjar A, Punt A, Wambaugh J, et al. Towards best use and regulatory acceptance of generic physiologically based kinetic (PBK) models for in vitro-to-in vivo extrapolation (IVIVE) in chemical risk assessment [J]. Archives of Toxicology, 2022, 96(12): 3407-3419
    Breen M, Ring C L, Kreutz A, et al. High-throughput PBTK models for in vitro to in vivo extrapolation [J]. Expert Opinion on Drug Metabolism & Toxicology, 2021, 17(8): 903-921
    United States Environmental Protection Agency. Approaches for the application of physiologically based pharmacokinetic (PBPK) models and supporting data in risk assessment [R]. Washington D.C.: United States Environmental Protection Agency, 2006
    World Health Organization (WHO). Characterization and application of physiologically based pharmacokinetic models in risk assessment [R]. Geneva: WHO, 2010
    Yang D Y, Yang H, Shi M Y, et al. Advancing food safety risk assessment in China: Development of new approach methodologies (NAMs) [J]. Frontiers in Toxicology, 2023, 5: 1292373
    Sauerhoff M W, Braun W H, Blau G E, et al. The dose-dependent pharmacokinetic profile of 2,4,5-trichlorophenoxy acetic acid following intravenous administration to rats [J]. Toxicology and Applied Pharmacology, 1976, 36(3): 491-501
    McKenna M J, Zempel J A, Madrid E O, et al. The pharmacokinetics of vinylidene chloride in rats following inhalation exposure [J]. Toxicology and Applied Pharmacology, 1978, 45(2): 599-610
    McKenna M J, Zempel J A, Braun W H. The pharmacokinetics of inhaled methylene chloride in rats [J]. Toxicology and Applied Pharmacology, 1982, 65(1): 1-10
    Ramsey J C, Andersen M E. A physiologically based description of the inhalation pharmacokinetics of styrene in rats and humans [J]. Toxicology and Applied Pharmacology, 1984, 73(1): 159-175
    United States Environmental Protection Agency. Risk evaluation for N-methylpyrrolidone (2-pyrrolidinone, 1-methyl-) (NMP) [R]. Washington D.C.: United States Environmental Protection Agency, 2020
    European Food Safety Authority (EFSA). Outcome of a public consultation on the draft risk assessment of perfluoroalkyl substances in food [J]. EFSA Supporting Publications, 2020, 17(9): 1931E
    Panel on Contaminants in the Food Chain (CONTAM), Schrenk D, Bignami M, et al. Update of the risk assessment of polybrominated diphenyl ethers (PBDEs) in food [J]. EFSA Journal, 2024, 22(1): e8497
    中国生态环境部. 新化学物质环境管理登记指南[S]. 北京: 中国生态环境部, 2020
    European Chemicals Agency (ECHA). Guidance on Information Requirements and Chemical Safety Assessment, Chapter R.7c: Endpoint Specific Guidance [S]. Helsinki, Finland: European Chemicals Agency, 2023
    European Food Safety Authority (EFSA). Scientific opinion on good modelling practice in the context of mechanistic effect models for risk assessment of plant protection products [J]. EFSA Journal, 2014, 12(3): 3589
    Balhara A, Kale S, Singh S. Physiologically Based Pharmacokinetic (PBPK) Modelling [M]// Saharan V A. Computer Aided Pharmaceutics and Drug Delivery. Singapore: Springer, 2022: 255-284
    Upton R N, Foster D J, Abuhelwa A Y. An introduction to physiologically-based pharmacokinetic models [J]. Paediatric Anaesthesia, 2016, 26(11): 1036-1046
    Lin W, Chen Y, Unadkat J D, et al. Applications, challenges, and outlook for PBPK modeling and simulation: A regulatory, industrial and academic perspective [J]. Pharmaceutical Research, 2022, 39(8): 1701-1731
    Tsamandouras N, Rostami-Hodjegan A, Aarons L. Combining the 'bottom up’ and 'top down’ approaches in pharmacokinetic modelling: Fitting PBPK models to observed clinical data [J]. British Journal of Clinical Pharmacology, 2015, 79(1): 48-55
    Paini A, Tan Y M, Sachana M, et al. Gaining acceptance in next generation PBK modelling approaches for regulatory assessments: An OECD international effort [J]. Computational Toxicology, 2021, 18: 100163
    Jones H, Rowland-Yeo K. Basic concepts in physiologically based pharmacokinetic modeling in drug discovery and development [J]. CPT: Pharmacometrics & Systems Pharmacology, 2013, 2(8): e63
    Thompson M D, Beard D A. Development of appropriate equations for physiologically based pharmacokinetic modeling of permeability-limited and flow-limited transport [J]. Journal of Pharmacokinetics and Pharmacodynamics, 2011, 38(4): 405-421
    Ellison C A. Structural and functional pharmacokinetic analogs for physiologically based pharmacokinetic (PBPK) model evaluation [J]. Regulatory Toxicology and Pharmacology, 2018, 99: 61-77
    Ellison C A, Wu S D. Application of structural and functional pharmacokinetic analogs for physiologically based pharmacokinetic model development and evaluation [J]. Regulatory Toxicology and Pharmacology, 2020, 114: 104667
    McNally K, Cotton R, Loizou G D. A workflow for global sensitivity analysis of PBPK models [J]. Frontiers in Pharmacology, 2011, 2: 31
    Bois F Y, Ochoa J G D, Gajewska M, et al. Multiscale modelling approaches for assessing cosmetic ingredients safety [J]. Toxicology, 2017, 392: 130-139
    United States Food and Drug Administration. Physiologically Based Pharmacokinetic Analyses: Format and Content Guidance for Industry [S]. Silver Spring, Maryland: Food and Drug Administration Center for Drug Evaluation and Research (CDER), 2018
    European Medicines Agency. Guideline on the Reporting of Physiologically Based Pharmacokinetic (PBPK) Modelling and Simulation [S]. London: European Medicines Agency, 2018
    Bossier H, Chau J, Varewyck M, et al. Further development of a web-based open-source platform for toxicokinetic and toxicodynamic modelling: TKPlate 1.0 [J]. EFSA Supporting Publications, 2023, 20(11): 8437E
    Raimondo S, Lilavois C, Nelson S A. Uncertainty analysis and updated user guidance for interspecies correlation estimation models and low toxicity compounds [J]. Integrated Environmental Assessment and Management, 2023. DOI: 10.1002/ieam.4884
    Madden J C, Pawar G, Cronin M T D, et al. In silico resources to assist in the development and evaluation of physiologically-based kinetic models [J]. Computational Toxicology, 2019, 11: 33-49
    Ahmad A, Pepin X, Aarons L, et al. IMI-Oral Biopharmaceutics Tools Project: Evaluation of bottom-up PBPK prediction success part 4: Prediction accuracy and software comparisons with improved data and modelling strategies [J]. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 156: 50-63
    Wegner S H, Pinto C L, Ring C L, et al. High-throughput screening tools facilitate calculation of a combined exposure-bioactivity index for chemicals with endocrine activity [J]. Environment International, 2020, 137: 105470
    张浩然, 杨道远, 欧曈, 等. 化学物危害特征描述中不确定系数制定的研究进展及其应用[J]. 生态毒理学报, 2024, 19(2): 1-11

    Zhang H R, Yang D Y, Ou T, et al. Research advances and practical applications of uncertainty factors using in chemical hazard characterization [J]. Asian Journal of Ecotoxicology, 2024, 19(2): 1-11 (in Chinese)

    Xie R L, Wang X D, Xu Y P, et al. In vitro to in vivo extrapolation for predicting human equivalent dose of phenolic endocrine disrupting chemicals: PBTK model development, biological pathways, outcomes and performance [J]. The Science of the Total Environment, 2023, 897: 165271
    Chen Q R, Chou W C, Lin Z M. Integration of toxicogenomics and physiologically based pharmacokinetic modeling in human health risk assessment of perfluorooctane sulfonate [J]. Environmental Science & Technology, 2022, 56(6): 3623-3633
    李龙杰, 计佩影, 郑澳乐, 等. 人工智能结合生理药代动力学模型的研究进展[J]. 药学学报, 2024(5): 1-16
  • 加载中
计量
  • 文章访问数:  1213
  • HTML全文浏览数:  1213
  • PDF下载数:  234
  • 施引文献:  0
出版历程
  • 收稿日期:  2024-07-01
管娜, 朱斌, 赵申升, 隋海霞, 刘兆平, 王子健. 生理动力学模型及其在健康风险评估中的应用进展和展望[J]. 生态毒理学报, 2024, 19(4): 1-12. doi: 10.7524/AJE.1673-5897.20240701001
引用本文: 管娜, 朱斌, 赵申升, 隋海霞, 刘兆平, 王子健. 生理动力学模型及其在健康风险评估中的应用进展和展望[J]. 生态毒理学报, 2024, 19(4): 1-12. doi: 10.7524/AJE.1673-5897.20240701001
Guan Na, Zhu Bin, Zhao Shensheng, Sui Haixia, Liu Zhaoping, Wang Zijian. The Development and Future Prospective of Physiologically Based Kinetic Models and Its Applications in Risk Assessment[J]. Asian journal of ecotoxicology, 2024, 19(4): 1-12. doi: 10.7524/AJE.1673-5897.20240701001
Citation: Guan Na, Zhu Bin, Zhao Shensheng, Sui Haixia, Liu Zhaoping, Wang Zijian. The Development and Future Prospective of Physiologically Based Kinetic Models and Its Applications in Risk Assessment[J]. Asian journal of ecotoxicology, 2024, 19(4): 1-12. doi: 10.7524/AJE.1673-5897.20240701001

生理动力学模型及其在健康风险评估中的应用进展和展望

    通讯作者: 隋海霞(1975-),女,博士,研究员,主要研究方向为食品安全风险评估。E-mail:suihaixia@cfsa.net.cn;  刘兆平(1971-),男,博士,研究员,主要研究方向为食品安全风险评估。E-mail:liuzhaoping@cfsa.net.cn; 
    作者简介: 管娜(1975-),女,博士,研究方向为毒理学和风险评估,E-mail:nguan@dow.com
  • 1. 陶氏化学中国投资有限公司, 上海 201203;
  • 2. 杜邦中国集团有限公司, 上海 201203;
  • 3. 北京宝洁技术有限公司, 北京 101312;
  • 4. 国家食品安全风险评估中心, 北京 100022;
  • 5. 中国科学院生态环境研究中心, 北京 100085
基金项目:

国家重点研发计划项目(2023YFF1103900);国家自然科学基金资助项目(32372445)

摘要: 基于生理的动力学(physiologically based kinetic, PBK)模型是一种用于模拟化学物质在有机体(如人类和其他动物物种)中的生物过程(吸收、分布、代谢和排泄,简称ADME)和推导体内、外剂量或靶器官剂量的工具。相较于PBK在药物研发的不同阶段的广泛应用,近几年来PBK在化学物质管理中应用的发展更为迅速。在过去十几年中,化学品安全管理领域的不同国际组织和权威机构相继发布了关于合理构建和使用PBK模型的指导文件。本文主要总结了人类/哺乳动物的PBK模型构建、化学物质健康风险评估中常用的软件和平台,以及PBK模型软件在化学物质管理中的应用和相关案例,简述了基于PBK和体外-体内外推(IVIVE)方法在下一代健康风险评估中的应用潜力,并对PBK在中国化学物质管理应用中需要解决的科学问题进行了讨论,以期为PBK在我国化学物质管理应用提供借鉴。

English Abstract

参考文献 (46)

返回顶部

目录

/

返回文章
返回