替代动物实验中的体外-体内外推方法

王小丹, 谢锐莉, 许宜平, 张磊, 马梅, 饶凯锋, 王子健. 替代动物实验中的体外-体内外推方法[J]. 生态毒理学报, 2024, 19(4): 13-26. doi: 10.7524/AJE.1673-5897.20240730001
引用本文: 王小丹, 谢锐莉, 许宜平, 张磊, 马梅, 饶凯锋, 王子健. 替代动物实验中的体外-体内外推方法[J]. 生态毒理学报, 2024, 19(4): 13-26. doi: 10.7524/AJE.1673-5897.20240730001
Wang Xiaodan, Xie Ruili, Xu Yiping, Zhang Lei, Ma Mei, Rao Kaifeng, Wang Zijian. In vitro to in vivo Extrapolation: Facilitating Alternatives to Animal Testing in Chemical Health Risk Assessment[J]. Asian Journal of Ecotoxicology, 2024, 19(4): 13-26. doi: 10.7524/AJE.1673-5897.20240730001
Citation: Wang Xiaodan, Xie Ruili, Xu Yiping, Zhang Lei, Ma Mei, Rao Kaifeng, Wang Zijian. In vitro to in vivo Extrapolation: Facilitating Alternatives to Animal Testing in Chemical Health Risk Assessment[J]. Asian Journal of Ecotoxicology, 2024, 19(4): 13-26. doi: 10.7524/AJE.1673-5897.20240730001

替代动物实验中的体外-体内外推方法

    作者简介: 王小丹(1985-),女,博士,研究方向为食品安全风险评估,E-mail:wangxiaodan@cfsa.net.cn
    通讯作者: 许宜平(1979-),女,博士,副研究员,主要研究方向为生态毒理学与风险评估。E-mail:ypxu@rcees.ac.cn;  张磊(1973-),男,博士,研究员,主要研究方向为食品安全风险评估。E-mail:zhanglei@cfsa.net.cn; 
  • 基金项目:

    国家重点研发计划课题(2023YFF1103803);国家自然科学基金面上项目(42377275);天津市科技计划项目(22YFYSHZ00060)

  • 中图分类号: X171.5

In vitro to in vivo Extrapolation: Facilitating Alternatives to Animal Testing in Chemical Health Risk Assessment

    Corresponding authors: Xu Yiping ;  Zhang Lei ; 
  • Fund Project:
  • 摘要: 危害和暴露数据的匮乏是化学物质风险评估面临的艰巨挑战。21世纪以来,使用高效经济的非动物试验方法替代传统的资源消耗型动物试验已成为必然趋势,形成了以体外测试(in vitro)、计算机模拟(in silico)、交叉参照(read across)和体外-体内外推(IVIVE)等新路线方法学(NAMs),为下一代健康风险评估(NGRA)提供了新的解决方案。NAMs的主流技术路线利用体外测试方法获得化学物质的吸收、分布、代谢和排泄数据(ADME)构建毒代动力学(TK)模型、利用高通量体外测试和有害结局路径(AOP)等方法获得毒效动力学(TD)参数,代替传统危害评估中的动物实验方法。其中,IVIVE是沟通体外测试数据与动物试验数据等效链接的桥梁。本文从IVIVE的方法内涵与策略、生理毒代动力学模型(PBTK)技术框架与IVIVE流程、应用典型案例、风险管理实践等多角度综述分析IVIVE在推进替代动物实验方法应用以及在风险评估研究前沿中的重要地位,并以TK-IVIVE为重点讨论其在食品中化学物质风险评估与管理中的策略和应用。
  • 加载中
  • Krishna G, Goel S, Krishna K A. Alternative Animal Toxicity Testing and Biomarkers [M]//Biomarkers in Toxicology. Amsterdam: Elsevier, 2014: 129-147
    Prior H, Casey W, Kimber I, et al. Reflections on the progress towards non-animal methods for acute toxicity testing of chemicals [J]. Regulatory Toxicology and Pharmacology, 2019, 102: 30-33
    Organization for Economic Co-operation and Development (OECD). Report on considerations from case studies on integrated approaches for testing and assessment (IATA) [R]. Paris: Environment, Health and Safety Division, Environment Directorate, OECD, 2021
    Parish S T, Aschner M, Casey W, et al. An evaluation framework for new approach methodologies (NAMs) for human health safety assessment [J]. Regulatory Toxicology and Pharmacology, 2020, 112: 104592
    Richard A M, Judson R S, Houck K A, et al. ToxCast chemical landscape: Paving the road to 21st Century toxicology [J]. Chemical Research in Toxicology, 2016, 29(8): 1225-1251
    Hsieh N H, Chen Z W, Rusyn I, et al. Risk characterization and probabilistic concentration-response modeling of complex environmental mixtures using new approach methodologies (NAMs) data from organotypic in vitro human stem cell assays [J]. Environmental Health Perspectives, 2021, 129(1): 17004
    World Health Organization. Principles and methods for the risk assessment of chemicals in food [R]. Geneva, Switzerland: World Health Organization, 2012
    Bessems J G, Loizou G, Krishnan K, et al. PBTK modelling platforms and parameter estimation tools to enable animal-free risk assessment: Recommendations from a joint EPAA-EURL ECVAM ADME workshop [J]. Regulatory Toxicology and Pharmacology, 2014, 68(1): 119-139
    National Research Council (NRC). Toxicity testing in the 21st Century: A vision and a strategy [R]. Washington DC: Committee on Toxicity Testing and Assessment of Environmental Agents, National Research Council, 2007
    Pletz J, Blakeman S, Paini A, et al. Physiologically based kinetic (PBK) modelling and human biomonitoring data for mixture risk assessment [J]. Environment International, 2020, 143: 105978
    管娜, 朱斌, 赵申升, 等. 生理动力学模型及其在健康风险评估中的应用进展和展望[J]. 生态毒理学报, 2024, 19(4): 1-12

    Guan N, Zhu B, Zhao S S, et al. The development and future prospective of physiologically based kinetic models and its applications in risk assessment [J]. Asian Journal of Ecotoxicology, 2024, 19(4): 1-12 (in Chinese)

    Bell S M, Chang X Q, Wambaugh J F, et al. In vitro to in vivo extrapolation for high throughput prioritization and decision making [J]. Toxicology in vitro, 2018, 47: 213-227
    Chang X Q, Tan Y M, Allen D G, et al. IVIVE: Facilitating the use of in vitro toxicity data in risk assessment and decision making [J]. Toxics, 2022, 10(5): 232
    王广基, 刘晓东, 柳晓泉. 药物代谢动力学[M]. 北京: 化学工业出版社, 2005: 235
    East A, Dawson D E, Brady S, et al. A scoping assessment of implemented toxicokinetic models of per- and polyfluoro-alkyl substances, with a focus on one-compartment models [J]. Toxics, 2023, 11(2): 163
    Galetin A. Rationalizing Underprediction of Drug Clearance from Enzyme and Transporter Kinetic Data: From in vitro Tools to Mechanistic Modeling [M]// Nagar S, Argikar U A, Tweedie D J. Enzyme Kinetics in Drug Metabolism: Fundamentals and Applications. Totowa, NJ: Humana Press, 2014: 255-288
    Yoon M, Clewell H J 3rd. Addressing early life sensitivity using physiologically based pharmacokinetic modeling and in vitro to in vivo extrapolation [J]. Toxicological Research, 2016, 32(1): 15-20
    Kuepfer L, Niederalt C, Wendl T, et al. Applied concepts in PBPK modeling: How to build a PBPK/PD model [J]. CPT: Pharmacometrics & Systems Pharmacology, 2016, 5(10): 516-531
    Organization for Economic Co-operation and Development (OECD). Guidance document on the characterisation, validation and reporting of physiologically based kinetic (PBK) models for regulatory purposes [R]. Paris: Environment, Health and Safety Division, Environment Directorate, OECD, 2021
    Yoon H, Kim T H, Lee B C, et al. Comparison of the exposure assessment of di(2-ethylhexyl) phthalate between the PBPK model-based reverse dosimetry and scenario-based analysis: A Korean general population study [J]. Chemosphere, 2022, 294: 133549
    Kolli A R, Kuczaj A K, Martin F, et al. Bridging inhaled aerosol dosimetry to physiologically based pharmacokinetic modeling for toxicological assessment: Nicotine delivery systems and beyond [J]. Critical Reviews in Toxicology, 2019, 49(9): 725-741
    Tebby C, Caudeville J, Fernandez Y, et al. Mapping blood lead levels in French children due to environmental contamination using a modeling approach [J]. The Science of the Total Environment, 2022, 808: 152149
    Wetmore B A. Quantitative in vitro-to-in vivo extrapolation in a high-throughput environment [J]. Toxicology, 2015, 332: 94-101
    Silva M H. Use of Computational Toxicology Tools to Predict in vivo Endpoints [M]// Gupta R C. Reproductive and Developmental Toxicology (Third Edition). Amsterdam: Elsevier, 2022: 127-146
    Linakis M W, Sayre R R, Pearce R G, et al. Development and evaluation of a high throughput inhalation model for organic chemicals [J]. Journal of Exposure Science & Environmental Epidemiology, 2020, 30(5): 866-877
    张浩然, 杨道远, 欧瞳, 等. 化学物危害特征描述中不确定系数制定的研究进展及其应用[J]. 生态毒理学报, 2024, 19(2): 1-11

    Zhang H R, Yang D Y, Ou T, et al. Research advances and practical applications of uncertainty factors using in chemical hazard characterization [J]. Asian Journal of Ecotoxicology, 2024, 19(2): 1-11 (in Chinese)

    Schroeder K, Bremm K D, Alépée N, et al. Report from the EPAA workshop: in vitro ADME in safety testing used by EPAA industry sectors [J]. Toxicology in vitro, 2011, 25(3): 589-604
    Sager J E, Yu J J, Ragueneau-Majlessi I, et al. Physiologically based pharmacokinetic (PBPK) modeling and simulation approaches: A systematic review of published models, applications, and model verification [J]. Drug Metabolism and Disposition: the Biological Fate of Chemicals, 2015, 43(11): 1823-1837
    Li R, Barton H A, Yates P D, et al. A “middle-out” approach to human pharmacokinetic predictions for OATP substrates using physiologically-based pharmacokinetic modeling [J]. Journal of Pharmacokinetics and Pharmacodynamics, 2014, 41(3): 197-209
    Tsamandouras N, Rostami-Hodjegan A, Aarons L. Combining the 'bottom up’ and 'top down’ approaches in pharmacokinetic modelling: Fitting PBPK models to observed clinical data [J]. British Journal of Clinical Pharmacology, 2015, 79(1): 48-55
    Xie R L, Wang X D, Xu Y P, et al. In vitro to in vivo extrapolation for predicting human equivalent dose of phenolic endocrine disrupting chemicals: PBTK model development, biological pathways, outcomes and performance [J]. The Science of the Total Environment, 2023, 897: 165271
    Barton H A, Chiu W A, Setzer R W, et al. Characterizing uncertainty and variability in physiologically based pharmacokinetic models: State of the science and needs for research and implementation [J]. Toxicological Sciences, 2007, 99(2): 395-402
    Loizou G, Spendiff M, Barton H A, et al. Development of good modelling practice for physiologically based pharmacokinetic models for use in risk assessment: The first steps [J]. Regulatory Toxicology and Pharmacology, 2008, 50(3): 400-411
    Gueorguieva I, Aarons L, Ogungbenro K, et al. Optimal design for multivariate response pharmacokinetic models [J]. Journal of Pharmacokinetics and Pharmacodynamics, 2006, 33(2): 97-124
    Cho K H, Shin S Y, Kolch W, et al. Experimental design in systems biology, based on parameter sensitivity analysis using a Monte Carlo method: A case study for the TNFα-mediated NF-κB signal transduction pathway [J]. SIMULATION, 2003, 79(12): 726-739
    Babich M A. Risk assessment of low-level chemical exposures from consumer products under the U.S. Consumer Product Safety Commission chronic hazard guidelines [J]. Environmental Health Perspectives, 1998, 106(Suppl.1): 387-390
    Sarigiannis D A, Karakitsios S, Dominguez-Romero E, et al. Physiology-based toxicokinetic modelling in the frame of the European Human Biomonitoring Initiative [J]. Environmental Research, 2019, 172: 216-230
    Nguyen H Q, Stamatis S D, Kirsch L E. A novel method for assessing drug degradation product safety using physiologically-based pharmacokinetic models and stochastic risk assessment [J]. Journal of Pharmaceutical Sciences, 2015, 104(9): 3101-3119
    Yang X X, Doerge D R, Teeguarden J G, et al. Development of a physiologically based pharmacokinetic model for assessment of human exposure to bisphenol A [J]. Toxicology and Applied Pharmacology, 2015, 289(3): 442-456
    Crowell S R, Amin S G, Anderson K A, et al. Preliminary physiologically based pharmacokinetic models for benzopyrene and dibenzochrysene in rodents [J]. Toxicology and Applied Pharmacology, 2011, 257(3): 365-376
    Loccisano A E, Longnecker M P, Campbell J L Jr, et al. Development of PBPK models for PFOA and PFOS for human pregnancy and lactation life stages [J]. Journal of Toxicology and Environmental Health Part A, 2013, 76(1): 25-57
    Tonnelier A, Coecke S, Zaldívar J M. Screening of chemicals for human bioaccumulative potential with a physiologically based toxicokinetic model [J]. Archives of Toxicology, 2012, 86(3): 393-403
    Kunze A, Huwyler J, Poller B, et al. In vitro -in vivo extrapolation method to predict human renal clearance of drugs [J]. Journal of Pharmaceutical Sciences, 2014, 103(3): 994-1001
    Wambaugh J F, Hughes M F, Ring C L, et al. Evaluating in vitro-In vivo extrapolation of toxicokinetics [J]. Toxicological Sciences, 2018, 163(1): 152-169
    Rotroff D M, Wetmore B A, Dix D J, et al. Incorporating human dosimetry and exposure into high-throughput in vitro toxicity screening [J]. Toxicological Sciences, 2010, 117(2): 348-358
    Aylward L L, Hays S M. Consideration of dosimetry in evaluation of ToxCastTM data [J]. Journal of Applied Toxicology, 2011, 31(8): 741-751
    Abdo N, Wetmore B A, Chappell G A, et al. In vitro screening for population variability in toxicity of pesticide-containing mixtures [J]. Environment International, 2015, 85: 147-155
    Wambaugh J F, Wetmore B A, Ring C L, et al. Assessing toxicokinetic uncertainty and variability in risk prioritization [J]. Toxicological Sciences, 2019, 172(2): 235-251
    Louisse J, Bosgra S, Blaauboer B J, et al. Prediction of in vivo developmental toxicity of all-trans-retinoic acid based on in vitro toxicity data and in silico physiologically based kinetic modeling [J]. Archives of Toxicology, 2015, 89(7): 1135-1148
    Fabian E, Gomes C, Birk B, et al. In vitro -to-in vivo extrapolation (IVIVE) by PBTK modeling for animal-free risk assessment approaches of potential endocrine-disrupting compounds [J]. Archives of Toxicology, 2019, 93(2): 401-416
    Davidsen A B, Mardal M, Holm N B, et al. Ketamine analogues: Comparative toxicokinetic in vitro-in vivo extrapolation and quantification of 2-fluorodeschloroketamine in forensic blood and hair samples [J]. Journal of Pharmaceutical and Biomedical Analysis, 2020, 180: 113049
    Sipes N S, Wambaugh J F, Pearce R, et al. An intuitive approach for predicting potential human health risk with the Tox21 10k library [J]. Environmental Science & Technology, 2017, 51(18): 10786-10796
    Lin Y J, Lin Z M. In vitro -in silico-based probabilistic risk assessment of combined exposure to bisphenol A and its analogues by integrating ToxCast high-throughput in vitro assays with in vitro to in vivo extrapolation (IVIVE) via physiologically based pharmacokinetic (PBPK) modeling [J]. Journal of Hazardous Materials, 2020, 399: 122856
    El-Masri H, Kleinstreuer N, Hines R N, et al. Integration of life-stage physiologically based pharmacokinetic models with adverse outcome pathways and environmental exposure models to screen for environmental hazards [J]. Toxicological Sciences, 2016, 152(1): 230-243
    Xie R L, Xu Y P, Ma M, et al. First metabolic profiling of 4-n-nonylphenol in human liver microsomes by integrated approaches to testing and assessment: Metabolites, pathways, and biological effects [J]. Journal of Hazardous Materials, 2023, 447: 130830
    Valdiviezo A, Luo Y S, Chen Z W, et al. Quantitative in vitro-to-in vivo extrapolation for mixtures: A case study of Superfund Priority List pesticides [J]. Toxicological Sciences, 2021, 183(1): 60-69
    Leonard J A, Tan Y M, Gilbert M, et al. Estimating margin of exposure to thyroid peroxidase inhibitors using high-throughput in vitro data, high-throughput exposure modeling, and physiologically based pharmacokinetic/pharmacodynamic modeling [J]. Toxicological Sciences, 2016, 151(1): 57-70
    Liu Y, Jing R Y, Wen Z N, et al. Narrowing the gap between in vitro and in vivo genetic profiles by deconvoluting toxicogenomic data in silico [J]. Frontiers in Pharmacology, 2020, 10: 1489
    Tong S S, Sun H, Xue C F, et al. Establishment and assessment of a novel in vitro bio-PK/PD system in predicting the in vivo pharmacokinetics and pharmacodynamics of cyclophosphamide [J]. Xenobiotica, 2018, 48(4): 368-375
    European Commission (EC). PARCroute Roadmap1 [R]. Belgium: European Commission, 2023
    European Chemicals Agency (ECHA). The use of alternatives to testing on animals for the REACH Regulation [R]. Helsinki, Finland: European Chemicals Agency, 2023
    Strikwold M, Spenkelink B, Woutersen R A, et al. Development of a combined in vitro physiologically based kinetic (PBK) and Monte Carlo modelling approach to predict interindividual human variation in phenol-induced developmental toxicity [J]. Toxicological Sciences, 2017, 157(2): 365-376
    Campbell J L, Andersen M E, Clewell H J. A hybrid CFD-PBPK model for naphthalene in rat and human with IVIVE for nasal tissue metabolism and cross-species dosimetry [J]. Inhalation Toxicology, 2014, 26(6): 333-344
    Martin S A, McLanahan E D, Bushnell P J, et al. Species extrapolation of life-stage physiologically-based pharmacokinetic (PBPK) models to investigate the developmental toxicology of ethanol using in vitro to in vivo (IVIVE) methods [J]. Toxicological Sciences, 2015, 143(2): 512-535
    Ring C L, Pearce R G, Setzer R W, et al. Identifying populations sensitive to environmental chemicals by simulating toxicokinetic variability [J]. Environment International, 2017, 106: 105-118
    Wetmore B A, Allen B, Clewell H J 3rd, et al. Incorporating population variability and susceptible subpopulations into dosimetry for high-throughput toxicity testing [J]. Toxicological Sciences, 2014, 142(1): 210-224
    Browne P, Casey W M, Dix D J. Use of High-Throughput and Computational Approaches for Endocrine Pathway Screening [M]//Garcia-Reyero N, Murphy C A. A Systems Biology Approach to Advancing Adverse Outcome Pathways for Risk Assessment. Cham: Springer International Publishing, 2018: 15-29
    U.S. Environmental Protection Agency (US EPA). New approach methods work plan (v2) [R]. Washington DC, USA: U.S. Environmental Protection Agency, 2021
    U.S. Environmental Protection Agency (US EPA). Use of new approach methodologies to derive extrapolation factors and evaluate developmental neurotoxicity for human health risk assessment [R]. Washington DC, USA: U.S. Environmental Protection Agency, 2020
    Durmowicz A G, Lim R, Rogers H, et al. The U.S. food and drug administration’s experience with ivacaftor in cystic fibrosis. Establishing efficacy using in vitro data in lieu of a clinical trial [J]. Annals of the American Thoracic Society, 2018, 15(1): 1-2
    Zhang X Y, Yang Y, Grimstein M, et al. Application of PBPK modeling and simulation for regulatory decision making and its impact on US prescribing information: An update on the 2018-2019 submissions to the US FDA’s office of clinical pharmacology [J]. Journal of Clinical Pharmacology, 2020, 60(Suppl.1): S160-S178
    Organization for Economic Co-operation and Development (OECD). Guidance document on good in vitro method practices (GIVIMP) [R]. Paris: OECD, 2018
    Organization for Economic Co-operation and Development (OECD). Test No. 319A: Determination of in vitro intrinsic clearance using cryopreserved rainbow trout hepatocytes (RT-HEP) [R]. Paris: OECD, 2018
    Organization for Economic Co-operation and Development (OECD). Test No. 319B: Determination of in vitro intrinsic clearance using rainbow trout liver S9 sub-cellular fraction (RT-S9) [R]. Paris: OECD, 2018
    曹正颖, 姚欣雅, 赵敏娴, 等. 大鼠经胃和皮下暴露毒死蜱的毒物代谢动力学和毒效学模型构建[J]. 中国药理学与毒理学杂志, 2016, 30(1): 74-81

    Cao Z Y, Yao X Y, Zhao M X, et al. A physiologically based toxicokinetics and toxicodynamics model in rats following both oral and subcutaneous exposure to chlorpyrifos [J]. Chinese Journal of Pharmacology and Toxicology, 2016, 30(1): 74-81 (in Chinese)

    梁颖, 丁莹, 张留圈, 等. 氰戊菊酯生理毒物代谢动力学模型的建立[J]. 生态毒理学报, 2015, 10(3): 170-176

    Liang Y, Ding Y, Zhang L Q, et al. Physiologically based toxicokinetic model for fenvalerate in mice [J]. Asian Journal of Ecotoxicology, 2015, 10(3): 170-176 (in Chinese)

    王阳, 刘茂. 基于生理毒代动力学模型对氯乙烯暴露后人体内剂量的求解[J]. 工业卫生与职业病, 2009, 35(5): 280-284

    Wang Y, Liu M. Solution of internal doses for inhaled vinyl chloride by physiologically based toxicokinetic (PBTK) model [J]. Industrial Health and Occupational Diseases, 2009, 35(5): 280-284 (in Chinese)

    姚欣雅, 赵敏娴, 曹正颖, 等. 结合体质量生长函数的幼年大鼠毒死蜱经口暴露PBTK/TD模型的研究[J]. 癌变·畸变·突变, 2015, 27(4): 249-259

    Yao X Y, Zhao M X, Cao Z Y, et al. A physiologically based toxicokinetic/toxicodynamic model with growth function of the juvenile rat following the oral exposure to chlorpyrifos [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2015, 27(4): 249-259 (in Chinese)

    Liu H T, Gan Z Q, Qin X Y, et al. Advances in microfluidic technologies in organoid research [J]. Advanced Healthcare Materials, 2023, 1: e2302686
  • 加载中
计量
  • 文章访问数:  857
  • HTML全文浏览数:  857
  • PDF下载数:  181
  • 施引文献:  0
出版历程
  • 收稿日期:  2024-07-30
王小丹, 谢锐莉, 许宜平, 张磊, 马梅, 饶凯锋, 王子健. 替代动物实验中的体外-体内外推方法[J]. 生态毒理学报, 2024, 19(4): 13-26. doi: 10.7524/AJE.1673-5897.20240730001
引用本文: 王小丹, 谢锐莉, 许宜平, 张磊, 马梅, 饶凯锋, 王子健. 替代动物实验中的体外-体内外推方法[J]. 生态毒理学报, 2024, 19(4): 13-26. doi: 10.7524/AJE.1673-5897.20240730001
Wang Xiaodan, Xie Ruili, Xu Yiping, Zhang Lei, Ma Mei, Rao Kaifeng, Wang Zijian. In vitro to in vivo Extrapolation: Facilitating Alternatives to Animal Testing in Chemical Health Risk Assessment[J]. Asian Journal of Ecotoxicology, 2024, 19(4): 13-26. doi: 10.7524/AJE.1673-5897.20240730001
Citation: Wang Xiaodan, Xie Ruili, Xu Yiping, Zhang Lei, Ma Mei, Rao Kaifeng, Wang Zijian. In vitro to in vivo Extrapolation: Facilitating Alternatives to Animal Testing in Chemical Health Risk Assessment[J]. Asian Journal of Ecotoxicology, 2024, 19(4): 13-26. doi: 10.7524/AJE.1673-5897.20240730001

替代动物实验中的体外-体内外推方法

    通讯作者: 许宜平(1979-),女,博士,副研究员,主要研究方向为生态毒理学与风险评估。E-mail:ypxu@rcees.ac.cn;  张磊(1973-),男,博士,研究员,主要研究方向为食品安全风险评估。E-mail:zhanglei@cfsa.net.cn; 
    作者简介: 王小丹(1985-),女,博士,研究方向为食品安全风险评估,E-mail:wangxiaodan@cfsa.net.cn
  • 1. 国家食品安全风险评估中心, 北京 100022;
  • 2. 中国科学院生态环境研究中心, 北京 100085
基金项目:

国家重点研发计划课题(2023YFF1103803);国家自然科学基金面上项目(42377275);天津市科技计划项目(22YFYSHZ00060)

摘要: 危害和暴露数据的匮乏是化学物质风险评估面临的艰巨挑战。21世纪以来,使用高效经济的非动物试验方法替代传统的资源消耗型动物试验已成为必然趋势,形成了以体外测试(in vitro)、计算机模拟(in silico)、交叉参照(read across)和体外-体内外推(IVIVE)等新路线方法学(NAMs),为下一代健康风险评估(NGRA)提供了新的解决方案。NAMs的主流技术路线利用体外测试方法获得化学物质的吸收、分布、代谢和排泄数据(ADME)构建毒代动力学(TK)模型、利用高通量体外测试和有害结局路径(AOP)等方法获得毒效动力学(TD)参数,代替传统危害评估中的动物实验方法。其中,IVIVE是沟通体外测试数据与动物试验数据等效链接的桥梁。本文从IVIVE的方法内涵与策略、生理毒代动力学模型(PBTK)技术框架与IVIVE流程、应用典型案例、风险管理实践等多角度综述分析IVIVE在推进替代动物实验方法应用以及在风险评估研究前沿中的重要地位,并以TK-IVIVE为重点讨论其在食品中化学物质风险评估与管理中的策略和应用。

English Abstract

参考文献 (79)

返回顶部

目录

/

返回文章
返回