氟离子对莱茵衣藻和蛋白核小球藻的生理效应

李潜, 吴沿友, 吴运东. 氟离子对莱茵衣藻和蛋白核小球藻的生理效应[J]. 环境化学, 2014, 33(5): 776-781. doi: 10.7524/j.issn.0254-6108.2014.05.009
引用本文: 李潜, 吴沿友, 吴运东. 氟离子对莱茵衣藻和蛋白核小球藻的生理效应[J]. 环境化学, 2014, 33(5): 776-781. doi: 10.7524/j.issn.0254-6108.2014.05.009
LI Qian, WU Yanyou, WU Yundong. Physiological effect of fluoride ions on Chlamydomonas reinhardtii and Chlorella pyrenoidosa[J]. Environmental Chemistry, 2014, 33(5): 776-781. doi: 10.7524/j.issn.0254-6108.2014.05.009
Citation: LI Qian, WU Yanyou, WU Yundong. Physiological effect of fluoride ions on Chlamydomonas reinhardtii and Chlorella pyrenoidosa[J]. Environmental Chemistry, 2014, 33(5): 776-781. doi: 10.7524/j.issn.0254-6108.2014.05.009

氟离子对莱茵衣藻和蛋白核小球藻的生理效应

  • 基金项目:

    国家自然科学基金项目(40973060)资助.

Physiological effect of fluoride ions on Chlamydomonas reinhardtii and Chlorella pyrenoidosa

  • Fund Project:
  • 摘要: 以莱茵衣藻(Chlamydomonas reinhardtii)和蛋白核小球藻(Chlorella pyrenoidosa)为受试生物,研究了F-对藻叶绿素含量、胞外碳酸酐酶(CAex)活性及稳定碳同位素组成(δ13C)的影响,以探讨F-对微藻的生理效应.结果表明,当F-浓度不超过10 mmol·L-1时,随F-浓度增大,蛋白核小球藻叶绿素a、b含量和CAex活性基本不变,而莱茵衣藻叶绿素a、b含量降低,CAex活性小幅增加;当F-浓度在10—200 mmol·L-1之间时,随F-浓度的增加,蛋白核小球藻和莱茵衣藻的叶绿素a、b含量均明显下降,CAex活性显著增大,且在F-浓度为100 mmol·L-1时达最大,200 mmol·L-1时两种藻均不能生存,无CAex活性和叶绿素含量表征.莱茵衣藻对F-具有更灵敏的CAex响应机制,对F-的影响更为敏感,而蛋白核小球藻对F-的耐受性更好;在实验浓度范围内,莱茵衣藻和蛋白核小球藻的δ13C值均随F-浓度的增大呈现出更大的负偏差,F-促使二者优先利用较轻的12C,说明两种微藻光合作用固定无机碳模式发生改变.
  • 加载中
  • [1] Dolbier W R. Fluorine chemistry at the millennium[J]. Journal of Fluorine Chemistry, 2005, 126: 157-163
    [2] Ghosh A, Mukherjee K, Ghosh S K, et al. Sources and toxicity of fluoride in the environment[J]. Research on Chemical Intermediates, 2013, 39: 2881-2915
    [3] Adolf Eisentraeger, Wolfgang Dott, Joern Klein, et al. Comparative studies on algal toxicity testing using fluorometric microplate and Erlenmeyer flask growth-inhibition assays[J]. Ecotoxicology and Environmental Safety, 2003, 54: 346-354
    [4] 华汝成. 单细胞藻类的培养与利用[M]. 北京:农业出版社,1983: 86-92
    [5] Moroney J V, Ma Y B, Frey W D, et al. The carbonic anhydrase isoforms of Chlamydomonas reinhardtii: Intracellular location, expression, and physiological roles[J]. Photosynthesis Research, 2011, 109: 133-149
    [6] 王山杉, 刘永定, 邹永东, 等. 微囊藻碳酸酐酶活性在不同环境因素下的调节与适应[J]. 生态学报, 2006, 26(8): 2443-2448
    [7] 赵旭辉, 孔繁翔, 谢薇薇, 等. 全球CO2水平升高对浮游植物生理和生态影响的研究进展[J]. 生态学报, 2012, 32(21): 6880-6891
    [8] 夏建荣,高坤山. 绿藻CO2浓缩机制的研究进展[J]. 应用生态学报,2002, 13(11): 1507-1510
    [9] Mercado J M, Gordillo F J L, Figueroa F L, et al. External carbonic anhydrase and affinity of inorganic carbon in intertidal macroalgae[J]. Journal of Experimental Marine Biology and Ecology, 1998, 221: 209-220
    [10] O''Leary M H. Carbon Isotopes in Photosynthesis[J]. BioScience, 1988, 38(5): 328-336
    [11] Klemer A R. Effects of nutritional status on Cyanobacteria buoyancy, bloom, and dominance with special reference to inorganic carbon[J]. Canadian Journal of Botany, 1991, 69: 2293-2297
    [12] Dawson T E, Mambelli S, Plamboeck A H, et al. Stable isotopes in plant ecology[J]. Annual Review of Ecology and Systematics, 2002, 33: 507-559
    [13] 门玉洁, 胡洪营, 李锋民. 芦苇化感组分对斜生栅藻(Scenedesm usobliquus)生长特性的影响[J]. 生态环境, 2006, 15(5): 925-929
    [14] Lichtenthaler H K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes[J]. Methods Enzymol, 1987, 148: 350-382
    [15] 施倩倩, 吴沿友, 朱咏莉, 等. 构树与桑树叶片的碳酸酐酶胞外酶活力比较[J]. 安徽农业科学, 2010, 38(16): 8376-8377
    [16] 施倩倩. 全固态pH微传感器的制备及其在碳酸酐酶活力检测中的应用.镇江:江苏大学农业工程研究院硕士论文, 2010
    [17] Smith A O, Woodson B R. The effects of fluoride on the growth of Chlorella pyrenoidosa[J]. Virginia J Sci, 1965, 16: 1-8
    [18] Chen T F, Zheng W J, Luo Y, et al. Effects of selenium stress on photosynthetic pigment contents and growth of Chlorella vulgaris. Journal of Plant Physiology and Molecular Biology, 2005, 31 (4): 369-373
    [19] 杜敏华, 张乃群, 李玉英, 等. 大气污染对城市绿化植物叶片叶绿素含量的影响[J]. 中国环境监测, 2007, 23(2): 86-88
    [20] 高厚强, 张晓玲. 合肥市大气污染对植物叶绿素(a、b)含量比例的影响[J]. 安徽农业科学, 2003, 31(3): 367-368
    [21] Kandler O. Hemmungsanalvse der lichtabhangigen phosphorylierung[J]. Z Natur Sch, 1955, 10b: 38-46
    [22] Tsuzuki M, Shimamoto T, Yang S Y, et al. Diversity in intracellular locality,nature, and function of carbonic anhydrase in various plants[J]. Annals of the New York Academy of Sciences, 1984, 429: 238-240
    [23] 吴运东, 吴沿友, 李潜, 等. pH与氟对莱茵衣藻和蛋白核小球藻胞外碳酸酐酶活性及光合效率的影响[J]. 农业环境科学学报, 2011, 30(10): 1972-1977
    [24] Camargo J A. Fluoride toxicity to aquatic organisms: A review[J]. Chemosphere, 2003,50(3): 251-264
    [25] Chen Z, Cheng H M, Chen X W. Effect of Cl- on photosynthetic bicarbonate uptake in two cyanobacteria Microcystis aeruginosa and Synechocystis PCC6803[J]. Chin Sci Bull, 2009, 54: 1197-1203
    [26] Maberly S C. Exogenous sources of inorganic carbon for photosynthesis by marine macroalgae[J]. J Phycol, 1990, 26: 439-492
    [27] Wu Y Y, Xu Y, Li H T, et al. Effect of acetazolamide on stable carbon isotope fractionation in Chlamydomonas reinhardtii and Chlorella vulgaris[J]. Chinese Science Bulletin, 2012, 57(7): 786-789
    [28] Farquhar G D, Ball M C, Caemmerer S, et al. Effect of salinity and humidity on δ13C value of halophytes—Evidence for diffusional isotope fractionation determined by the ratio of intercellular/atmospheric partial pressure of CO2 under different environmental conditions[J].Oecologia, 1982, 52(1): 121-124
    [29] 蒋高明. 植物生理生态学研究中的稳定碳同位素技术及其应用[J]. 生态学杂志, 1996, 15(2): 49-54
    [30] Franco A C, Ball E, Lvttge U. The influence of nitrogen, light and water stress on CO2 exchange and organic acid accumulation in the tropical C3-CAM tree, Clusia minor[J]. Journal of Experimental Botany, 1991, 42: 597-603.
  • 加载中
计量
  • 文章访问数:  1478
  • HTML全文浏览数:  1478
  • PDF下载数:  774
  • 施引文献:  0
出版历程
  • 收稿日期:  2013-07-15
李潜, 吴沿友, 吴运东. 氟离子对莱茵衣藻和蛋白核小球藻的生理效应[J]. 环境化学, 2014, 33(5): 776-781. doi: 10.7524/j.issn.0254-6108.2014.05.009
引用本文: 李潜, 吴沿友, 吴运东. 氟离子对莱茵衣藻和蛋白核小球藻的生理效应[J]. 环境化学, 2014, 33(5): 776-781. doi: 10.7524/j.issn.0254-6108.2014.05.009
LI Qian, WU Yanyou, WU Yundong. Physiological effect of fluoride ions on Chlamydomonas reinhardtii and Chlorella pyrenoidosa[J]. Environmental Chemistry, 2014, 33(5): 776-781. doi: 10.7524/j.issn.0254-6108.2014.05.009
Citation: LI Qian, WU Yanyou, WU Yundong. Physiological effect of fluoride ions on Chlamydomonas reinhardtii and Chlorella pyrenoidosa[J]. Environmental Chemistry, 2014, 33(5): 776-781. doi: 10.7524/j.issn.0254-6108.2014.05.009

氟离子对莱茵衣藻和蛋白核小球藻的生理效应

  • 1.  江苏大学环境与安全工程学院, 镇江, 212013;
  • 2.  中国科学院地球化学研究所环境地球化学国家重点实验室, 贵阳, 550002;
  • 3.  江苏大学农业工程研究院, 镇江, 212013
基金项目:

国家自然科学基金项目(40973060)资助.

摘要: 以莱茵衣藻(Chlamydomonas reinhardtii)和蛋白核小球藻(Chlorella pyrenoidosa)为受试生物,研究了F-对藻叶绿素含量、胞外碳酸酐酶(CAex)活性及稳定碳同位素组成(δ13C)的影响,以探讨F-对微藻的生理效应.结果表明,当F-浓度不超过10 mmol·L-1时,随F-浓度增大,蛋白核小球藻叶绿素a、b含量和CAex活性基本不变,而莱茵衣藻叶绿素a、b含量降低,CAex活性小幅增加;当F-浓度在10—200 mmol·L-1之间时,随F-浓度的增加,蛋白核小球藻和莱茵衣藻的叶绿素a、b含量均明显下降,CAex活性显著增大,且在F-浓度为100 mmol·L-1时达最大,200 mmol·L-1时两种藻均不能生存,无CAex活性和叶绿素含量表征.莱茵衣藻对F-具有更灵敏的CAex响应机制,对F-的影响更为敏感,而蛋白核小球藻对F-的耐受性更好;在实验浓度范围内,莱茵衣藻和蛋白核小球藻的δ13C值均随F-浓度的增大呈现出更大的负偏差,F-促使二者优先利用较轻的12C,说明两种微藻光合作用固定无机碳模式发生改变.

English Abstract

参考文献 (30)

返回顶部

目录

/

返回文章
返回