紫外强化湿式催化过氧化氢氧化降解活性艳红X-3B的实验及机理分析

涂盛辉, 朱细平, 刘婷, 梁海营, 杜军, 彭海龙. 紫外强化湿式催化过氧化氢氧化降解活性艳红X-3B的实验及机理分析[J]. 环境化学, 2014, 33(9): 1531-1537. doi: 10.7524/j.issn.0254-6108.2014.09.008
引用本文: 涂盛辉, 朱细平, 刘婷, 梁海营, 杜军, 彭海龙. 紫外强化湿式催化过氧化氢氧化降解活性艳红X-3B的实验及机理分析[J]. 环境化学, 2014, 33(9): 1531-1537. doi: 10.7524/j.issn.0254-6108.2014.09.008
TU Shenghui, ZHU Xiping, LIU Ting, LIANG Haiying, DU Jun, PENG Hailong. Experiments and mechanism analysis on the degradation of Reactive Brilliant Red X-3B by UV-assisted CWPO[J]. Environmental Chemistry, 2014, 33(9): 1531-1537. doi: 10.7524/j.issn.0254-6108.2014.09.008
Citation: TU Shenghui, ZHU Xiping, LIU Ting, LIANG Haiying, DU Jun, PENG Hailong. Experiments and mechanism analysis on the degradation of Reactive Brilliant Red X-3B by UV-assisted CWPO[J]. Environmental Chemistry, 2014, 33(9): 1531-1537. doi: 10.7524/j.issn.0254-6108.2014.09.008

紫外强化湿式催化过氧化氢氧化降解活性艳红X-3B的实验及机理分析

  • 基金项目:

    国家自然科学基金项目(51162022,21201098)资助.

Experiments and mechanism analysis on the degradation of Reactive Brilliant Red X-3B by UV-assisted CWPO

  • Fund Project:
  • 摘要: 比较湿式催化过氧化氢氧化(CWPO)和光催化联合湿式催化过氧化氢氧化(UV-CWPO)对活性艳红X-3B的处理效果,结果发现后者具有较大的优势,反应150 min后,染料脱色率分别为84.10%和99.28%.动力学实验表明,两者均符合一级反应动力学方程,且相同反应温度下,UV-CWPO工艺表观动力学系数为CWPO工艺的1.64—2.75倍;两者表观活化能Ea分别为40.24 kJ·mol-1和32.79 kJ·mol-1,UV-CWPO工艺具有更低的反应活化能,意味着该工艺下染料分子更容易氧化为各种中间体,进而引起染料脱色.比较CWPO工艺和UV-CWPO工艺反应机理,发现两者在链的引发期不同,并通过叔丁醇作为羟基自由基捕获剂证实前者羟基自由基(·OH)产生量较后者更少.利用GC-MS检测分析CWPO工艺和UV-CWPO工艺降解活性艳红X-3B过程中产生的中间产物,结果表明两者产生了相同的中间产物,但是前者产生量明显更少,这说明UV-CWPO工艺对活性艳红X-3B降解更充分.
  • 加载中
  • [1] Daneshvar N, Ashassi Sorkhabi H, Kasiri M B. Decolorization of dye solution containing Acid Red 14 by electrocoagulation with a comparative investigation of different electrode connections[J].Journal of Hazardous Materials, 2004, 112:55-62
    [2] Zhao W R, Shi H X, Wang D H. Ozonation of Cationic Red X-GRL in aqueous solution: Degradation and mechanism[J].Chemosphere, 2004, 57:1189-1199
    [3] Lin F, Zhang Y N, Wang L, et al. Highly efcient photocatalytic oxidation of sulfur-containing organic compounds and dyes on TiO2 with dual cocatalysts Pt and RuO2[J].Applied Catalysis B:Environmental, 2012, 127:363-370
    [4] Khanikar N, Bhattacharyya K G. Cu(Ⅱ)-kaolinite and Cu(Ⅱ)-montmorillonite as catalysts for wet oxidative degradation of 2-chlorophenol, 4-chlorophenol and 2, 4-dichlorophenol[J].Chemical Engineering Journal, 2013, 233:88-97
    [5] 王能亮, 解立平.光催化氧化法降解有机污染物影响因素及其效率提高途径[J].应用化工, 2007, 36(2):183-187
    [6] 陈志铮, 刘勇弟, 化艳娇, 等.光催化氧化(UV+TiO2)法处理印染废水生化出水及其各类有机物去除[J].环境化学, 2013, 32(9):1792-1797
    [7] Dai Q, Zhou, M H, Lei L C. Wet electrolytic oxidation of Cationic Red X-GRL[J].Journal of Hazardous Materials B, 2006, 137:1870-1874
    [8] Catherine Galindo, Patrice Jacquesb, André Kalta.et al. Photodegradation of the aminoazobenzene Acid Orange 52 by three advanced oxidation processes: UV/H2O2, UV/TiO2 and VIS/TiO2:Comparative mechanistic and kinetic investigations[J].Journal of Photochemistry and Photobiology A:Chemistry, 2000, 130(1):35-47
    [9] Marta I Litter. Heterogeneous photocatalysis: Transition metal ions in photocatalytic systems[J].Applied Catalysis B-Environmental, 1999, 23:89-114
    [10] Caudo S, Centi G, Genovese C, et al. Homogeneous versus heterogeneous catalytic reactions to eliminate organics from waste water using H2O2[J].Topics in Catalysis, 2006, 40(1/4):207-219
    [11] Chen Q Q, Wu P X, Dang Z, et al. Iron pillared vermiculite as a heterogeneous photo-Fenton catalyst for photocatalytic degradation of azo dye Reactive Brilliant Orange X-GN[J]. Separation and Purification Technology, 2010, 71:315-323
    [12] Mullins D R, Overbury S H, Huntley D R, et al. Electron spectroscopy of single crystal and polycrystalline cerium oxide surfaces[J].Surf Sci, 1998, 409:307-319
    [13] Zhou N J, Xue G, Bu D, et al. Catalytic ozonation of trace sulfadiazine in water by ZnOOH[J].China Environmental Science, 2011, 31(2):233-238
    [14] Langlais B, Reckhow D A, Brink D R, et al.Ozone in Water Treatment: Application and Engineering: Cooperative Research Report[M]. Nichigan USA: Lewis Publisher, 1991:18-19
    [15] Zhou K, Huo M X, Wang X X, et al. Catalytic ozonation of Active Red MX-5B in water with Si-FeOOH[J].Acta Scientiae Circumstantiae, 2013, 33(4): 997-1003
    [16] Wang X K, Wei Y C, Wang C, et al. Ultrasonic degradation of Reactive Brilliant Red K-2BP in water with CCl4 enhancement:Performance optimization and degradation mechanism[J]. Separation and Purification Technology, 2011, 81:69-76
    [17] Wu F, Deng N S, Hua H L, et al.Degradation mechanism of azo dye C.I. Reactive Red 2 by iron powder reduction and photooxidation in aqueous solutions[J]. Chemosphere, 2000, 41(8):1233-1238
    [18] Hu C, Jimmy C Y, Hao Z P, et al. Photocatalytic degradation of triazine-containing azo dyes in aqueous TiO2 suspensions[J]. Applied Catalysis B: Environmental, 2003, 42(1):47-55
  • 加载中
计量
  • 文章访问数:  1607
  • HTML全文浏览数:  1607
  • PDF下载数:  412
  • 施引文献:  0
出版历程
  • 收稿日期:  2013-12-15
涂盛辉, 朱细平, 刘婷, 梁海营, 杜军, 彭海龙. 紫外强化湿式催化过氧化氢氧化降解活性艳红X-3B的实验及机理分析[J]. 环境化学, 2014, 33(9): 1531-1537. doi: 10.7524/j.issn.0254-6108.2014.09.008
引用本文: 涂盛辉, 朱细平, 刘婷, 梁海营, 杜军, 彭海龙. 紫外强化湿式催化过氧化氢氧化降解活性艳红X-3B的实验及机理分析[J]. 环境化学, 2014, 33(9): 1531-1537. doi: 10.7524/j.issn.0254-6108.2014.09.008
TU Shenghui, ZHU Xiping, LIU Ting, LIANG Haiying, DU Jun, PENG Hailong. Experiments and mechanism analysis on the degradation of Reactive Brilliant Red X-3B by UV-assisted CWPO[J]. Environmental Chemistry, 2014, 33(9): 1531-1537. doi: 10.7524/j.issn.0254-6108.2014.09.008
Citation: TU Shenghui, ZHU Xiping, LIU Ting, LIANG Haiying, DU Jun, PENG Hailong. Experiments and mechanism analysis on the degradation of Reactive Brilliant Red X-3B by UV-assisted CWPO[J]. Environmental Chemistry, 2014, 33(9): 1531-1537. doi: 10.7524/j.issn.0254-6108.2014.09.008

紫外强化湿式催化过氧化氢氧化降解活性艳红X-3B的实验及机理分析

  • 1. 南昌大学环境与化学工程学院, 南昌, 330031
基金项目:

国家自然科学基金项目(51162022,21201098)资助.

摘要: 比较湿式催化过氧化氢氧化(CWPO)和光催化联合湿式催化过氧化氢氧化(UV-CWPO)对活性艳红X-3B的处理效果,结果发现后者具有较大的优势,反应150 min后,染料脱色率分别为84.10%和99.28%.动力学实验表明,两者均符合一级反应动力学方程,且相同反应温度下,UV-CWPO工艺表观动力学系数为CWPO工艺的1.64—2.75倍;两者表观活化能Ea分别为40.24 kJ·mol-1和32.79 kJ·mol-1,UV-CWPO工艺具有更低的反应活化能,意味着该工艺下染料分子更容易氧化为各种中间体,进而引起染料脱色.比较CWPO工艺和UV-CWPO工艺反应机理,发现两者在链的引发期不同,并通过叔丁醇作为羟基自由基捕获剂证实前者羟基自由基(·OH)产生量较后者更少.利用GC-MS检测分析CWPO工艺和UV-CWPO工艺降解活性艳红X-3B过程中产生的中间产物,结果表明两者产生了相同的中间产物,但是前者产生量明显更少,这说明UV-CWPO工艺对活性艳红X-3B降解更充分.

English Abstract

参考文献 (18)

返回顶部

目录

/

返回文章
返回