胺型腰果酚醛树脂对Ag+的吸附

刘小英, 陈钦慧, 郑燕玉. 胺型腰果酚醛树脂对Ag+的吸附[J]. 环境化学, 2014, 33(11): 1912-1922. doi: 10.7524/j.issn.0254-6108.2014.11.006
引用本文: 刘小英, 陈钦慧, 郑燕玉. 胺型腰果酚醛树脂对Ag+的吸附[J]. 环境化学, 2014, 33(11): 1912-1922. doi: 10.7524/j.issn.0254-6108.2014.11.006
LIU Xiaoying, CHEN Qinhui, ZHENG Yanyu. Adsorption of Ag+ onto cardanol aldehyde-amine resins[J]. Environmental Chemistry, 2014, 33(11): 1912-1922. doi: 10.7524/j.issn.0254-6108.2014.11.006
Citation: LIU Xiaoying, CHEN Qinhui, ZHENG Yanyu. Adsorption of Ag+ onto cardanol aldehyde-amine resins[J]. Environmental Chemistry, 2014, 33(11): 1912-1922. doi: 10.7524/j.issn.0254-6108.2014.11.006

胺型腰果酚醛树脂对Ag+的吸附

  • 基金项目:

    国家自然科学基金项目(51103024)

    福建省教育厅科技项目(JK2012039)

    泉州市科技项目(2013Z41)资助.

Adsorption of Ag+ onto cardanol aldehyde-amine resins

  • Fund Project:
  • 摘要: 制备了3种胺型腰果酚醛树脂(二乙撑三胺型腰果酚醛树脂(PCD)、己二胺型腰果酚醛树脂(PCE)、己二胺型腰果酚醛树脂(PCH)),采用XPS(X-射线光电子能谱仪)、EA(元素分析仪)、FTIR(傅利叶变换红外光谱分析仪)等手段研究了其结构特征,并考察了其对水溶液中Ag+的吸附行为和机理.结果表明,3种树脂对Ag+有较高的吸附量和吸附作用;在pH值为5.5的条件下,树脂对Ag+的吸附效果最佳;2 h内吸附达到平衡;吸附行为均符合Lagergren准二级速率方程;树脂对Ag+的吸附均符合Langmuir等温吸附方程;吸附反应为自发吸热和熵增的过程;可溶性无机盐对树脂吸附Ag+的影响不大;推测其吸附机理是树脂上胺基、羟基与Ag+发生较强的配位作用和较弱的离子交换作用的化学吸附为主.吸附Ag+后的树脂可用硝酸脱附再生;树脂循环使用4次后,吸附率和脱附率仍大于90%.
  • 加载中
  • [1] Blaser S A, Scheringer M, MacLeod M, et al. Estimation of cumulative aquatic exposure and risk due to silver: Contribution of nano-functionalized plastics and textiles[J]. Science of the Total Environment,2008,390:396-409
    [2] Jacobson A R, McBride M B, Baveye P, et al. Environmental factors determining the trace-level sorption of silver and thallium to soils[J]. Science of the Total Environment,2005,345:191-205
    [3] Hou H, Takamatsu T, Koshikawa M K, et al. Migration of silver,indium,tin,antimony and bismuth,and variations in their chemical speciation on addition to uncontaminated soils[J]. Soil Science,2005,170:624-639
    [4] 孟详和,胡国飞.重金属废水处理[M].北京:化学工业出版社,2000:142-146
    [5] 缪爱园,李志健,彭涛,等.废定影液提银技术研究进展[J].黄金,2010,31 (11):54-57
    [6] 黄美荣,李振宇,李新贵.含银废液来源及其回收方法[J].工业用水与废水,2005,36 (1):9-12
    [7] Omri A, Benzina M. Adsorption characteristics of silver ions onto activated carbon prepared from almond shell[J]. Desalination and Water Treatment,2013,51(11/12):2317-2326
    [8] Yin P, Xu Q, Qu R,et al. Removal of transition metal ions from aqueous solutions by adsorption onto a novel silica gel matrix composite adsorbent[J]. Journal of Hazardous Materials,2009,169(1/3):228-232
    [9] Geyiki F, Büyükgüngör H. Factorial experimental design for adsorption silver ions from water onto montmorillonite[J]. Acta Geodynamica et Geomaterialia,2013,10(3):363-370
    [10] Song S H, Ji C N, Wang M, et al. Adsorption of silver(I) from aqueous solution by chelating resins with 3-aminopyridine and hydrophilic spacer arms:equilibrium,kinetic,thermodynamic,and mechanism studies[J]. Journal of Chemical and Engineering Data,2011,56(4):1001-1008
    [11] Song X, Gunawan P, Jiang R, et al. Surface activated carbon nanospheres for fast adsorption of silver ions from aqueous solutions[J]. Journal of Hazardous Materials,2011,194:162-168
    [12] Liang X, Luo X G, Lin X Y, et al. The behaviors of removing silver ions by low-cost expanded rice husk,nature diatomite and nature bentonite as sorbents[J]. Materials Science Forum,2012,724:472-475
    [13] Ghosh S, Acharyya M, Manna R, et al. Removal of azo dye molecules from aqueous solution using novolac resin based network polymer[J]. Bulletin of the Chemical Society of Japan,2011,84(3):349-351
    [14] Singru R N. Synthesis and batch equilibrium adsoption chromatographic study of p-cresol-melamine-formaldehyde terpolymer resin[J]. Journal of Chemical and Pharmaceutical Research,2012,4(1):67-71
    [15] 刘春萍,曲荣君,刘庆俭,等.多胺型螯合树脂对重金属离子的吸附研究[J].离子交换与吸附,1998,14 (6):548-553
    [16] 刘春萍,刘淑芬,孙琳,等.胺固化环氧酚醛树脂对Hg2+的吸附性能[J].化学研究与应用,2003,15 (2):257-259
    [17] 刘小英,郑燕玉,江松渊.胺型腰果酚醛树脂对Cu2+、Pb2+、Cd2+的吸附与解吸[J].武汉理工大学学报,2013,35(1):124-130
    [18]
    [19] 刘春萍,孙洪彬,徐强,等.酚醛型苯基硫脲树脂对Pt4+、Pd2+的吸附性能[J].化学研究与应用,2004,16(6):867-869
    [20] 何炳林,黄文强.离子交换与吸附树脂[M].上海:上海科技教育出版社,1995:101
    [21] Gode F, Pehlivan E. Sorption of Cr(Ⅲ) onto Chelating b-DAEG-sporopollenin and CEP-sporopollenin resins[J]. Bioresource Technology, 2007,98(4):729-970
    [22] Juang R S, Chung J Y. Equilibrium sorption of heavy metals and phosphate from single- and binary-sorbate solutions on goethite[J]. Journal of Colloid and Interface Science,2004,275(1):53-60
    [23] 黄文强,李晨曦.吸附分离材料[M].北京:化学工业出版社,2005:52
    [24] 李鹏飞,雷福厚,严瑞萍,等.松香基功能高分子对Cu(Ⅱ)吸附性能的研究[J].离子交换与吸附,2010,26(6):533-541
    [25] Dursun A Y. A comparative study on determination of the equilibrium, kinetic and thermodynamic parameters of biosorption of copper(Ⅱ) and lead(Ⅱ) ions onto pretreated Aspergillus niger[J]. Biochemical Engineering Journal,2006,28(2):187-195
    [26] 张青梅,郑寿荣,王家宏,等.胺基树脂的合成及对水中重金属离子的吸附特征[J].环境工程学报,2010,4(12):2657-2661
    [27] 李晓丽,王雪艳,李彦峰.H3PO4改性PS-EDTA树脂对水相中Cu2+、Zn2+和Cd2+的吸附性能研究[J].离子交换与吸附,2012,28(3):193-203
    [28] Anayurt R A, Sari A, Tuzen M. Equilibrium, thermodynamic and kinetic studies on biosorption of Pb(Ⅱ) and Cd(Ⅱ) from aqueous solution by macrofungus (lactarius scrobiculatus) biomass[J]. Chemical Engineering Journal,2009,151(1/3):255-261
    [29] Fan T, Liu Y G, Feng B Y, et al. Biosorption of cadmium(Ⅱ), zinc(Ⅱ) and lead(Ⅱ) by penicillium simplicis-simum: Isotherms, kinetics and thermodynamics[J]. Journal of Hazardous Materials,2008,160(2/3):655-661
    [30] Deng L P, Su Y Y, Su H, et al. Sorption and desorption of lead (Ⅱ) from waste water by green algae Cladophora fascicularis[J]. Journal of Hazardous Materials, 2007, 143(1):220-225
    [31] 胡皆汉,郑学仿.实用红外光谱学[M].北京:科学出版社,2011:287
    [32] 唐洁渊,章文贡,高锋.电化学聚合漆酚-镨配合物的合成及其表征[J].中国稀土学报,2000,18(3):198-202
    [33] 林金火,刘小英.腰果酚醛铁聚合物的特性与表征[J].材料导报,2004,18(10):100-102
    [34] 季君晖.Cu2+-壳聚糖螯合物及壳聚糖吸附Cu2+机理的XPS研究[J].应用化学,2000,17(1):115-116
    [35] 许光眉,施周,邓军.石英砂负载氧化铁吸附除锑、磷的XRD、FTIR以及XPS研究[J].环境科学学报,2007,27(3):402-407
    [36] Liu F Q, Li L J, Ling P P, et al. Interaction mechanism of aqueous heavy metals onto a newly synthesized IDA-chelating resin: Isotherms, thermodynamics and kinetics[J]. Chemical Engineering Journal,2011,173:106-114
  • 加载中
计量
  • 文章访问数:  1451
  • HTML全文浏览数:  1382
  • PDF下载数:  723
  • 施引文献:  0
出版历程
  • 收稿日期:  2014-01-07
  • 刊出日期:  2014-11-15
刘小英, 陈钦慧, 郑燕玉. 胺型腰果酚醛树脂对Ag+的吸附[J]. 环境化学, 2014, 33(11): 1912-1922. doi: 10.7524/j.issn.0254-6108.2014.11.006
引用本文: 刘小英, 陈钦慧, 郑燕玉. 胺型腰果酚醛树脂对Ag+的吸附[J]. 环境化学, 2014, 33(11): 1912-1922. doi: 10.7524/j.issn.0254-6108.2014.11.006
LIU Xiaoying, CHEN Qinhui, ZHENG Yanyu. Adsorption of Ag+ onto cardanol aldehyde-amine resins[J]. Environmental Chemistry, 2014, 33(11): 1912-1922. doi: 10.7524/j.issn.0254-6108.2014.11.006
Citation: LIU Xiaoying, CHEN Qinhui, ZHENG Yanyu. Adsorption of Ag+ onto cardanol aldehyde-amine resins[J]. Environmental Chemistry, 2014, 33(11): 1912-1922. doi: 10.7524/j.issn.0254-6108.2014.11.006

胺型腰果酚醛树脂对Ag+的吸附

  • 1.  泉州师范学院化学与生命科学学院, 泉州, 362000;
  • 2.  福建师范大学材料科学与工程学院, 福州, 350007
基金项目:

国家自然科学基金项目(51103024)

福建省教育厅科技项目(JK2012039)

泉州市科技项目(2013Z41)资助.

摘要: 制备了3种胺型腰果酚醛树脂(二乙撑三胺型腰果酚醛树脂(PCD)、己二胺型腰果酚醛树脂(PCE)、己二胺型腰果酚醛树脂(PCH)),采用XPS(X-射线光电子能谱仪)、EA(元素分析仪)、FTIR(傅利叶变换红外光谱分析仪)等手段研究了其结构特征,并考察了其对水溶液中Ag+的吸附行为和机理.结果表明,3种树脂对Ag+有较高的吸附量和吸附作用;在pH值为5.5的条件下,树脂对Ag+的吸附效果最佳;2 h内吸附达到平衡;吸附行为均符合Lagergren准二级速率方程;树脂对Ag+的吸附均符合Langmuir等温吸附方程;吸附反应为自发吸热和熵增的过程;可溶性无机盐对树脂吸附Ag+的影响不大;推测其吸附机理是树脂上胺基、羟基与Ag+发生较强的配位作用和较弱的离子交换作用的化学吸附为主.吸附Ag+后的树脂可用硝酸脱附再生;树脂循环使用4次后,吸附率和脱附率仍大于90%.

English Abstract

参考文献 (36)

返回顶部

目录

/

返回文章
返回