[1]
|
Sun Y, Wang Q, Chen C, et al. Interaction between Eu (Ⅲ) and graphene oxide nanosheets investigated by batch and extended X-ray absorption fine structure spectroscopy and by modeling techniques[J]. Environmental Science & Technology, 2012, 46(11): 6020-6027
|
[2]
|
Singh S, Eapen S, Thorat V, et al. Phytoremediation of 137cesium and 90strontium from solutions and low-level nuclear waste by Vetiveria zizanoides[J]. Ecotoxicology and Environmental Safety, 2008, 69(2): 306-311
|
[3]
|
Ma B, Oh S, Shin WS, et al. Removal of Co2+, Sr2+ and Cs+ from aqueous solution by phosphate-modified montmorillonite (PMM)[J]. Desalination, 2011, 276(1): 336-346
|
[4]
|
García-Ruiz S, Moldovan M, Fortunato G, et al. Evaluation of strontium isotope abundance ratios in combination with multi-elemental analysis as a possible tool to study the geographical origin of ciders[J]. Analytica Chimica Acta, 2007, 590(1): 55-66
|
[5]
|
Romanchuk A Y, Slesarev A S, Kalmykov S N, et al. Graphene oxide for effective radionuclide removal[J]. Physical Chemistry Chemical Physics, 2013, 15(7): 2321-2327
|
[6]
|
Gu B, Ku Y K, Jardine P M. Sorption and binary exchange of nitrate, sulfate, and uranium on an anion-exchange resin[J]. Environmental Science & Technology, 2004, 38(11): 3184-3188
|
[7]
|
Jain V, Handa A, Sait S, et al. Pre-concentration, separation and trace determination of lanthanum (Ⅲ), cerium (Ⅲ), thorium (Ⅳ) and uranium (Ⅳ) on polymer supported o-vanillinsemicarbazone[J]. Analytica Chimica Acta, 2001, 429(2), 237-246
|
[8]
|
Kasap S, Piskin S, Tel H. Titanate nanotubes: Preparation, characterization and application in adsorption of strontium ion from aqueous solution[J]. Radiochimica Acta, 2012, 100(12): 925-929
|
[9]
|
Sun Y, Yang S, Sheng G, et al. Removal of U (Ⅵ) from aqueous solutions by the nano-iron oxyhydroxides[J]. Radiochimica Acta, 2012, 100(10): 779-784
|
[10]
|
Tan X, Wang X, Fang M, et al. Sorption and desorption of Th (Ⅵ) on nanoparticles of anatase studied by batch and spectroscopy methods[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 296(1): 109-116
|
[11]
|
Shao D, Jiang Z, Wang X, et al. Plasma induced grafting carboxymethyl cellulose on multiwalled carbon nanotubes for the removal of UO22+ from aqueous solution[J]. The Journal of Physical Chemistry B, 2009, 113(4): 860-864
|
[12]
|
Chen C, Wang X, Nagatsu M. Europium adsorption on multiwall carbon nanotube/iron oxide magnetic composite in the presence of polyacrylic acid[J]. Environmental Science & Technology, 2009, 43(7): 2362-2367
|
[13]
|
Mellah A, Chegrouche S, Barkat M. The removal of uranium (Ⅵ) from aqueous solutions onto activated carbon: Kinetic and thermodynamic investigations[J]. Journal of Colloid and Interface Science, 2006, 296(2): 434-441
|
[14]
|
Sun Y, Shao D, Chen C, et al. Highly efficient enrichment of radionuclides on graphene oxide-supported polyaniline[J]. Environmental Science & Technology, 2013, 47(17): 9904-9910
|
[15]
|
张礼文, 黄庆国, 毛亮. 碳纳米材料在环境中的转化[J]. 环境化学, 2013, 32(7): 1268-1276
|
[16]
|
Salas E C, Sun Z, Luttge A, et al. Reduction of graphene oxide via bacterial respiration[J]. ACS Nano, 2010, 4(8): 4852-4856
|
[17]
|
Soldano C, Mahmood A, Dujardin E. Production, properties and potential of graphene[J]. Carbon, 2010, 48(8): 2127-2150
|
[18]
|
Marcano D C, Kosynkin D V, Berlin J M, et al. Improved synthesis of graphene oxide[J]. ACS Nano, 2010, 4(8): 4806-4814
|
[19]
|
Stankovich S, Dikin D A, Dommett G H, et al. Graphene-based composite materials[J]. Nature, 2006, 442(7100): 282-286
|
[20]
|
Sitko R, Turek E, Zawisza B, et al. Adsorption of divalent metal ions from aqueous solutions using graphene oxide[J]. Dalton Trans, 2013, 42(16): 5682-5689
|
[21]
|
Zhao G, Li J, Ren X, et al. Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management[J]. Environmental science & technology, 2011, 45(24): 10454-10462
|
[22]
|
Kyzas G Z, Deliyanni E A, Matis K A. Graphene oxide and its application as an adsorbent for wastewater treatment[J]. Journal of Chemical Technology and Biotechnology, 2014, 89(2): 196-205
|
[23]
|
Xu W, Mao N, Zhang J. Graphene: A platform for surface-enhanced Raman spectroscopy[J]. Small, 2013, 9(8): 1206-1224
|
[24]
|
Chandra V, Park J, Chun Y, et al. Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal[J]. ACS Nano, 2010, 4(7): 3979-3986
|
[25]
|
Ferrari A, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon[J]. Physical Review B, 2000, 61(20), 14095
|
[26]
|
Xu Y, Bai H, Lu G, et al. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets[J]. Journal of the American Chemical Society, 2008, 130(18): 5856-5857
|
[27]
|
Lee D, De Los Santos V L, Seo J, et al. The structure of graphite oxide: Investigation of its surface chemical groups[J]. The Journal of Physical Chemistry B, 2010, 114(17): 5723-5728
|
[28]
|
Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds(4th ed)[M]. New York: John Wiley & Sons, 1986: 231-233
|
[29]
|
Cleasby J L, Logsdon G S. Granular bed and precoat filtration//AWWA. Water Quality and Treatment-A Handbook of Community Water Supplies (5th ed)[M]. New York: Mc G raw Hill, 2000
|