纳米氧化石墨烯对水中锶的吸附特征

沈倩, 张建锋, 孟晓光, 车东昇. 纳米氧化石墨烯对水中锶的吸附特征[J]. 环境化学, 2014, 33(11): 1923-1929. doi: 10.7524/j.issn.0254-6108.2014.11.020
引用本文: 沈倩, 张建锋, 孟晓光, 车东昇. 纳米氧化石墨烯对水中锶的吸附特征[J]. 环境化学, 2014, 33(11): 1923-1929. doi: 10.7524/j.issn.0254-6108.2014.11.020
SHEN Qian, ZHANG Jianfeng, MENG Xiaoguang, CHE Dongsheng. A study on nanometer oxide graphene's adsorption characteristics of strontium in water[J]. Environmental Chemistry, 2014, 33(11): 1923-1929. doi: 10.7524/j.issn.0254-6108.2014.11.020
Citation: SHEN Qian, ZHANG Jianfeng, MENG Xiaoguang, CHE Dongsheng. A study on nanometer oxide graphene's adsorption characteristics of strontium in water[J]. Environmental Chemistry, 2014, 33(11): 1923-1929. doi: 10.7524/j.issn.0254-6108.2014.11.020

纳米氧化石墨烯对水中锶的吸附特征

A study on nanometer oxide graphene's adsorption characteristics of strontium in water

  • 摘要: 采用纳米氧化石墨烯(GO)吸附放射性废水中Sr2+,从吸附原理、吸附动力学、pH对吸附的影响等方面对吸附过程进行研究.采用表面增强拉曼技术和红外光谱对Sr2+在GO表面的吸附进行光谱表征.将GO负载到活性炭表面进行柱实验探索GO在废水处理中的应用.结果表明,在pH值为6.0-6.5时GO对Sr2+的吸附符合Langmuir吸附模型,最大吸附量263.16 mg·g-1.GO对Sr2+的吸附符合拟二级动力学方程.在pH 3-11范围内吸附量随着pH升高显著增大.GO对Sr2+的吸附具有快速,吸附量大,适用pH范围广的特点,可大量用于放射性废水的处理.GO负载到活性炭上后吸附量有所下降,但克服了GO材料本身在水中粒径小难分离的缺陷,是一种可实际应用、去除环境中Sr2+的新方法.
  • 加载中
  • [1] Sun Y, Wang Q, Chen C, et al. Interaction between Eu (Ⅲ) and graphene oxide nanosheets investigated by batch and extended X-ray absorption fine structure spectroscopy and by modeling techniques[J]. Environmental Science & Technology, 2012, 46(11): 6020-6027
    [2] Singh S, Eapen S, Thorat V, et al. Phytoremediation of 137cesium and 90strontium from solutions and low-level nuclear waste by Vetiveria zizanoides[J]. Ecotoxicology and Environmental Safety, 2008, 69(2): 306-311
    [3] Ma B, Oh S, Shin WS, et al. Removal of Co2+, Sr2+ and Cs+ from aqueous solution by phosphate-modified montmorillonite (PMM)[J]. Desalination, 2011, 276(1): 336-346
    [4] García-Ruiz S, Moldovan M, Fortunato G, et al. Evaluation of strontium isotope abundance ratios in combination with multi-elemental analysis as a possible tool to study the geographical origin of ciders[J]. Analytica Chimica Acta, 2007, 590(1): 55-66
    [5] Romanchuk A Y, Slesarev A S, Kalmykov S N, et al. Graphene oxide for effective radionuclide removal[J]. Physical Chemistry Chemical Physics, 2013, 15(7): 2321-2327
    [6] Gu B, Ku Y K, Jardine P M. Sorption and binary exchange of nitrate, sulfate, and uranium on an anion-exchange resin[J]. Environmental Science & Technology, 2004, 38(11): 3184-3188
    [7] Jain V, Handa A, Sait S, et al. Pre-concentration, separation and trace determination of lanthanum (Ⅲ), cerium (Ⅲ), thorium (Ⅳ) and uranium (Ⅳ) on polymer supported o-vanillinsemicarbazone[J]. Analytica Chimica Acta, 2001, 429(2), 237-246
    [8] Kasap S, Piskin S, Tel H. Titanate nanotubes: Preparation, characterization and application in adsorption of strontium ion from aqueous solution[J]. Radiochimica Acta, 2012, 100(12): 925-929
    [9] Sun Y, Yang S, Sheng G, et al. Removal of U (Ⅵ) from aqueous solutions by the nano-iron oxyhydroxides[J]. Radiochimica Acta, 2012, 100(10): 779-784
    [10] Tan X, Wang X, Fang M, et al. Sorption and desorption of Th (Ⅵ) on nanoparticles of anatase studied by batch and spectroscopy methods[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 296(1): 109-116
    [11] Shao D, Jiang Z, Wang X, et al. Plasma induced grafting carboxymethyl cellulose on multiwalled carbon nanotubes for the removal of UO22+ from aqueous solution[J]. The Journal of Physical Chemistry B, 2009, 113(4): 860-864
    [12] Chen C, Wang X, Nagatsu M. Europium adsorption on multiwall carbon nanotube/iron oxide magnetic composite in the presence of polyacrylic acid[J]. Environmental Science & Technology, 2009, 43(7): 2362-2367
    [13] Mellah A, Chegrouche S, Barkat M. The removal of uranium (Ⅵ) from aqueous solutions onto activated carbon: Kinetic and thermodynamic investigations[J]. Journal of Colloid and Interface Science, 2006, 296(2): 434-441
    [14] Sun Y, Shao D, Chen C, et al. Highly efficient enrichment of radionuclides on graphene oxide-supported polyaniline[J]. Environmental Science & Technology, 2013, 47(17): 9904-9910
    [15] 张礼文, 黄庆国, 毛亮. 碳纳米材料在环境中的转化[J]. 环境化学, 2013, 32(7): 1268-1276
    [16] Salas E C, Sun Z, Luttge A, et al. Reduction of graphene oxide via bacterial respiration[J]. ACS Nano, 2010, 4(8): 4852-4856
    [17] Soldano C, Mahmood A, Dujardin E. Production, properties and potential of graphene[J]. Carbon, 2010, 48(8): 2127-2150
    [18] Marcano D C, Kosynkin D V, Berlin J M, et al. Improved synthesis of graphene oxide[J]. ACS Nano, 2010, 4(8): 4806-4814
    [19] Stankovich S, Dikin D A, Dommett G H, et al. Graphene-based composite materials[J]. Nature, 2006, 442(7100): 282-286
    [20] Sitko R, Turek E, Zawisza B, et al. Adsorption of divalent metal ions from aqueous solutions using graphene oxide[J]. Dalton Trans, 2013, 42(16): 5682-5689
    [21] Zhao G, Li J, Ren X, et al. Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management[J]. Environmental science & technology, 2011, 45(24): 10454-10462
    [22] Kyzas G Z, Deliyanni E A, Matis K A. Graphene oxide and its application as an adsorbent for wastewater treatment[J]. Journal of Chemical Technology and Biotechnology, 2014, 89(2): 196-205
    [23] Xu W, Mao N, Zhang J. Graphene: A platform for surface-enhanced Raman spectroscopy[J]. Small, 2013, 9(8): 1206-1224
    [24] Chandra V, Park J, Chun Y, et al. Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal[J]. ACS Nano, 2010, 4(7): 3979-3986
    [25] Ferrari A, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon[J]. Physical Review B, 2000, 61(20), 14095
    [26] Xu Y, Bai H, Lu G, et al. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets[J]. Journal of the American Chemical Society, 2008, 130(18): 5856-5857
    [27] Lee D, De Los Santos V L, Seo J, et al. The structure of graphite oxide: Investigation of its surface chemical groups[J]. The Journal of Physical Chemistry B, 2010, 114(17): 5723-5728
    [28] Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds(4th ed)[M]. New York: John Wiley & Sons, 1986: 231-233
    [29] Cleasby J L, Logsdon G S. Granular bed and precoat filtration//AWWA. Water Quality and Treatment-A Handbook of Community Water Supplies (5th ed)[M]. New York: Mc G raw Hill, 2000
  • 加载中
计量
  • 文章访问数:  1621
  • HTML全文浏览数:  1472
  • PDF下载数:  829
  • 施引文献:  0
出版历程
  • 收稿日期:  2014-02-16
  • 刊出日期:  2014-11-15
沈倩, 张建锋, 孟晓光, 车东昇. 纳米氧化石墨烯对水中锶的吸附特征[J]. 环境化学, 2014, 33(11): 1923-1929. doi: 10.7524/j.issn.0254-6108.2014.11.020
引用本文: 沈倩, 张建锋, 孟晓光, 车东昇. 纳米氧化石墨烯对水中锶的吸附特征[J]. 环境化学, 2014, 33(11): 1923-1929. doi: 10.7524/j.issn.0254-6108.2014.11.020
SHEN Qian, ZHANG Jianfeng, MENG Xiaoguang, CHE Dongsheng. A study on nanometer oxide graphene's adsorption characteristics of strontium in water[J]. Environmental Chemistry, 2014, 33(11): 1923-1929. doi: 10.7524/j.issn.0254-6108.2014.11.020
Citation: SHEN Qian, ZHANG Jianfeng, MENG Xiaoguang, CHE Dongsheng. A study on nanometer oxide graphene's adsorption characteristics of strontium in water[J]. Environmental Chemistry, 2014, 33(11): 1923-1929. doi: 10.7524/j.issn.0254-6108.2014.11.020

纳米氧化石墨烯对水中锶的吸附特征

  • 1.  西安建筑科技大学环境与市政工程学院, 西安, 710055;
  • 2.  史蒂文斯理工学院环境系统中心, 美国新泽西, 07030

摘要: 采用纳米氧化石墨烯(GO)吸附放射性废水中Sr2+,从吸附原理、吸附动力学、pH对吸附的影响等方面对吸附过程进行研究.采用表面增强拉曼技术和红外光谱对Sr2+在GO表面的吸附进行光谱表征.将GO负载到活性炭表面进行柱实验探索GO在废水处理中的应用.结果表明,在pH值为6.0-6.5时GO对Sr2+的吸附符合Langmuir吸附模型,最大吸附量263.16 mg·g-1.GO对Sr2+的吸附符合拟二级动力学方程.在pH 3-11范围内吸附量随着pH升高显著增大.GO对Sr2+的吸附具有快速,吸附量大,适用pH范围广的特点,可大量用于放射性废水的处理.GO负载到活性炭上后吸附量有所下降,但克服了GO材料本身在水中粒径小难分离的缺陷,是一种可实际应用、去除环境中Sr2+的新方法.

English Abstract

参考文献 (29)

返回顶部

目录

/

返回文章
返回