-
近年来,随着人们对健康水质要求的不断提高,水环境中新兴污染物的环境行为、生态风险及其去除成为研究热点。其中,药品及个人护理品(pharmaceuticals and personal care products,PPCPs)是一类备受关注的新兴污染物[1]。PPCPs主要包括抗生素、激素、镇痛及抗炎药、抗癫痫药物、脂质调节剂、β受体阻滞剂、合成麝香、抗菌剂、防腐剂、防晒霜紫外过滤剂[2]。PPCPs在极低的浓度下即可对生态系统产生不利影响[3-5],由于污水处理厂是PPCPs的主要“源”和“汇”[6],污水中的PPCPs已引起人们的广泛关注[7-8]。
污水生物处理过程,PPCPs通常发生生物及非生物转化,这会导致中间产物生成[9-10]。当前的研究对污水中PPCPs母体化合物关注较多[8, 11],但是对转化产物在污水处理过程的暴露水平及毒性特征却鲜有报道。研究表明,污水中某些PPCPs转化产物较母体的浓度更高[12],如Wang等[13]对污水厂出水中13个药物母体及转化产物进行了定量研究,发现大约40%的产物浓度较母体化合物出水浓度更高。另外,某些产物的毒性较母体化合物更高[14-15],如Fu等[16]指出,经生物转化后,双氯芬酸的甲基化产物较母体化合物的急性毒性提高430倍。因此对污水中PPCPs转化产物的关注尤为必要。
对污水中PPCPs转化产物的识别是探究其在环境水体中暴露水平及毒性特征的基础。产物识别是指对目标PPCPs转化产物进行定性研究,以完全(完整的结构式)或部分(分子量、分子式或不完整的结构式)揭示其结构式的过程[9]。污水生物处理过程,PPCPs转化速度快、转化规律未知。另外污水基质复杂、PPCPs母体及转化产物一般浓度较低[17],这给产物的识别技术提出了较高的要求。目前已有研究对污水中PPCPs转化产物进行识别[18-21],但不同研究间缺乏统一的产物识别流程,其识别的结果难以相互比较,不利于对可能存在的大量未知结构产物的识别,更限制了污水生物处理过程中PPCPs转化产物识别的研究进展。
基于此,本文结合当前污水生物处理系统中PPCPs转化产物的识别研究进展,详细总结了污水中PPCPs转化产物的识别技术,并综述了目前污水中主要PPCPs转化产物的识别进展。在此基础上,对PPCPs转化产物未来的研究方向进行了展望。
污水生物处理过程药品及个人护理品转化产物识别研究进展
Identification of transformation products of PPCPs during wastewater biological treatment processes
-
摘要: 药品及个人护理品(pharmaceuticals and personal care products,PPCPs)在污水生物处理过程会发生生物及化学转化从而生成转化产物,某些转化产物较母体化合物毒性更高。目前对PPCPs转化产物关注不够,转化产物识别方法不明确。本文介绍了污水中PPCPs转化产物的识别流程,系统阐述了样品获取、样品前处理、基于液相色谱串联高分辨质谱的样品检测及质谱数据解析等技术,提出了适合污水中PPCPs转化产物的识别技术。在此基础上,分别阐述了抗生素类、激素类、非甾体抗炎药类、精神类药物及其他PPCPs在污水中的产物识别技术及所识别出的产物及转化反应。本综述为全面识别污水中PPCPs转化产物并采取有效的控制策略提供了参考方法。Abstract: Pharmaceuticals and personal care products (PPCPs) are subject to biotic and abiotic transformation in wastewater, which can cause the formation of transformation products (TPs). Some TPs of PPCPs are more toxic than parent compounds. However, the attention paid on TPs is insufficient and the methods on identifying TPs of PPCPs in wastewater are scare. In this study, the workflows of identification of TPs formed from PPCPs during wastewater biological treatment processes were introduced. The details on sample acquisition, sample preparation, detecting by liquid chromatography-high resolution mass spectrometry and data analysis were elaborated. Based on the procedure of identification of TPs mentioned above, the details of identifying TPs from various PPCPs were compared and the proper methods were put forward to fully identifying TPs of PPCPs in wastewater. Accordingly, the identified TPs and involved transformation reactions of various PPCPs such as antibiotic, hormones, non-steroidal anti-inflammatory drugs, psychotropic pharmaceuticals and others were stated in detail. Present review provides a comprehensive picture of TPs from various PPCPs in WWTPs.
-
Key words:
- PPCPs /
- transformation products /
- identification /
- sewage /
- biological treatment
-
表 1 不同类型PPCPs在污水生物处理系统中的转化产物识别
Table 1. Identification of transformation products of various PPCPs during wastewater biological treatment
药品及
个人护理品
PPCPs样品获取方式
Methods of
sample acquisition前处理方法
Methods of
sample pretreatment数据采集技术
Techniques of
data acquisition识别技术
Techniques of
TPs identification产物数目
The numbers
of TPs涉及到的反应类型
The involved
reaction types参考
文献
References抗生素 甲氧苄氨嘧啶 实验室小试+
污水厂采样固相萃取
ENVI-Carb小柱DDA 可疑物筛查 6 去甲基化、羟基化、氧化、开环 [28] 磺胺甲恶唑 实验室小试+
污水厂采样固相萃取
HLB、WAX、WCX、ENV+DDA 可疑物筛查 11 羟基化、氧化、去碳基、螯合(加蝶呤) [81] 磺胺嘧啶 实验室小试+
污水厂采样固相萃取
HLB、WAX、WCX、ENV+DDA 可疑物筛查 8 羟基化、氧化、去碳基、螯合(加蝶呤) [81] 磺胺嘧啶 实验室小试 —1 先一级再二级扫描 非靶向筛查 12 羟基化、开环 [78] 甲氧苄氨嘧啶 实验室小试+
污水厂采样固相萃取
ENVI-Carb小柱— 非靶向筛查 6 去甲基化、羟基化、开环、氧化 [28] 克林霉素 实验室小试+
污水厂采样离心、过膜 — — 3 硫化 [80] 磺胺甲恶唑 实验室小试 — — — 4 羟基化、开环 [94] 磺胺甲恶唑 实验室小试 固相萃取HLB DDA — 3 脱氨基反应、羟基化、硝化 [95] 激素类 孕酮 实验室小试 固相萃取HLB 先一级再二级 可疑物筛查 12 羟基化、氧化、开环 [83] 睾酮 实验室小试 固相萃取HLB 先一级再二级 可疑物筛查 15 羟基化、氧化、还原 [27] 孕酮 实验室小试 固相萃取HLB — — 8 羟基化、氧化、还原 [84] 孕激素 实验室小试+
污水厂采样固相萃取HLB DDA 非靶向筛查 44 羟基化、环A脱氢 [85] 去氢孕酮 实验室小试 固相萃取HLB — — 5 羟基化、氧化、加氢 [84] 甲基炔诺酮 实验室小试 固相萃取HLB — — 2 加氢、脱氢 [96] 倍他米松 实验室小试+
污水厂采样— DDA 非靶向筛查 6 脱氢、氧化、硫化、羟基化 [56] 非甾体抗炎药 双氯芬酸 实验室小试+
污水厂采样过膜 DDA 可疑物筛查、
非靶向筛查20 羟基化、去羰基、氧化、酰胺化、开环、还原脱氯 [29] 萘普生 实验室小试 — — — 7 脱羰基、螯合(络氨酸)、羟基化、开环 [88] 布洛芬 实验室小试 — — — 7 羟基化、脱羰基、氧化 [88] 双氯芬酸 实验室小试+
污水厂采样— DDA 可疑物筛查 4 羟基化、脱氢 [89] 双氯芬酸 实验室小试 固相萃取HLB 先一级再二级扫描 可疑物筛查 14 羟基化、酰胺化、硫化、甲基化、氧化 [87] 精神类药物 舍曲林 实验室小试+
污水厂采样固相萃取HLB DDA 非靶向筛查 10 羟基化、氧化、螯合 [24] 加巴喷丁 实验室小试 — DDA — 8 羟基化、氧化、水解 [34] 卡马西平 实验室小试 — — — 9 加氢、甲基化 [92] 西酞普兰 实验室小试+
污水厂采样— DDA 可疑物筛查、
非靶向筛查14 氧化、水解、
羟基化、去甲基[53] 阿巴卡韦 实验室小试+
污水厂采样过膜 — — 4 羧基化、羟基化、去环丙醇 [36] 恩曲他滨 实验室小试+
污水厂采样过膜 — — 3 羧基化、氧化 [36] 更昔洛韦 实验室小试+
污水厂采样过膜 — — 4 羧基化 [36] 拉米夫定 实验室小试+
污水厂采样过膜 — — 3 羧基化、氧化 [36] 齐多夫定 实验室小试+
污水厂采样过膜 — — 3 羧基化、羟基化 [36] 其他 苯扎贝特 实验室小试 — DDA 可疑物筛查、
非靶向筛查5 加氢、羟基化 [52] 缬沙坦 实验室小试 — DDA 可疑物筛查、
非靶向筛查3 脱烷基、水解 [52] 西他列汀 实验室小试+
污水厂采样— DDA 非靶向筛查 9 水解、螯合 [93] 非索非那定 实验室小试+
污水厂采样— DDA 非靶向筛查 13 氧化、羟基化 [93] 三氯生 实验室小试 — DDA — 7 脱氯、羟基化、螯合 [90] 三氯生 实验室小试 固相萃取HLB DDA — 3 甲基化 [97] 三氯卡班 实验室小试 固相萃取HLB DDA — 4 脱氯 [98] 注:1表示文献中无相应值. Note: 1 refers to the information not specified in the reference. -
[1] PETRIE B, BARDEN R, KASPRZYK-HORDERN B. A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring [J]. Water Research, 2015, 72: 3-27. doi: 10.1016/j.watres.2014.08.053 [2] LIU L, WONG M H. Pharmaceuticals and personal care products (PPCPs): a review on environmental contamination in China [J]. Environment International, 2013, 59: 208-224. doi: 10.1016/j.envint.2013.06.012 [3] OASKS J L, GILBERT M, VIRANI M Z, et al. Diclofenac residues as the cause of vulture population decline in Pakistan [J]. Nature, 2004, 427(6975): 630-633. doi: 10.1038/nature02317 [4] ZHOU S, DI PAOLO C, WU X, et al. Optimization of screening-level risk assessment and priority selection of emerging pollutants - The case of pharmaceuticals in European surface waters [J]. Environment International, 2019, 128: 1-10. doi: 10.1016/j.envint.2019.04.034 [5] DUSZA H M, JANSSEN E, KANDA R, et al. Method development for effect-directed analysis of endocrine dsrupting compounds in human amniotic fluid [J]. Environmental Science & Technology, 2019, 53,(24): 14649-14659. [6] YU Y, HAN P, ZHOU L, et al. Ammonia monooxygenase-mediated cometabolic biotransformation and hydroxylamine-mediated abiotic transformation of micropollutants in an AOB/NOB co-culture [J]. Environmental Science & Technology, 2018, 52(16): 9196-9205. [7] BEN W, ZHU B, YUAN X, et al. Occurrence, removal and risk of organic micropollutants in wastewater treatment plants across China: Comparison of wastewater treatment processes [J]. Water Research, 2018, 130: 38-46. doi: 10.1016/j.watres.2017.11.057 [8] ZHANG Y, WANG B, CAGNETTA G, et al. Typical pharmaceuticals in major WWTPs in Beijing, China: Occurrence, load pattern and calculation reliability [J]. Water Research, 2018, 140: 291-300. doi: 10.1016/j.watres.2018.04.056 [9] BLETSOU A A, JEON J, HOLLENDER J, et al. Targeted and non-targeted liquid chromatography-mass spectrometric workflows for identification of transformation products of emerging pollutants in the aquatic environment [J]. TrAC Trends in Analytical Chemistry, 2015, 66: 32-44. doi: 10.1016/j.trac.2014.11.009 [10] HERNANDEZ F, BAKKER J, BIJLSMA L, et al. The role of analytical chemistry in exposure science: Focus on the aquatic environment [J]. Chemosphere, 2019, 222: 564-583. doi: 10.1016/j.chemosphere.2019.01.118 [11] TRAN N H, CHEN H, REINHARD M, et al. Occurrence and removal of multiple classes of antibiotics and antimicrobial agents in biological wastewater treatment processes [J]. Water Research, 2016, 104: 461-472. doi: 10.1016/j.watres.2016.08.040 [12] EGGEN R I, HOLLENDER J, JOSS A, et al. Reducing the discharge of micropollutants in the aquatic environment: the benefits of upgrading wastewater treatment plants [J]. Environmental Science & Technology, 2014, 48,(14): 7683-7689. [13] WANG X, YU N, YANG J, et al. Suspect and non-target screening of pesticides and pharmaceuticals transformation products in wastewater using QTOF-MS [J]. Environment International, 2020, 137: 105599. doi: 10.1016/j.envint.2020.105599 [14] JAEN-GIL A, CASTELLET-ROVIRA F, LLORCA M, et al. Fungal treatment of metoprolol and its recalcitrant metabolite metoprolol acid in hospital wastewater: Biotransformation, sorption and ecotoxicological impact [J]. Water Research, 2019, 152: 171-180. doi: 10.1016/j.watres.2018.12.054 [15] CHEN K, TIAN F, WU C, et al. Degradation products and pathway of ethiprole in water and soil [J]. Water Research, 2019, 161: 531-539. doi: 10.1016/j.watres.2019.06.004 [16] FU Q, FEDRIZZI D, KOSFELD V, et al. Biotransformation changes bioaccumulation and toxicity of diclofenac in aquatic organisms [J]. Environmental Science & Technology, 2020, 54: 4400-4408. [17] RICHARDSON S D, KIMURA S Y, Water analysis: Emerging contaminants and current issues [J]. Analytical Chemistry, 2020, 92, (1) : 473-505. [18] WOLFENDER J L, NUZILLARD J M, VAN DER HOOFT J J J, et al. Accelerating metabolite identification in natural product research: toward an ideal combination of LC-HRMS/MS and NMR profiling, in silico databases and chemometrics [J]. Analytical Chemistry, 2018, 91,(1): 704-742. [19] GULDE R, MEIER U, SCHYMANSKI E L, et al. Systematic exploration of biotransformation reactions of amine-containing micropollutants in activated sludge [J]. Environmental Science & Technology, 2016, 50,(6): 2908-2920. [20] CASTRONOVO S, WICK A, SCHEURER M, et al. Biodegradation of the artificial sweetener acesulfame in biological wastewater treatment and sandfilters [J]. Water Research, 2016, 110: 342-353. [21] KHALEEL N D H, MAHMOUD W M M, OLSSON O, et al. Studying the fate of the drug Chlorprothixene and its photo transformation products in the aquatic environment: Identification, assessment and priority setting by application of a combination of experiments and various in silico assessments [J]. Water Research, 2019, 149: 467-476. doi: 10.1016/j.watres.2018.10.075 [22] KLONT F, JAHN S, GRIVET C, et al. SWATH data independent acquisition mass spectrometry for screening of xenobiotics in biological fluids: Opportunities and challenges for data processing [J]. Talanta, 2020, 211: 120747. doi: 10.1016/j.talanta.2020.120747 [23] PICO Y, BARCELO D. Transformation products of emerging contaminants in the environment and high-resolution mass spectrometry: a new horizon [J]. Analytical and Bioanalytical Chemistry, 2015, 407(2): 6257-6273. [24] GORNIK T, KOVACIC A, HEATH E, et al. Biotransformation study of antidepressant sertraline and its removal during biological wastewater treatment [J]. Water Research, 2020, 181: 115864. doi: 10.1016/j.watres.2020.115864 [25] RATERINK R J, LINDENBURG P W, VREENKEN R J, et al. Recent developments in sample-pretreatment techniques for mass spectrometry-based metabolomics [J]. TrAC Trends in Analytical Chemistry, 2014, 61: 157-167. doi: 10.1016/j.trac.2014.06.003 [26] WU Q, WANG J Y, HAN D Q, et al. Recent advances in differentiation of isomers by ion mobility mass spectrometry [J]. TrAC Trends in Analytical Chemistry, 2020, 124: 115801. doi: 10.1016/j.trac.2019.115801 [27] YU Q, GENG J, REN H, Occurrence and fate of androgens in municipal wastewater treatment plants in China [J]. Chemosphere, 2019: 124371. [28] JEWELL K S, CASTRONOVO S, WICK A, et al. New insights into the transformation of trimethoprim during biological wastewater treatment [J]. Water Research, 2016, 88: 550-557. doi: 10.1016/j.watres.2015.10.026 [29] JEWELL K S, FALAS P, WICK A, et al. Transformation of diclofenac in hybrid biofilm-activated sludge processes [J]. Water Research, 2016, 105: 559-567. doi: 10.1016/j.watres.2016.08.002 [30] ERICSON J F. Evaluation of the OECD 314B Activated Sludge Die-Away Test for Assessing the Biodegradation of Pharmaceuticals [J]. Environmental Science & Technology, 2010, 44(1): 375-381. [31] MARTIN T J, SNAPE J R, BARTRANM A, et al. Environmentally Relevant inoculum concentrations improve the reliability of persistent assessments in biodegradation screening tests [J]. Environmental Science & Technology, 2017, 51,(5): 3065-3073. [32] CHEN W L, CHENG J Y, LIN X Q. Systematic screening and identification of the chlorinated transformation products of aromatic pharmaceuticals and personal care products using high-resolution mass spectrometry [J]. Science of the Total Environment, 2018, 637-638: 253-263. [33] FREELING F, ALYGIZAKIS N A, VON DER OHE P C, et al. Occurrence and potential environmental risk of surfactants and their transformation products discharged by wastewater treatment plants [J]. Science of the Total Environment, 2019, 681: 475-487. doi: 10.1016/j.scitotenv.2019.04.445 [34] HENNING N, KUNKEL U, WICK A, et al. Biotransformation of gabapentin in surface water matrices under different redox conditions and the occurrence of one major TP in the aquatic environment [J]. Water Research, 2018, 137: 290-300. doi: 10.1016/j.watres.2018.01.027 [35] REDEKER M, WICK A, MEERMANN B, et al. Anaerobic transformation of the iodinated X-ray contrast medium iopromide, its aerobic transformation products, and transfer to further iodinated X-ray contrast media [J]. Environmental Science & Technology, 2018, 52,(15): 8309-8320. [36] FUNKE J, PRASSE C, TERNES T A. Identification of transformation products of antiviral drugs formed during biological wastewater treatment and their occurrence in the urban water cycle [J]. Water Research, 2016, 98: 75-83. [37] OETJEN K, GIDDINGS C G S, MCLAUGHLIN M, et al. Emerging analytical methods for the characterization and quantification of organic contaminants in flowback and produced water [J]. Trends in Environmental Analytical Chemistry, 2017, 15: 12-23. doi: 10.1016/j.teac.2017.07.002 [38] ANDRADE-EIROA A, CANLE M, LEROY-CANCELLIIERRI V, et al. Solid-phase extraction of organic compounds: A critical review (Part I) [J]. TrAC Trends in Analytical Chemistry, 2016, 80: 641-654. doi: 10.1016/j.trac.2015.08.015 [39] MOSCHET C, PIAZZOLI A, SINGER H, et al. Alleviating the reference standard dilemma using a systematic exact mass suspect screening approach with liquid chromatography-high resolution mass spectrometry [J]. Analytical Chemistry, 2013, 85,(21): 10312-10320. doi: 10.1021/ac4021598 [40] GAGO-FERRERO P, SCHYMANSHI E L, BLETSOU A A, et al. Extended suspect and non-target strategies to characterize emerging polar organic contaminants in raw wastewater with LC-HRMS/MS [J]. Environmental Science & Technology, 2015, 49,(20): 12333-12341. [41] PRASSE C, TERNES T A. Application of orbitrap mass spectrometry for the identification of transformation products of trace organic contaminants formed in the environment [J]. Comprehensive Analytical Chemistry, 2016, 71: 282. [42] BOIX C, IBANEZ M, BAGNATI R, et al. High resolution mass spectrometry to investigate omeprazole and venlafaxine metabolites in wastewater [J]. Journal of Hazardous Materials, 2016, 302: 332-340. doi: 10.1016/j.jhazmat.2015.09.059 [43] BONNER R, HOPFGARTNER G, SWATH data independent acquisition mass spectrometry for metabolomics [J]. TrAC Trends in Analytical Chemistry, 2018, 120c 115278. [44] BROECKLING C D, HOYES E, RICHARDSON K, et al. Comprehensive tandem-mass-spectrometry coverage of complex samples enabled by data-set-dependent acquisition [J]. Analytical Chemistry, 2018, 90,(13): 8020-8027. doi: 10.1021/acs.analchem.8b00929 [45] PARRILLA VAZQUEZ P, LOZANO A, FERRER C, et al. Improvements in identification and quantitation of pesticide residues in food by LC-QTOF using sequential mass window acquisition (SWATH®) [J]. Analytical Methods, 2018, 10,(24): 2821-2833. doi: 10.1039/C8AY00678D [46] ZHU X, CHEN Y, SUBRAMANIAN R. Comparison of information-dependent acquisition, SWATH, and MS(All) techniques in metabolite identification study employing ultrahigh-performance liquid chromatography-quadrupole time-of-flight mass spectrometry [J]. Analytical Chemistry, 2014, 86(2): 1202-1209. [47] ZHOU J, LI Y, CHEN X, et al. Development of data-independent acquisition workflows for metabolomic analysis on a quadrupole-orbitrap platform [J]. Talanta, 2017, 164: 128-136. doi: 10.1016/j.talanta.2016.11.048 [48] ROEMMELT A T, STEUER A E, KRAEMER T. Liquid chromatography, in combination with a quadrupole time-of-flight instrument, with sequential window acquisition of all theoretical fragment-ion spectra acquisition: validated quantification of 39 antidepressants in whole blood as part of a simultaneous screening and quantification procedure [J]. Analytical Chemistry, 2015, 87(18): 9294-9301. [49] ARMHARD K, GOTTSCHALL A, PITTERL F, et al. Applying 'Sequential Windowed Acquisition of All Theoretical Fragment Ion Mass Spectra' (SWATH) for systematic toxicological analysis with liquid chromatography-high-resolution tandem mass spectrometry [J]. Analytical and Bioanalytical Chemistry, 2015, 407,(2): 405-414. doi: 10.1007/s00216-014-8262-1 [50] ZHOU Z, TU J, XIONG X, SHEN, et al. LipidCCS: Prediction of collision cross-section values for lipids with high precision to support ion mobility-mass spectrometry-based lipidomics [J]. Analytical Chemistry, 2017, 89,(17): 9559-9566. doi: 10.1021/acs.analchem.7b02625 [51] TU J, ZHOU Z, LI T, et al. The emerging role of ion mobility-mass spectrometry in lipidomics to facilitate lipid separation and identification [J]. TrAC Trends in Analytical Chemistry, 2019, 116: 332-339. doi: 10.1016/j.trac.2019.03.017 [52] HELBLING D E, HOLLENDER J, KOHLER H P E, et al. High-throughput identification of microbial transformation products of organic micropollutants [J]. Environmental Science & Technology, 2010, 44,(17): 6621-6627. [53] BERETSOU V G, PSOMA A K, GAGO-FERRERO P, et al. Identification of biotransformation products of citalopram formed in activated sludge [J]. Water Research, 2016, 103: 205-214. doi: 10.1016/j.watres.2016.07.029 [54] MORIYA Y, SHIGEMIZU D, HATTORI M, et al. PathPred: an enzyme-catalyzed metabolic pathway prediction server [J]. Nucleic Acids Resarch, 2010, 38(Web Server issue): W138-143. [55] HUNTSCHA S, HOFSTETTER T B, SCHYMANSHI E L, et al. Biotransformation of benzotriazoles: insights from transformation product identification and compound-specific isotope analysis [J]. Environmental Science & Technology, 2014, 48,(8): 4435-4443. [56] WEIZEL A, SCHLUSENER M P, DIERKES G, et al. Analysis of the aerobic biodegradation of glucocorticoids: Elucidation of the kinetics and transformation reactions [J]. Water Research, 2020: 115561. [57] KRUVE A. Strategies for drawing quantitative conclusions from non-targeted liquid chromatography high-resolution mass spectrometry analysis [J]. Analytical Chemistry, 2020, 92(7): 4691-4699. [58] HUFSKY F, SCHEUBERT K, BOCKER S. New kids on the block: novel informatics methods for natural product discovery [J]. Natural Product Reports, 2014, 31(6): 807-817. [59] CAI W, LI K l, XIONG P, et al. A systematic strategy for rapid identification of chlorogenic acids derivatives in Duhaldea nervosa using UHPLC-Q-Exactive Orbitrap mass spectrometry [J]. Arabian Journal of Chemistry, 2020, 13,(2): 3751-3761. doi: 10.1016/j.arabjc.2020.01.007 [60] QUINN R A, NOTHIAS L F, VINING O, et al. Molecular networking as a drug discovery, drug metabolism, and precision medicine strategy [J]. Trends in Pharmacological Sciences, 2017, 38,(2): 143-154. doi: 10.1016/j.tips.2016.10.011 [61] GAIFFE G, COLE R B, SONNETTE A, et al. Identification of postblast residues by DART-high resolution mass spectrometry combined with multivariate statistical analysis of the Kendrick mass defect [J]. Analytical Chemistry, 2019, 91,(13): 8093-8100. doi: 10.1021/acs.analchem.9b00137 [62] MOREIRA I S, BESSA V S, MURGOLO S, et al. Biodegradation of Diclofenac by the bacterial strain Labrys portucalensis F11 [J]. Ecotoxicology and Environmental Safety, 2018, 152: 104-113. doi: 10.1016/j.ecoenv.2018.01.040 [63] LIU A, SHI J, QU G, et al. Identification of emerging brominated chemicals as the transformation products of tetrabromobisphenol A (TBBPA) derivatives in soil [J]. Environmental Science & Technology, 2017, 51,(10): 5434-5444. [64] WANG Y, YU N, ZHU X, et al. Suspect and nontarget screening of per- and polyfluoroalkyl substances in wastewater from a fluorochemical manufacturing park [J]. Environmental Science & Technology, 2018, 52,(19): 11007-11016. [65] YU N, GUO H, YANG J, et al. Non-target and suspect screening of per- and polyfluoroalkyl substances in airborne particulate matter in China [J]. Environmental Science & Technology, 2018, 52,(15): 8205-8214. [66] SCHOLLEE J E, SCHYMANSKI E L, STRAVS M A, et al. Similarity of high-resolution tandem mass spectrometry spectra of structurally related micropollutants and transformation products [J]. Journal of the American Society for Mass Spectrometry, 2017, 28,(12): 2692-2704. doi: 10.1007/s13361-017-1797-6 [67] YANG J Y, SANCHEZ L M, RATH C M, et al. Molecular networking as a dereplication strategy [J]. Journal of Natural Products, 2013, 76,(9): 1686-1699. doi: 10.1021/np400413s [68] TETA R, DELLA SALA G, GLUKHOV E, et al. Combined LC-MS/MS and molecular networking approach reveals new Cyanotoxins from the 2014 Cyanobacterial Bloom in Green Lake, Seattle [J]. Environmental Science & Technology, 2015, 49,(24): 14301-14310. [69] SHEN X, WANG R, XIONG X, et al. Metabolic reaction network-based recursive metabolite annotation for untargeted metabolomics [J]. Nature Communications, 2019, 10,(1): 1516. doi: 10.1038/s41467-019-09550-x [70] HELBLING D E, HOLLENDER J, KOHLER H P E, et al. Structure-based interpretation of biotransformation pathways of amide-containing compounds in sludge-seeded bioreactors [J]. Environmental Science & Technology, 2010, 44,(17): 6628-6635. [71] HOLLENDER J, SCHYMANSKI E L, SINGER H P, et al. Nontarget screening with high resolution mass spectrometry in the environment: Ready to go? [J]. Environmental Science & Technology, 2017, 51(20): 11505-11512. [72] KIM S, CHEN J, CHENG T, et al. PubChem 2019 update: improved access to chemical data [J]. Nucleic Acids Research, 2019, 47,(D1): D1102-D1109. doi: 10.1093/nar/gky1033 [73] HORAI H, ARITA M, KNAYA S, et al. MassBank: a public repository for sharing mass spectral data for life sciences [J]. Journal of Mass Spectrometry, 2010, 45,(7): 703-714. doi: 10.1002/jms.1777 [74] DOMINGO-ALMENARA X, MONTENEGRO-BURKE J R, IVANISEVIC J, et al. XCMS-MRM and METLIN-MRM: a cloud library and public resource for targeted analysis of small molecules [J]. Nature Methods, 2018, 15,(9): 681-684. doi: 10.1038/s41592-018-0110-3 [75] WOLF S, SCHMIDT S, MULLER-HANNEMANN M, et al. In silico fragmentation for computer assisted identification of metabolite mass spectra [J]. Bmc Bioinformatics, 2010, 11: 12. doi: 10.1186/1471-2105-11-12 [76] SCHYMANSKI E L, GALLMPOIS C M, KRAUSS M, et al. Consensus structure elucidation combining GC/EI-MS, structure generation, and calculated properties [J]. Analytical Chemistry, 2012, 84,(7): 3287-3295. doi: 10.1021/ac203471y [77] SCHYMANSKI E L, JEON J, GULDE R, et al. Identifying small molecules via high resolution mass spectrometry: communicating confidence [J]. Environmental Science & Technology, 2014, 48,(4): 2097-2098. [78] DENG Y, MAO Y, LI B, et al. Aerobic degradation of sulfadiazine by Arthrobacter spp. : Kinetics, pathways, and genomic characterization [J]. Environmental Science & Technology, 2016, 50,(17): 9566-9575. [79] OBEROI A S, JIA Y, ZHANG H, et al. Insights into the fate and removal of antibiotics in engineered biological treatment systems: A critical review [J]. Environmental Science & Technology, 2019, 53,(13): 7234-7264. [80] OOI G T, ESCOLA CASAS M, ANDERSEN H R, et al. Transformation products of clindamycin in moving bed biofilm reactor (MBBR) [J]. Water Research, 2017, 113: 139-148. doi: 10.1016/j.watres.2017.01.058 [81] ACHERMANN S, BIANCO V, MANSFELDT C B, et al. Biotransformation of sulfonamide antibiotics in activated sludge: The formation of pterin-conjugates leads to sustained risk [J]. Environmental Science & Technology, 2018, 52,(11): 6265-6274. [82] ACHERMANN S, FALAS P, JOSS A, et al. Trends in micropollutant biotransformation along a solids retention time gradient [J]. Environmental Science & Technology, 2018, 52,(20): 11601-11611. [83] YU Q, GENG J, HUO H, et al. Bioaugmentated activated sludge degradation of progesterone: Kinetics and mechanism [J]. Chemical Engineering Journal, 2018, 352: 214-224. doi: 10.1016/j.cej.2018.06.159 [84] LIU S S, CHEN J, ZHANG J N, et al. Microbial transformation of progesterone and dydrogesterone by bacteria from swine wastewater: Degradation kinetics and products identification [J]. Science of the Total Environment, 2020, 701: 134930. doi: 10.1016/j.scitotenv.2019.134930 [85] WEIZEL A, SCHLUSENER M P, DIERKES G, et al. Fate and behavior of progestogens in activated sludge treatment: Kinetics and transformation products [J]. Water Research, 2020, 188: 116515. [86] VIENO N, SILLANPAA M. Fate of diclofenac in municipal wastewater treatment plant - a review [J]. Environment International, 2014, 69: 28-39. [87] WU G, GENG J, SHI Y, et al. Comparison of diclofenac transformation in enriched nitrifying sludge and heterotrophic sludge: Transformation rate, pathway, and role exploration [J]. Water Research, 2020, 184: 116158. doi: 10.1016/j.watres.2020.116158 [88] LU Z, SUN W, LI C, et al. Bioremoval of non-steroidal anti-inflammatory drugs by Pseudoxanthomonas sp. DIN-3 isolated from biological activated carbon process [J]. Water Research, 2019, 161: 459-472. doi: 10.1016/j.watres.2019.05.065 [89] BOUJU H, NASTOLD P, BECK B, et al. Elucidation of biotransformation of diclofenac and 4'hydroxydiclofenac during biological wastewater treatment [J]. Journal of Hazardous Materials, 2016, 301: 443-452. doi: 10.1016/j.jhazmat.2015.08.054 [90] JAKIMSKA A, SLIWKA-KASZYNSKA M, RESZCZYNSKA J, et al. Elucidation of transformation pathway of ketoprofen, ibuprofen, and furosemide in surface water and their occurrence in the aqueous environment using UHPLC-QTOF-MS [J]. Analytical and Bioanalytical Chemistry, 2014, 406,(15): 3667-3680. doi: 10.1007/s00216-014-7614-1 [91] OLIVEIRA T S, MURPHY M, MENDOLA N, et al. Characterization of pharmaceuticals and personal care products in hospital effluent and waste water influent/effluent by direct-injection LC-MS-MS [J]. Science of the Total Environment, 2015, 518-519: 459-478. doi: 10.1016/j.scitotenv.2015.02.104 [92] KONIG A, WEIDAUER C, SEIWERT B, et al. Reductive transformation of carbamazepine by abiotic and biotic processes [J]. Water Research, 2016, 101: 272-280. doi: 10.1016/j.watres.2016.05.084 [93] HENNING N, FALAS P, CASTRONOVO S, et al. Biological transformation of fexofenadine and sitagliptin by carrier-attached biomass and suspended sludge from a hybrid moving bed biofilm reactor [J]. Water Research, 2019: 115034. [94] WANG S, WANG J. Biodegradation and metabolic pathway of sulfamethoxazole by a novel strain Acinetobacter sp [J]. Applied Microbiology and Biotechnology, 2018, 102(1): 425-432. [95] SUN F, WU D, CHUA F D, et al. Free nitrous acid (FNA) induced transformation of sulfamethoxazole in the enriched nitrifying culture [J]. Water Research, 2018, 149: 432-439. [96] PENG F Q, YING G G, YANG B, et al. Biotransformation of progesterone and norgestrel by two freshwater microalgae (Scenedesmus obliquus and Chlorella pyrenoidosa): transformation kinetics and products identification [J]. Chemosphere, 2014, 95: 581-588. doi: 10.1016/j.chemosphere.2013.10.013 [97] ARMSTRONG D L, LOZANO N, RICE C P, et al. Degradation of triclosan and triclocarban and formation of transformation products in activated sludge using benchtop bioreactors [J]. Environmental Research, 2018, 161: 17-25. doi: 10.1016/j.envres.2017.10.048 [98] DING T, LIN K, YANG M, et al. Biodegradation of triclosan in diatom Navicula sp. : Kinetics, transformation products, toxicity evaluation and the effects of pH and potassium permanganate [J]. Journal of Hazardous Materials, 2018, 344: 200-209. doi: 10.1016/j.jhazmat.2017.09.033