-
自2013年以来,从中央到地方陆续颁布实施了一系列有关大气污染治理的环境政策,特别是2017年大气污染防治攻坚战以来,我国城市大气环境质量得以明显改善。与2015年相比,2019年我国337个地级以上城市中环境空气质量达标个数从73个增加到157个,平均优良天数比例从76.7%上升为82.0%,超标天数中以PM2.5和O3为首要污染物的天数占比分别从66.8%下降到45.0%和从16.9%上升到41.7%[1]。我国城市大气污染特征已由煤烟型污染转变成为以灰霾和臭氧污染为特征的复合型污染[2-3]。
冬季是我国北方城市灰霾高发的季节[4],不利的气象条件和燃煤供暖的增量排放使污染物更易积累,在区域传输和二次转化的叠加作用下,城区PM2.5浓度更易呈爆发式增长[5-6]。冬季易形成近地逆温层,大气混合层高度可被压缩至小于200 m,颗粒物中二次离子(
${\rm{NH}}_4^{+} $ 、${\rm{SO}}_4^{2-} $ 和${\rm{NO}}_3^{-} $ )大量生成,进而导致PM2.5浓度可迅速增加4—8倍[7-9]。冬季较低的相对湿度与温度导致${\rm{SO}}_4^{2-} $ 转化率降低和NO3−稳定性增加[10-12];冬季降水次数减少和林木对${\rm{NH}}_4^{+} $ 吸收能力减弱,城市大气呈现富${\rm{NH}}_4^{+} $ 特征[13-14];冬季大风天气携带扬尘,导致Ca2+和Mg2+浓度增加[5];冬季采暖期燃煤量增加,引起K+和Cl−浓度可增加一个数量级[15]。面对冬季诸多不利因素,需要实施更为精准的环境政策以应对不同时段灰霾污染来源的差异性。焦作市属于“2+26”京津冀大气污染传输通道城市。与2015年相比,2018年焦作市SO2、NO2、PM2.5浓度分别下降63.3%、18.0%、23.0%[16],大气环境质量得到一定改善,但2018、2019年连续两年环境空气质量仍位于全国337个地级以上城市中倒数前20,PM2.5仍是秋冬两季大气环境的首要污染物[1]。焦作市冬季污染天二次离子在PM2.5中的占比显著增加[17],PM2.5污染来源以本地源为主,沿太行山南麓的区域输送也有一定贡献[18]。前人研究多集中于城市灰霾污染的特征和来源,而将其与当地实施的大气环境政策进行关联却鲜有研究。本文以2017年冬季供暖日前/后采集的两段PM2.5样品为对象,对比分析了不同时段水溶性离子特征和污染来源的差异性,结合焦作市2017年实施的大气污染治理的环境政策,以期为冬季城市灰霾污染的针对性管控提供科学的决策依据。
冬季供暖对城市大气PM2.5水溶性组成及污染源解析的影响
Impacts of municipal heat supply in winter on water-soluble ions and sources identification of atmospheric PM2.5
-
摘要: 在雾霾高发的冬季,针对污染来源的差异精准实施不同环境政策对城市大气污染治理具有重要的现实意义。以焦作市为例,于2017年市政供暖日(11月15日)前/后分2批采集大气PM2.5样品,对比分析了供暖日前/后PM2.5中水溶性离子组成及其污染来源的差异性,并对清洁/污染时段下雾霾治理环境政策的实施做出针对性建议。结果表明,相较于供暖日前,供暖日后总水溶性离子浓度显著上升(30.24 μg·m−3→44.39 μg·m−3),其中Cl−(+307.5%),
${{\rm{NO}}_3^{-}} $ (+104.5%),Na+、Ca2+和${{\rm{NH}}_4^{+} }$ (+34.7%—+52.3%),颗粒物中水溶性离子占比(45.0%→59.5%)、氮氧化率(0.10→0.16)和硝硫物质的量比(0.51→0.80)均显著上升,而K+(−35.2%)、硫氧化率(0.34→0.22)和铵硝物质的量比(8.09→2.68)却显著下降。相较于清洁时段,污染时段二次离子(${{\rm{NH}}_4^{+} }$ 、${{\rm{SO}}_4^{2-} }$ 和${{\rm{NO}}_3^{-}} $ )浓度的上升幅度(156.3%—201.2%)明显大于一次离子浓度的上升幅度(44.0%—110.9%),水溶性离子中二次离子占比(70.1%→80.0%)、硫氧化率(0.24→0.34)和氮氧化率(0.11→0.16)均显著上升。聚类和因子分析结果表明,采样期间PM2.5污染来源分别为:自然扬尘源(30.02%)>燃煤源(21.30%)>工业排放源(16.75%)>机动车尾气源(13.87%)>生物质燃烧源(11.85%)。自然扬尘源、燃煤源和机动车尾气源的重要性在供暖日后显著增加;自然扬尘源和生物质燃烧的重要性在污染时段显著降低。针对不同污染来源的时段差异性,提出了冬季城市PM2.5污染有效管控的差异化环境政策。Abstract: Precise implementation of different environmental policies according to pollution sources is critical for urban air pollution control in winter, when haze occurs frequently. We collected two batches of PM2.5 samples in Jiaozuo City before and during the heating season (HS) in 2017. Differences in the composition of water-soluble ions and sources composition of PM2.5 samples were investigated. Corresponding suggestions on the implementation of environmental policies for haze control were also provided. It was found that the mass concentrations of total water-soluble ions (TWSI) of PM2.5 during the HS increased significantly than that before the HS (30.24 μg·m−3→44.39 μg·m−3), including Cl− (+307.5%),${\rm{NO}}_3^{-} $ (+104.5%), Na+, Ca2+, and${\rm{NH}}_4^{+} $ (+34.7%—+52.3%), the mass ratio of TWSI to PM2.5 (45.0%→59.5%), the nitrogen oxidation ratio (NOR) (0.10→0.16) and the molar ratio of${\rm{NO}}_3^{-} $ to${\rm{SO}}_4^{2-} $ (0.51→0.80). However, the opposite was true for K+ (−35.2%), the sulfur oxidation ratio (SOR) (0.34→0.22) and the molar ratio of${\rm{NH}}_4^{+} $ to${\rm{NO}}_3^{-} $ (8.09→2.68). The increments of the total mass concentration of sulphate, nitrite, and ammonium (SNA) (156.3%—201.2%) during the pollution period were significantly higher than those of primary ions (44.0%—110.9%). In addition, the mass ratio of SNA to TWSI (70.1%→80.0%), SOR (0.24→0.34) and NOR (0.11→0.16) during the pollution period increased significantly than that during the clean period. Pollution sources of PM2.5 during the sampling periods were identified by clustering analysis and factor analysis as follows: natural dust source (30.02%) > coal burning source (21.30%) > industrial emission source (16.75%) > motor vehicle exhaust source (13.87%) > biomass combustion source (11.85%). During the HS, the contributions of natural dust sources, coal sources and motor vehicle exhaust sources to PM2.5 increased significantly in comparison to those before HS. During the pollution period, the contributions of natural dust sources and biomass combustion sources decreased significantly when compared with those during clean period. Corresponding to the temporal difference in pollution sources, we proposed differentiated environmental policies to effectively control PM2.5 pollution in winter. -
表 1 焦作市2017年采样期间水溶性离子浓度统计描述(μg·m−3)
Table 1. Description statistics of water-soluble ions concentrations during sampling periods of 2017 in Jiaozuo
项目
Project均值
Mean标准偏差
SD中位数
Median10%位数
10%digits90%位数
90%digits偏度
Skewness峰度
KurtosisNa+ 0.79 0.53 0.63 0.20 1.48 1.42 3.25 ${\rm{NH}}_4^{+} $ 7.97 7.78 5.7 1.74 20.01 2.30 6.59 K+ 0.92 0.63 0.85 0.15 1.61 1.34 3.42 Mg2+ 0.20 0.13 0.18 0.07 0.41 1.52 3.64 Ca2+ 3.95 2.58 3.54 1.38 7.31 1.68 4.19 F- 0.31 0.3 0.25 0.03 0.70 2.42 7.83 Cl- 1.47 1.72 0.81 0.21 3.64 2.01 3.77 ${\rm{SO}}_4^{2-} $ 12.67 12.57 9.43 3.42 21.37 3.04 10.73 ${\rm{NO}}_3^{-} $ 10.14 11.62 5.25 1.14 29.84 2.00 3.80 表 2 本研究水溶性离子浓度及比值与其它研究对比
Table 2. Comparison of water-soluble ion concentrations and ratios in the present study with other studies
城市
City时间
Time${\rm{NH} }_4^{+} /$
(μg·m−3)Ca2+/
(μg·m−3)Cl−/
(μg·m−3)${\rm{SO} }_4^{2-}/$
(μg·m−3)${\rm{NO} }_3^{-} /$
(μg·m−3)TWSI/% SNA/% [ ]/${\rm{NO}}_3^{-} $
[ ]${\rm{SO}}_4^{2-} $ [ ]/${\rm{NH}}_4^{+} $
[ ]${\rm{NO}}_3^{-} $ CE/AE 污染类型
Pollution
Type参考文献
References焦作 2017-10—
2017-127.97 3.95 1.47 12.67 10.14 51.3 74.0 0.67 4.97 1.74 煤烟型 本研究 郑州 2016-01—2017-01 31.06 1.49 4.32 33.05 38.80 73.3 93.1 0.91 2.76 1.29 煤烟型 [8] 太原 2017-11—
2018-0310.03 6.23 5.55 14.61 13.75 68.8 71.7 0.73 2.51 1.40 煤烟型 [25] 邯郸 2016-01 11.27 0.78 7.47 11.36 12.91 43.4 66.8 0.88 3.00 1.60 煤烟型 [26] 成都 2013-08—2014-07 7.34 0.33 1.92 13.88 10.29 44.4 89.4 0.57 2.46 0.93 煤烟型 [27] 焦作 2017-12—
2018-0215.31 4.28 4.91 15.99 23.20 67.5 81.5 1.12 2.27 1.34 尾气型 [17] 焦作 2018-01 23.66 — 6.48 23.01 39.42 65.5 91.3 1.32 2.07 1.49 尾气型 [18] 郑州 2017-12—
2018-0213.5 0.4 5.2 14.4 26.1 58.8 84.9 1.40 1.78 1.05 尾气型 [10] 北京 2017-12—
2018-014.56 10.98 4.38 15.11 21.57 68.2 62.1 1.45 0.73 1.51 尾气型 [28] 表 3 焦作市2017年不同时段下水溶性离子浓度对比(μg·m−3)
Table 3. Comparison of water-soluble ions concentration during different time periods of 2017 in Jiaozuo(μg·m−3)
项目
Project供暖日前
Before the heating day供暖日后
After the heating day清洁时段
Clean period污染时段
Pollution periodNa+ 0.61±0.66 A 0.93±0.37 B 0.67±0.35 A 0.97±0.70 B ${\rm{NH}}_4^{+} $ 6.64±3.22 a 8.94±9.80 b 4.54±3.07 A 13.23±9.73 B K+ 1.15±0.69 b 0.75±0.53 a 0.67±0.45 A 1.29±0.68 B Mg2+ 0.18±0.11 a 0.22±0.15 a 0.16±0.09 A 0.26±0.17 B Ca2+ 3.06±2.00 A 4.60±2.78 B 3.80±2.51 a 4.18±2.71 a F− 0.27±0.26 a 0.33±0.33 a 0.26±0.28 a 0.38±0.33 a Cl− 0.53±0.50 A 2.16±1.96 B 1.03±1.08 A 2.16±2.24 B ${\rm{SO}}_4^{2-} $ 11.48±5.92 a 13.54±15.79 a 7.84±4.96 A 20.08±16.65 B ${\rm{NO}}_3^{-} $ 6.32±5.84 A 12.93±13.88 B 5.65±4.10 A 17.03±15.57 B TWSI 30.24±12.05 A 44.39±37.42 B 24.62±11.12 A 59.60±37.40 B 注:同行相同字母表示同一因素内不同水平(a,b. P<0.05;A,B. P<0.01)间无显著性差异。
Note: The same letters in the same factor column indicate insignificant difference between the different levels(a,b. P<0.05;A,B. P<0.01).表 4 焦作市2017年冬季PM2.5污染源重要性的决策矩阵
Table 4. Decision-making matrix of the importance of PM2.5 pollution sources in the winter of 2017 in Jiaozuo
时段
Period清洁时段 (P=0.61)
Clean period污染时段 (P=0.39)
Pollution period供暖日前 生物质燃烧源(11.85%) 工业排放源(16.75%) 供暖日后 自然扬尘源(30.02%) 燃煤源(21.30%)
机动车尾气源(13.87%)注:P表示统计概率值;不同污染源括号内数值表示其贡献值.
Note: P represents statistical probability value, the value in brackets of different pollution sources indicates its contribution value. -
[1] 中华人民共和国生态环境部. 2015—2019中国环境状况公报[EB/OL]. [2020-6-8]. https://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/. Ministry of Ecology and Environment of the People’s Republic of China.. The state of the environment bulletin from 2015 to 2019[EB/OL]. [2020-6-8]. https://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/ (in Chinese).
[2] 高丽波, 王体健, 崔金梦, 等. 2016年夏季南京大气污染特征观测分析 [J]. 中国环境科学, 2019, 39(1): 1-12. doi: 10.3969/j.issn.1000-6923.2019.01.001 GAO L B, WANG T J, CUI J M, et al. Observation and analysis of the characteristics of air pollution in Nanjing in summer 2016 [J]. China Environmental Science, 2019, 39(1): 1-12(in Chinese). doi: 10.3969/j.issn.1000-6923.2019.01.001
[3] 刀谞, 张霖琳, 王超, 等. 京津冀冬季与夏季PM2.5/PM10及其水溶性离子组分区域性污染特征分析 [J]. 环境化学, 2015, 34(1): 60-69. doi: 10.7524/j.issn.0254-6108.2015.01.2014032603 DAO X, ZHANG L L, WANG C, et al. Characteristics of mass and ionic compounds of atmospheric particles in winter and summer of Beijing-Tianjin-Hebei area, China [J]. Environmental Chemistry, 2015, 34(1): 60-69(in Chinese). doi: 10.7524/j.issn.0254-6108.2015.01.2014032603
[4] 刘盈盈, 殷宝辉, 王静, 等. 济南冬季大气重污染过程颗粒物组分变化特征 [J]. 环境化学, 2018, 37(12): 2749-2757. doi: 10.7524/j.issn.0254-6108.2018072601 LIU Y Y, YIN B H, WANG J, et al. Characteristics of airborne particles compositions during winter heavy pollution days in Ji'nan [J]. Environmental Chemistry, 2018, 37(12): 2749-2757(in Chinese). doi: 10.7524/j.issn.0254-6108.2018072601
[5] 赵晴, 李岩岩, 贺克斌, 等. 2019年元宵节重污染期间济宁市PM2.5化学组分特征及污染成因分析 [J]. 环境化学, 2020, 39(4): 900-910. doi: 10.7524/j.issn.0254-6108.2019090902 ZHAO Q, LI Y Y, HE K B, et al. Analysis of PM2.5 chemical characteristics and causes during heavy pollution in Jining City around the Lantern Festival of 2019 [J]. Environmental Chemistry, 2020, 39(4): 900-910(in Chinese). doi: 10.7524/j.issn.0254-6108.2019090902
[6] 张毅. 长治市秋冬季PM2.5组分特征及来源解析 [J]. 环境化学, 2020, 39(6): 1699-1708. doi: 10.7524/j.issn.0254-6108.2020011102 ZHANG Y. Component characteristics and source apportionment of PM2.5 in autumn and winter in Changzhi [J]. Environmental Chemistry, 2020, 39(6): 1699-1708(in Chinese). doi: 10.7524/j.issn.0254-6108.2020011102
[7] 段小琳, 闫雨龙, 邓萌杰, 等. 长治市冬季典型大气重污染过程特征分析 [J]. 环境化学, 2020, 39(12): 3327-3335. DUAN X L, YAN Y L, DENG M J, et al. Characteristic of typical atmospheric heavy pollution episodes in winter of Changzhi [J]. Environmental Chemistry, 2020, 39(12): 3327-3335(in Chinese).
[8] 闫广轩, 张靖雯, 雷豪杰, 等. 郑州市大气细颗粒物中水溶性离子季节性变化特征及其源解析 [J]. 环境科学, 2019, 40(4): 1545-1552. YAN G X, ZHANG J W, LEI H J, et al. Seasonal variation and source analysis of water-soluble inorganic ions in fine particulate matter in Zhengzhou [J]. Environmental Science, 2019, 40(4): 1545-1552(in Chinese).
[9] 李杏茹, 白羽, 陈曦, 等. 北京冬季重污染过程大气细颗粒物化学组成特征及来源分析 [J]. 环境化学, 2018, 37(11): 2397-2409. doi: 10.7524/j.issn.0254-6108.2018011401 LI X R, BAI Y, CHEN X, et al. Chemical composition and source apportionment of PM2.5 during winter in Beijing [J]. Environmental Chemistry, 2018, 37(11): 2397-2409(in Chinese). doi: 10.7524/j.issn.0254-6108.2018011401
[10] 杨留明, 王申博, 郝祺, 等. 郑州市PM2.5中水溶性离子特征及来源分析 [J]. 环境科学, 2019, 40(7): 2977-2984. YANG L M, WANG S B, HAO Q, et al. Characteristics and source analysis of water-soluble ions in PM2.5 in Zhengzhou [J]. Environmental Science, 2019, 40(7): 2977-2984(in Chinese).
[11] 沈浩, 迪丽努尔·塔力甫, 王新明, 等. 新疆独山子石化区域PM2.5中水溶性无机离子的形成机制 [J]. 环境化学, 2018, 37(11): 2443-2451. doi: 10.7524/j.issn.0254-6108.2018010803 SHEN H, DILINUER T, WANG X M, et al. Formation mechanism of water-soluble inorganic ions in PM2.5 in Dushanzi Petrochemical District, Xinjiang [J]. Environmental Chemistry, 2018, 37(11): 2443-2451(in Chinese). doi: 10.7524/j.issn.0254-6108.2018010803
[12] 徐敏. 南昌市PM2.5中硫酸盐和硝酸盐的分布特征与形成机制[D]. 南昌: 南昌大学, 2015. XU M. The sulfate and nitrate distribution characteristics and formation mechanism of PM2.5 in Nanchang[D]. Nanchang: Nanchang University, 2015(in Chinese).
[13] FENN M E, BYTNEROWICZ A, SCHILLING S L, et al. On-road emissions of ammonia: An underappreciated source of atmospheric nitrogen deposition [J]. Science of the Total Environment, 2018, 625: 909-919. doi: 10.1016/j.scitotenv.2017.12.313 [14] XU Q C, WANG S X, JIANG J K, et al. Nitrate dominates the chemical composition of PM2.5 during haze event in Beijing, China [J]. Science of the Total Environment, 2019, 689: 1293-1303. doi: 10.1016/j.scitotenv.2019.06.294 [15] 李欢, 唐贵谦, 张军科, 等. 2017~2018年北京大气PM2.5中水溶性无机离子特征 [J]. 环境科学, 2020, 41(10): 4364-4373. LI H, TANG G Q, ZHANG J K, et al. Characteristics of water-soluble inorganic ions in PM2.5 in Beijing during 2017-2018 [J]. Environmental Science, 2020, 41(10): 4364-4373(in Chinese).
[16] 国家统计局. 中国统计年鉴—2019[EB/OL]. [2019-9]. http://www.stats.gov.cn/tjsj/ndsj/2019/indexch.htm. National Bureau of Statistic. China Statistical Yearbook - 2019[EB/OL]. [2019-9]. http://www.stats.gov.cn/tjsj/ndsj/2019/indexch.htm (in Chinese).
[17] 潘湘龙, 潘媛媛, 肖化云, 等. 焦作市冬季PM2.5中水溶性离子组成特征及来源解析 [J]. 环境污染与防治, 2020, 42(6): 755-759, 766. PAN X L, PAN Y Y, XIAO H Y, et al. Composition characteristics and source analysis of water-soluble ions in PM2.5 during winter in Jiaozuo City [J]. Environmental Pollution and Control, 2020, 42(6): 755-759, 766(in Chinese).
[18] 王刘铭, 王西岳, 王明仕, 等. 焦作市大气污染时空分布特征及来源分析 [J]. 环境科学研究, 2020, 33(4): 820-830. WANG L M, WANG X Y, WANG M S, et al. Spatial and temporal distribution and potential source of atmospheric pollution in Jiaozuo City [J]. Research of Environmental Sciences, 2020, 33(4): 820-830(in Chinese).
[19] 王西岳. 北方典型城市主要大气污染物排放特征及PM10、PM2.5来源与解析[D]. 焦作: 河南理工大学, 2018. WANG X Y. Research on emission characterisics of main pollutants and analysis of sources of PM10 and PM2.5 in a typical north-China city[D]. Jiaozu: Henan Polytechnic University, 2018(in Chinese).
[20] 焦作市统计局. 2019年焦作统计年鉴[EB/OL]. [2020-12-8]. http://www.jztjj.gov.cn/cms/cms/infopub/resultmulfields.jsp. Jiaozuo Bureau of Statistic. Jiaozuo Statistical Yearbook 2019[EB/OL]. [2020-12-8]. http://www.jztjj.gov.cn/cms/cms/infopub/resultmulfields.jsp (in Chinese).
[21] 林云, 李美玲, 宋党育. 焦作市城区雾霾天气成因与对策分析 [J]. 河南科技学院学报(自然科学版), 2013, 41(5): 27-31. LIN Y, LI M L, SONG D Y. Causes and countermeasures of haze weather in Jiaozuo City [J]. Journal of Henan Institute of Science and Technology (Natural Sciences Edition), 2013, 41(5): 27-31(in Chinese).
[22] YAO X H, CHAN C K, FANG M, et al. The water-soluble ionic composition of PM2.5 in Shanghai and Beijing, China [J]. Atmospheric Environment, 2002, 36(26): 4223-4234. doi: 10.1016/S1352-2310(02)00342-4 [23] QIU X H, DUAN L, GAO J, et al. Chemical composition and source apportionment of PM10 and PM2.5 in different functional areas of Lanzhou, China [J]. Journal of Environmental Sciences, 2016, 40: 75-83. doi: 10.1016/j.jes.2015.10.021 [24] ZHOU J B, XING Z Y, DENG J J, et al. Characterizing and sourcing ambient PM2.5 over key emission regions in China I: Water-soluble ions and carbonaceous fractions [J]. Atmospheric Environment, 2016, 135: 20-30. doi: 10.1016/j.atmosenv.2016.03.054 [25] 丁新航, 梁越, 肖化云, 等. 太原市采暖季清洁天与灰霾天PM2.5中水溶性无机离子组成及来源分析 [J]. 环境化学, 2019, 38(6): 1356-1366. doi: 10.7524/j.issn.0254-6108.2018121102 DING X H, LIANG Y, XIAO H Y, et al. Composition and source analysis of water-soluble inorganic ions of PM2.5 in clean and haze days during heating season in Taiyuan City [J]. Environmental Chemistry, 2019, 38(6): 1356-1366(in Chinese). doi: 10.7524/j.issn.0254-6108.2018121102
[26] 牛红亚, 杨旗, 刘召策, 等. 燃煤工业城市大气细颗粒物中水溶性无机离子的季节变化特征及来源解析: 以邯郸市为例 [J]. 中国环境监测, 2020, 36(1): 26-33. NIU H Y, YANG Q, LIU Z C, et al. Seasonal variations and source apportionment of the water-soluble inorganic ions in fine particulate matter in the typical coal-fired industrial city: A case in Handan [J]. Environmental Monitoring in China, 2020, 36(1): 26-33(in Chinese).
[27] 蒋燕, 贺光艳, 罗彬, 等. 成都平原大气颗粒物中无机水溶性离子污染特征 [J]. 环境科学, 2016, 37(8): 2863-2870. JIANG Y, HE G Y, LUO B, et al. Pollution characteristics of inorganic water-soluble ions in atmospheric particulate matter in Chengdu plain [J]. Environmental Science, 2016, 37(8): 2863-2870(in Chinese).
[28] 施云云, 杨欧, 杨巧文, 等. 北京典型城区冬季PM2.5水溶性离子特征 [J]. 矿业科学学报, 2020, 5(2): 219-231. SHI Y Y, YANG O, YANG Q W, et al. Characteristics of water soluble inorganic ions in PM2.5 in winter of Beijing in typical urban areas [J]. Journal of Mining Science and Technology, 2020, 5(2): 219-231(in Chinese).
[29] 李英红, 谭吉华, 饶志国, 等. 兰州市大气细颗粒物中水溶性离子的污染特征 [J]. 环境化学, 2016, 35(9): 1799-1807. doi: 10.7524/j.issn.0254-6108.2016.09.2015101102 LI Y H, TAN J H, RAO Z G, et al. Pollution characteristics of water soluble ions in atmospheric fine particles in Lanzhou [J]. Environmental Chemistry, 2016, 35(9): 1799-1807(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.09.2015101102
[30] 林昕, 曹芳, 翟晓瑶, 等. 中国典型城市冬季大气细颗粒物水溶性离子特征及来源分析 [J]. 生态环境学报, 2019, 28(2): 307-315. LIN X, CAO F, ZHAI X Y, et al. Characterization and sources of water soluble inorganic ions in PM2.5 in winter in typical cities of China [J]. Ecology and Environmental Sciences, 2019, 28(2): 307-315(in Chinese).
[31] 魏小锋, 谭路遥, 孙友敏, 等. 清洁能源政策下济南市采暖季PM2.5中水溶性离子变化分析 [J]. 生态环境学报, 2019, 28(7): 1416-1422. WEI X F, TAN L Y, SUN Y M, et al. Impact on water soluble ions in PM2.5 during heating period in Jinan City by a policy of clean energy [J]. Ecology and Environmental Sciences, 2019, 28(7): 1416-1422(in Chinese).
[32] WANG X F, WANG W X, XUE L K, et al. Size-resolved aerosol ionic composition and secondary formation at Mount Heng in South Central China [J]. Frontiers of Environmental Science & Engineering, 2013, 7(6): 815-826. [33] IANNIELLO A, SPATARO F, ESPOSITO G, et al. Occurrence of gas phase ammonia in the area of Beijing (China) [J]. Atmospheric Chemistry and Physics, 2010, 10(19): 9487-9503. doi: 10.5194/acp-10-9487-2010 [34] 张棕巍, 胡恭任, 于瑞莲, 等. 厦门市大气PM2.5中水溶性离子污染特征及来源解析 [J]. 中国环境科学, 2016, 36(7): 1947-1954. doi: 10.3969/j.issn.1000-6923.2016.07.004 ZHANG Z W, HU G R, YU R L, et al. Characteristics and sources apportionment of water-soluble ions in PM2.5 of Xiamen City, China [J]. China Environmental Science, 2016, 36(7): 1947-1954(in Chinese). doi: 10.3969/j.issn.1000-6923.2016.07.004
[35] 邱婷, 周家斌, 肖经汗, 等. 武汉市秋、冬季大气PM2.5中水溶性离子污染特征及来源分析 [J]. 环境污染与防治, 2015, 37(4): 17-20. QIU T, ZHOU J B, XIAO J H, et al. Characteristics and sources apportionment of water-soluble ions in PM2.5 in autumn and winter of Wuhan [J]. Environmental Pollution and Control, 2015, 37(4): 17-20(in Chinese).
[36] 冯亚平, 王帅, 徐婧怡, 等. 承德市细颗粒物水溶性无机离子特征及解析 [J]. 环境化学, 2020, 39(12): 3353-3361. FENG Y P, WANG S, XU J Y, et al. Characteristics and source apportionment of water-soluble inorganic ions in atmospheric fine particles in Chengde [J]. Environmental Chemistry, 2020, 39(12): 3353-3361(in Chinese).
[37] 肖致美, 徐虹, 李立伟, 等. 基于在线观测的天津市PM2.5污染特征及来源解析 [J]. 环境科学, 2020, 41(10): 4355-4363. XIAO Z M, XU H, LI L W, et al. Characterization and source apportionment of PM2.5 based on the online observation in Tianjin [J]. Environmental Science, 2020, 41(10): 4355-4363(in Chinese).
[38] 范美益, 曹芳, 张园园, 等. 徐州市冬季大气细颗粒物水溶性无机离子污染特征及来源解析 [J]. 环境科学, 2017, 38(11): 4478-4485. FAN M Y, CAO F, ZHANG Y Y, et al. Characteristics and sources of water soluble inorganic ions in fine particulate matter during winter in Xuzhou [J]. Environmental Science, 2017, 38(11): 4478-4485(in Chinese).
[39] 张晗宇, 程水源, 姚森, 等. 2016年10~11月期间北京市大气颗粒物污染特征与传输规律 [J]. 环境科学, 2019, 40(5): 1999-2009. ZHANG H Y, CHENG S Y, YAO S, et al. Pollution characteristics and regional transport of atmospheric particulate matter in Beijing from October to November, 2016 [J]. Environmental Science, 2019, 40(5): 1999-2009(in Chinese).
[40] 国家环境保护总局. HJ/T 393—2007防治城市扬尘污染技术规范[S]. 北京: 中国环境科学出版社, 2007. State Environmental Protection Adiministration of China. HJ/T 393—2007 Technical specifications for urban fugitive dust pollution prevention and control[S]. Beijing: China Environmental Science Press, 2007(in Chinese).
[41] 宋从波, 李瑞芃, 何建军, 等. 河北廊坊市区大气中NO、NO2和O3污染特征研究 [J]. 中国环境科学, 2016, 36(10): 2903-2912. doi: 10.3969/j.issn.1000-6923.2016.10.004 SONG C B, LI R P, HE J J, et al. Analysis of pollution characteristics of NO, NO2 and O3 at urban area of Langfang, Hebei [J]. China Environmental Science, 2016, 36(10): 2903-2912(in Chinese). doi: 10.3969/j.issn.1000-6923.2016.10.004
[42] 刘辉, 贺克斌, 马永亮, 等. 2008年奥运前后北京城、郊PM2.5及其水溶性离子变化特征 [J]. 环境科学学报, 2011, 31(1): 177-185. LIU H, HE K B, MA Y L, et al. Variations of PM2.5 and its water-soluble ions in urban and suburban Beijing before, during, and after the 2008 Olympiad [J]. Acta Scientiae Circumstantiae, 2011, 31(1): 177-185(in Chinese).
[43] 薛敏, 王跃思, 孙扬, 等. 北京市大气中CO的浓度变化监测分析 [J]. 环境科学, 2006, 27(2): 200-206. doi: 10.3321/j.issn:0250-3301.2006.02.002 XUE M, WANG Y S, SUN Y, et al. Measurement on the atmospheric CO concentration in Beijing [J]. Environmental Science, 2006, 27(2): 200-206(in Chinese). doi: 10.3321/j.issn:0250-3301.2006.02.002