-
溴代阻燃剂(BFRs)由于具有优良的阻燃性能而被广泛应用[1-3]。传统BFRs如六溴环十二烷和部分多溴二苯醚(PBDEs)因具有持久性有机污染物的性质而被禁用[4-7]。新型溴代阻燃剂(NBFRs)是传统BFRs的替代品,在其生产、使用和处置过程中,会不可避免地进入环境,危害生态系统和人类健康[6, 8-10]。NBFRs已在海水[11]、湖水[12]、沉积物[13]和水生生物体[14]等水环境介质中被广泛检出。一些NBFRs对生物具内分泌干扰[15]和基因毒性[16]等不利影响。因此,有必要研究NBFRs的水环境转化行为,以评价其生态风险。
光化学转化是污染物在水环境中重要的转化途径之一,并受广泛存在于水中的溶解性有机质(DOM)的影响[17]。DOM吸光后能生成光生活性中间体(PPRIs),如羟基自由基(·OH)、单线态氧(1O2)和激发三线态溶解性有机质(3DOM*),促进污染物的光化学转化[18-21]。3DOM*是一类重要的PPRI,其与污染物的反应机理包括能量转移(如与山梨酸、山梨醇和百菌清等的反应[22-24])、电子转移和质子转移(如与酚、胺和苯胺类化合物的反应[25-29])。然而3DOM*与其他化学结构的反应机理尚不清楚。
前人对NBFRs或PBDEs的环境光化学研究,多聚焦1O2和·OH参与的反应[30]、以及DOM的光屏蔽抑制效应[31],仅有少量研究涉及3DOM*的反应。已有研究表明,3DOM*能促进PBDEs的光降解[32];类似于3DOM*的激发态丙酮酸能够引发PBDEs的光致脱溴反应[33];Zhang等[7]发现,3DOM*可与一种重要的NBFR,2,3-二溴丙基-2,4,6-三溴苯基醚(DPTE)发生反应,但具体反应机理并不明确。3DOM*与NBFRs反应机理研究的缺乏,限制了对NBFRs环境光化学行为的理解。
稳态光解实验、子结构模型化合物(SSMCs)实验以及密度泛函理论(DFT)计算,是探究3DOM*与污染物反应机理的重要途径。DOM分子结构复杂,难以直接表征,常用DOM模型化合物(如4-羧基苯甲酮、苯乙酮、3-甲氧基苯乙酮、蒽醌-2-磺酸等)探究微观反应机理[26]。SSMCs指具有目标物部分特征结构且不含其他活性基团,能代表目标物部分特征性质的化合物。Li等[26]通过研究SSMCs与DOM模型化合物的反应性,确定了胺基氮为磺胺嘧啶与3DOM*的反应位点,并使用DFT计算阐释机理。
本研究选择苯乙酮作为DOM模型化合物,以DPTE为代表性NBFRs,探究3DOM*与NBFRs的反应活性、反应位点和反应途径。为鉴别DPTE与3DOM*的反应位点,选择2,4,6-三溴苯甲醚(TBA)、3-苯氧基溴丙烷(3BPE)和丙氧基苯(PB)作为DPTE的SSMCs考察反应活性,并通过DFT计算阐释反应机理。
溶解性有机质引发2,3-二溴丙基-2,4,6-三溴苯基醚光转化机理
Phototransformation mechanism of 2,3-dibromopropyl-2,4,6-tribromophenyl ether induced by dissolved organic matter
-
摘要: 光转化是水体中有机污染物的重要转化途径,决定污染物的环境暴露和风险。激发三线态溶解性有机质(3DOM*)能够引发酚类、胺类和共轭二烯类污染物的间接光降解,反应机理涉及电子转移、质子转移和能量转移。然而,3DOM*与新型溴代阻燃剂(NBFRs)及具有类似结构的污染物的反应机理尚不清楚。本研究选取2,3-二溴丙基-2,4,6-三溴苯基醚(DPTE)为NBFRs模型化合物,以苯乙酮模拟DOM,通过光化学实验和密度泛函理论(DFT)计算,探究3DOM*与NBFRs的反应活性、反应位点和反应途径。结果表明,激发三线态苯乙酮(3AP*)对DPTE表观光降解的贡献为41.7% ± 2.2%,二者的二级反应速率常数为(1.49 ± 0.24) × 108 L·mol−1·s−1。DPTE的子结构模型化合物与苯乙酮的光化学实验表明,3AP*与DPTE的反应位点为DPTE苯基上的溴。DFT计算表明,3AP*通过向激发态DPTE转移电子使DPTE生成脱溴中间体,脱溴中间体与基态苯乙酮发生质子转移反应生成脱溴产物。所揭示的3AP*引发 DPTE 光转化机理,有助于评价和预测水体中其他有溴代苯基醚结构的污染物光转化产物和动力学。Abstract: Phototransformation is an important transformation pathway determining environmental exposure and risks of organic pollutants in natural waters. Excited triplet state of dissolved organic matter (3DOM*) can react with phenolics, amines and conjugated dienes through electron transfer, proton transfer and energy transfer. However, reaction mechanism of 3DOM* and novel brominated flame retardants (NBFRs) or other pollutants with similar structures remains unclear. In this study, reactivity, reaction sites and reaction pathways of 3DOM* and NBFRs were investigated through simulating photochemical experiments and density functional theory (DFT) calculation, adopting 2,3-dibromopropyl-2,4,6-tribromophenyl ether (DPTE) as a representative of NBFRs and acetophenone (AP) as a model of DOM. Results show that contribution of excited triplet state of acetophenone (3AP*) to apparent photodegradation of DPTE is 41.7% ± 2.2%. The second-order reaction rate constant between 3AP* and DPTE was determined to be (1.49 ± 0.24) × 108 L·mol−1·s−1. Photochemical experiments on sub-structural moieties of DPTE and acetophenone indicates that the reaction site of DPTE and 3AP* is the bromine on the phenyl. According to the DFT calculation, electron transfer from 3AP* to excited state of DPTE leads to the generation of debromination intermediates, which further react with ground state of acetophenone via proton transfer reaction and generate debromination product. The phototransformation mechanism of DPTE induced by 3AP* unveiled in this study contributes to evaluating and predicting phototransfomation products and kinetics of pollutants with bromophenyl ether structures in water body.
-
图 1 (a) 2,3-二溴丙基-2,4,6-三溴苯基醚(DPTE)、2,4,6-三溴苯甲醚(TBA)、苯乙酮(AP)和3-甲氧基苯乙酮(3MAP)的UV-vis吸收光谱;(b) 配备290 nm滤光片的500 W汞灯的发射光谱(Iλ, W·m−2·nm−1)
Figure 1. (a) UV-vis absorption spectra of 2,3-dibromopropyl-2,4,6-tribromophenyl ether (DPTE), 2,4,6-tribromoanisole (TBA), acetophenone (AP) and 3-methoxyacetophenone (3MAP); (b) Emission spectrum of 500 W Hg lamp filtered by 290 nm filters (Iλ, W·m−2·nm−1).
图 3 淬灭实验中DPTE的光降解速率常数[kd′ = (2.8 ± 0.2) × 10−2 h−1,为对苯乙酮(AP)光屏蔽校正后,DPTE的直接光解速率常数(误差线代表95%置信区间,n= 3)]
Figure 3. Photodegradation rate constants of DPTE observed in quenching experiments [kd′ = (2.8 ± 0.2) × 10−2 h−1, representing direct photolysis rate constant corrected by light screening factors of acetophenone (AP). The error bars represent the 95% confidence interval, n = 3)]
表 1 光化学实验中涉及化合物的高效液相色谱检测方法
Table 1. HPLC detection methods for compounds involved in the photochemical experiments
化合物
Compounds流动相/% Mobile phase 温度/℃
Temperature检测波长/nm
Wavelength保留时间/min
Retention time乙腈 Acetonitrile 水 Water 2,3-二溴丙基-2,4,6-三溴苯基醚
(DPTE)100 0 25 210 4.7 2,4,6-三溴苯甲醚(TBA) 100 0 25 220 4.4 3-苯氧基溴丙烷(3BPE) 80 20 25 220 4.7 丙氧基苯(PB) 90 10 25 220 3.7 2,4,6-三甲基苯酚(TMP) 60 40 30 220 5.2 表 2 DPTE及子结构模型化合物
Table 2. DPTE and sub-structural model compounds
化合物
Compounds结构图
Structure diagramCAS号
CAS number分子量
Molecular weight2,3-二溴丙基-2,4,6-三溴苯基醚
2,3-Dibromopropyl-2,4,6-tribromophenyl ether (DPTE)35109-60-5 530.67 2,4,6-三溴苯甲醚
2,4,6-Tribromoanisole (TBA)607-99-8 370.86 3-苯氧基溴丙烷
3-Bromopropyl phenyl ether (3BPE)588-63-6 215.09 丙氧基苯
Propoxybenzene (PB)622-85-5 136.19 表 3 DPTE与苯乙酮的激发单线态(三线态)垂直激发能(ES1和ET1),垂直电子亲和势(VEA)和垂直电离能(VIE) (kcal·mol-1)
Table 3. Vertical excitation energies of the excited singlet (triplet) state (ES1 and ET1), vertical electron affinities (VEA) and vertical ionization energies (VIE) of DPTE and acetophenone (kcal·mol-1).
物质Substances ET1 ES1 VEAS0 VEAS1 VEAT1 VIES0 VIES1 VIET1 DPTE 79.17 107.74 − 38.35 − 146.09 − 117.53 159.77 52.03 80.59 苯乙酮 76.76 — − 51.10 — − 127.31 168.06 — 91.85 表 4 DPTE与3AP*可能发生的反应和热力学评价标准
Table 4. Possible reactions of DPTE and 3AP* and thermodynamic assessment criteria.
No. 反应式
Reaction equations热力学自发反应的评价标准
Criteria of thermodynamic spontaneityΔG/(kcal·mol− 1) 1 DPTE + 3AP* → 3DPTE* + AP ET1,DPTE < ET1,AP — 2 DPTE + 3AP* → DPTE·+ + AP·− ΔG1 = VIEDPTE,S0 + VEAAP,T1 < 0 32.46 3 DPTE + 3AP* → DPTE·− + AP·+ ΔG2 = VEADPTE,S0 + VIEAP,T1 < 0 53.50 4 3DPTE* + 3AP* → DPTE·+ + AP·− ΔG3 = VIEDPTE,T1 + VEAAP,T1 < 0 − 46.71 5 3DPTE* + 3AP* → DPTE·− + AP·+ ΔG4 = VEADPTE,T1 + VIEAP,T1 < 0 − 25.68 6 1DPTE* + 3AP* → DPTE·+ + AP·− ΔG5 = VIEDPTE,S1 + VEAAP,T1 < 0 − 75.28 7 1DPTE* + 3AP* → DPTE·− + AP·+ ΔG6 = VEADPTE,S1 + VIEAP,T1 < 0 − 54.24 -
[1] XIONG P, YAN X T, ZHU Q Q, et al. A review of environmental occurrence, fate, and toxicity of novel brominated flame retardants [J]. Environmental Science & Technology, 2019, 53(23): 13551-13569. [2] KALACHOVA K, HRADKOVA P, LANKOVA D, et al. Occurrence of brominated flame retardants in household and car dust from the Czech Republic [J]. Science of the Total Environment, 2012, 441: 182-193. doi: 10.1016/j.scitotenv.2012.09.061 [3] BESIS A, CHRISTIA C, POMA G, et al. Legacy and novel brominated flame retardants in interior car dust - Implications for human exposure [J]. Environmental Pollution, 2017, 230: 871-881. doi: 10.1016/j.envpol.2017.07.032 [4] COVACI A, HARRAD S, ABDALLAH M A E, et al. Novel brominated flame retardants: A review of their analysis, environmental fate and behaviour [J]. Environment International, 2011, 37(2): 532-556. doi: 10.1016/j.envint.2010.11.007 [5] XIE Z Y, MÖLLER A, AHRENS L, et al. Brominated flame retardants in seawater and atmosphere of the Atlantic and the Southern Ocean [J]. Environmental Science & Technology, 2011, 45(5): 1820-1826. [6] NAKARI T, HUHTALA S. In vivo and in vitro toxicity of decabromodiphenyl ethane, a flame retardant [J]. Environmental Toxicology, 2010, 25(4): 333-338. [7] ZHANG Y N, WANG J Q, CHEN J W, et al. Phototransformation of 2,3-dibromopropyl-2,4,6-tribromophenyl ether (DPTE) in natural waters: Important roles of dissolved organic matter and chloride ion [J]. Environmental Science & Technology, 2018, 52(18): 10490-10499. [8] LIU L Y, SALAMOVA A, VENIER M, et al. Trends in the levels of halogenated flame retardants in the Great Lakes atmosphere over the period 2005-2013 [J]. Environment International, 2016, 92-93: 442-449. doi: 10.1016/j.envint.2016.04.025 [9] VENKATESAN A K, HALDEN R U. Brominated flame retardants in US biosolids from the EPA national sewage sludge survey and chemical persistence in outdoor soil mesocosms [J]. Water Research, 2014, 55: 133-142. doi: 10.1016/j.watres.2014.02.021 [10] SMYTHE T A, BUTT C M, STAPLETON H M, et al. Impacts of unregulated novel brominated flame retardants on human liver thyroid deiodination and sulfotransferation [J]. Environmental Science & Technology, 2017, 51(12): 7245-7253. [11] MÖLLER A, XIE Z Y, CAI M H, et al. Polybrominated diphenyl ethers vs alternate brominated flame retardants and dechloranes from East Asia to the Arctic [J]. Environmental Science & Technology, 2011, 45(16): 6793-6799. [12] RUAN T, WANG Y W, WANG C, et al. Identification and evaluation of a novel heterocyclic brominated flame retardant tris(2,3-dibromopropyl) isocyanurate in environmental matrices near a manufacturing plant in Southern China [J]. Environmental Science & Technology, 2009, 43(9): 3080-3086. [13] LIU H H, HU Y J, LUO P, et al. Occurrence of halogenated flame retardants in sediment off an urbanized coastal zone: Association with urbanization and industrialization [J]. Environmental Science & Technology, 2014, 48(15): 8465-8473. [14] VÉNISSEAU A, BICHON E, BROSSEAUD A, et al. Occurrence of legacy and novel brominated flame retardants in food and feed in France for the period 2014 to 2016 [J]. Chemosphere, 2018, 207: 497-506. [15] SKLEDAR D G, TOMAŠIČ T, CARINO A, et al. New brominated flame retardants and their metabolites as activators of the pregnane X receptor [J]. Toxicology Letters, 2016, 259: 116-123. doi: 10.1016/j.toxlet.2016.08.005 [16] BEARR J S, STAPLETON H M, MITCHELMORE C L. Accumulation and DNA damage in fathead minnows (Pimephales promelas) exposed to 2 brominated flame-retardant mixtures, Firemaster® 550 and Firemaster® BZ-54 [J]. Environmental Toxicology and Chemistry, 2010, 29(3): 722-729. doi: 10.1002/etc.94 [17] GE L K, CHEN J W, WEI X X, et al. Aquatic photochemistry of fluoroquinolone antibiotics: Kinetics, pathways, and multivariate effects of main water constituents [J]. Environmental Science & Technology, 2010, 44(7): 2400-2405. [18] JANSSEN E M L, ERICKSON P R, MCNEILL K. Dual roles of dissolved organic matter as sensitizer and quencher in the photooxidation of tryptophan [J]. Environmental Science & Technology, 2014, 48(9): 4916-4924. [19] ZHANG Y, VECCHIO R D, BLOUGH N V. Investigating the mechanism of hydrogen peroxide photoproduction by humic substances [J]. Environmental Science & Technology, 2012, 46(21): 11836-11843. [20] 孙国新, 王杰琼, 周成智, 等. 四溴双酚A在近岸海水中的光降解动力学研究 [J]. 环境化学, 2018, 37(8): 1683-1690. doi: 10.7524/j.issn.0254-6108.2018010602 SUN G X, WANG J Q, ZHOU C Z, et al. Photodegradation kinetics of tetrabromobisphenol A in coastal water [J]. Environmental Chemistry, 2018, 37(8): 1683-1690(in Chinese). doi: 10.7524/j.issn.0254-6108.2018010602
[21] GE L K, CHEN J W, QIAO X L, et al. Light-source-dependent effects of main water constituents on photodegradation of phenicol antibiotics: Mechanism and kinetics [J]. Environmental Science & Technology, 2009, 43(9): 3101-3107. [22] ZHOU H X, YAN S W, MA J Z, et al. Development of novel chemical probes for examining triplet natural organic matter under solar illumination [J]. Environmental Science & Technology, 2017, 51(19): 11066-11074. [23] ROSARIO-ORTIZ F L, CANONICA S. Probe compounds to assess the photochemical activity of dissolved organic matter [J]. Environmental Science & Technology, 2016, 50(23): 12532-12547. [24] PORRAS J, FERNÁNDEZ J J, TORRES-PALMA R A, et al. Humic substances enhance chlorothalonil phototransformation via photoreduction and energy transfer [J]. Environmental Science & Technology, 2014, 48(4): 2218-2225. [25] GUERARD J J, CHIN Y P, MASH H, et al. Photochemical fate of sulfadimethoxine in aquaculture waters [J]. Environmental Science & Technology, 2009, 43(22): 8587-8592. [26] LI Y J, WEI X X, CHEN J W, et al. Photodegradation mechanism of sulfonamides with excited triplet state dissolved organic matter: A case of sulfadiazine with 4-carboxybenzophenone as a proxy [J]. Journal of Hazardous Materials, 2015, 290: 9-15. doi: 10.1016/j.jhazmat.2015.02.040 [27] CANONICA S, HELLRUNG B, MÜLLER P, et al. Aqueous oxidation of phenylurea herbicides by triplet aromatic ketones [J]. Environmental Science & Technology, 2006, 40(21): 6636-6641. [28] CHEN Y, LI H, WANG Z P, et al. Photodegradation of selected β-blockers in aqueous fulvic acid solutions: Kinetics, mechanism, and product analysis [J]. Water Research, 2012, 46(9): 2965-2972. doi: 10.1016/j.watres.2012.03.025 [29] ZHANG Y, SIMON K A, ANDREW A A, et al. Enhanced photoproduction of hydrogen peroxide by humic substances in the presence of phenol electron donors [J]. Environmental Science & Technology, 2014, 48(21): 12679-12688. [30] HAN S K, SIK R H, MOTTEN A G, et al. Photosensitized oxidation of tetrabromobisphenol A by humic acid in aqueous solution [J]. Photochemistry and Photobiology, 2009, 85(6): 1299-1305. doi: 10.1111/j.1751-1097.2009.00608.x [31] LEAL J F, ESTEVES V I, SANTOS E B H. BDE-209: Kinetic studies and effect of humic substances on photodegradation in water [J]. Environmental Science & Technology, 2013, 47(24): 14010-14017. [32] WANG H L, WANG M, WANG H, et al. Aqueous photochemical degradation of BDE-153 in solutions with natural dissolved organic matter [J]. Chemosphere, 2016, 155: 367-374. doi: 10.1016/j.chemosphere.2016.04.071 [33] JIANG Z W, LINGHU W S, LI Y M, et al. Photoreductive debromination of decabromodiphenyl ether by pyruvate [J]. Catalysis Today, 2014, 224: 89-93. doi: 10.1016/j.cattod.2014.01.002 [34] COOPER W J, ZIKA R G. Photochemical formation of hydrogen-peroxide in surface and ground waters exposed to sunlight [J]. Science, 1983, 220(4598): 711-712. doi: 10.1126/science.220.4598.711 [35] WENK J, von GUNTEN U, CANONICA S. Effect of dissolved organic matter on the transformation of contaminants induced by excited triplet states and the hydroxyl radical [J]. Environmental Science & Technology, 2011, 45(4): 1334-1340. [36] CANONICA S, FREIBURGHAUS M. Electron-rich phenols for probing the photochemical reactivity of freshwaters [J]. Environmental Science & Technology, 2001, 35(4): 690-695. [37] MCCABE A J, ARNOLD W A. Reactivity of triplet excited states of dissolved natural organic matter in stormflow from mixed-use watersheds [J]. Environmental Science & Technology, 2017, 51(17): 9718-9728. [38] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 09[Z]. Revision A. 02. ed ed. Wallingford CT: Gaussian, Inc, 2009. [39] ZHANG S Y, CHEN J W, QIAO X L, et al. Quantum chemical investigation and experimental verification on the aquatic photochemistry of the sunscreen 2-phenylbenzimidazole-5-sulfonic acid [J]. Environmental Science & Technology, 2010, 44(19): 7484-7490. [40] JIANG L, QIU Y L, LI Y. Effects analysis of substituent characteristics and solvents on the photodegradation of polybrominated diphenyl ethers [J]. Chemosphere, 2017, 185: 737-745. doi: 10.1016/j.chemosphere.2017.07.063 [41] KAVARNOS G J, TURRO N J. Photosensitization by reversible electron transfer: Theories, experimental evidence, and examples [J]. Chemical Reviews, 1986, 86(2): 401-449. doi: 10.1021/cr00072a005 [42] XIE Q, CHEN J W, SHAO J P, et al. Important role of reaction field in photodegradation of deca-bromodiphenyl ether: Theoretical and experimental investigations of solvent effects [J]. Chemosphere, 2009, 76(11): 1486-1490. doi: 10.1016/j.chemosphere.2009.06.054 [43] ZHANG Y N, CHEN J W, XIE Q, et al. Photochemical transformation of five novel brominated flame retardants: Kinetics and photoproducts [J]. Chemosphere, 2016, 150: 453-460. doi: 10.1016/j.chemosphere.2015.12.125 [44] SHARPLESS C M, BLOUGH N V. The importance of charge-transfer interactions in determining chromophoric dissolved organic matter (CDOM) optical and photochemical properties [J]. Environmental Science: Processes & Impacts, 2014, 16(4): 654-671. [45] MCNEILL K, CANONICA S. Triplet state dissolved organic matter in aquatic photochemistry: Reaction mechanisms, substrate scope, and photophysical properties [J]. Environmental Science: Processes & Impacts, 2016, 18(11): 1381-1399. [46] VIONE D, MINELLA M, MAURINO V, et al. Indirect photochemistry in sunlit surface waters: Photoinduced production of reactive transient species [J]. Chemistry - A European Journal, 2014, 20(34): 10590-10606. doi: 10.1002/chem.201400413 [47] WENK J, EUSTIS S N, MCNEILL K, et al. Quenching of excited triplet states by dissolved natural organic matter [J]. Environmental Science & Technology, 2013, 47(22): 12802-12810. [48] PFLUG N C, SCHMITT M, MCNEILL K. Development of N-cyclopropylanilines to probe the oxidative properties of triplet-state photosensitizers [J]. Environmental Science & Technology, 2019, 53(9): 4813-4822. [49] CHEN Y, ZHANG X, FENG S X. Contribution of the excited triplet state of humic acid and superoxide radical anion to generation and elimination of phenoxyl radical [J]. Environmental Science & Technology, 2018, 52(15): 8283-8291. [50] WENK J, CANONICA S. Phenolic antioxidants inhibit the triplet-induced transformation of anilines and sulfonamide antibiotics in aqueous solution [J]. Environmental Science & Technology, 2012, 46(10): 5455-5462.