-
随着经济的发展,环境污染问题日益严重. 在众多污染物里抗生素危害极大,它会诱导产生抗药菌和抗药基因,从而危害人和动物的健康. 其中,四环素(tetracycline)作为一种典型的抗生素,广泛应用于医药工业中,经常在废水中被监测到 [1]. 在过去几年中,物理化学技术,如氧化[2]、膜技术[3]和光催化[4]已被应用于处理抗生素废水. 其中,半导体光催化被认为是一种有效、绿色、节能的技术,而获得了广泛的关注.
二氧化钛(TiO2)作为典型的光催化剂,因其无毒、稳定性好和成本低,而被广泛应用[5]. 它有两种主要的晶型:锐钛矿、金红石. 其中,锐钛矿被广泛认为拥有良好的光催化性能[6];金红石的带隙宽度稍小于锐钛矿, 在光催化产H2中比锐钛矿效果更好[7]. 然而, Kawahara等认为混合晶型的TiO2比单一晶型拥有更高的光催化活性[8]. 为解决TiO2的带隙宽度大,可见光下效果差,光生电子和空穴复合速度快,光催化活性低等劣势. 研究者们采用复合其他材料来改善这些缺点. Wang等制备了TiO2/g-C3N4复合材料, 提高了光生载流子的迁移效率,减少复合率,增强了光催化降解四环素的效果[9];Hajipour 等用一种简单沉淀法制备出了TiO2/CuO复合材料,减小了带隙宽度,使材料可以在可见光下快速降解阿莫西林[10]; Ali 等将SBA 15和TiO2进行复合,使得TiO2的比表面积变大,反应活性位点增加,光催化性能提升[11].
碳量子点(CQDs)是一种碳基零维材料,被广泛用于光催化、生物传感和生物成像等技术领域[12-14]. CQDs可以作为复合材料的电子库,提高光生电子-空穴对的分离,拥有上转换光致发光特性,与其他半导体复合后可提高材料对可见光的利用率. 表面的官能团可以通过在光催化剂表面提供更高的吸附容量来增强光催化活性[15]. Wang等的研究表明,锐钛矿相二氧化钛在与碳量子复合后,在光催化下的产H2能力是以前的9. 7倍,复合材料表现出极高的光催化活性[16]; Muhammad等发现,当初始溶液pH 11时,CQD/TiO2对甲基橙废水的降解率是TiO2的3倍[17].
本研究研制了一种全新的CQDs/TiO2:首先制备了锐钛矿与金红石混相的TiO2,以葡萄糖为碳源制备了CQDs,后将两者合成了CQDs/TiO2纳米复合材料. 在可见光条件下降解四环素废水. 探究了不同条件下,复合材料对四环素废水的降解性能,并探究降解机理.
CQDs/TiO2复合材料的制备及光催化降解抗生素
Preparation of CQDs/TiO2 composites and photocatalytic degradation of antibiotic wastewater
-
摘要: 以四异丙醇钛和葡萄糖为原料,制备全新的CQDs/TiO2复合材料并用于降解四环素废水. 使用XRD、XPS、TEM、HR-TEM、BET、FT-IR、UV-vis DRS等方法进行表征,探究了在不同掺杂量、溶液初始浓度、催化剂投加量、pH、光照强度等条件下的降解效果. 实验结果表明,在pH=5. 6、催化剂投加量1 g·L−1、四环素溶液浓度10 mg·L−1,光照120 min后,CQDs/TiO2对四环素的去除率可达93.1%,复合材料大幅度提升了降解效率. 通过淬灭实验,发现降解过程主要起作用的活性物种为·OH、·O2−,并分析了CQDs/TiO2降解四环素的反应机制. 进行5次循环利用实验,降解率仍能达到80%以上,表现出CQDs/TiO2是一种稳定、可循环利用的复合材料.Abstract: Novel CQDs/TiO2 composites were prepared from titanium tetraisopropoxide and glucose and used to degrade tetracycline wastewater. XRD, XPS, TEM, HR-TEM, BET, FT-IR, and UV-vis DRS were used for characterization. The degradation effects were also investigated under different doping amounts, initial concentration of the solution, catalyst dosing, pH, and light intensity. The experimental results showed that the removal rate of tetracycline by CQDs/TiO2 could reach 93.1% at pH=5. 6, catalyst dosage of 1 g·L−1, tetracycline solution concentration of 10 mg·L−1, and 120 min of light exposure, and the composite material substantially improved the degradation efficiency. Through quenching experiments, it was found that the main active species acting in the degradation process were ·OH and ·O2−, and the reaction mechanism of CQDs/TiO2 in degrading tetracycline was analyzed. Five recycling experiments were carried out and the degradation rate still reached over 80%, demonstrating that CQDs/TiO2 is a stable and recyclable composite material.
-
Key words:
- CQDs/TiO2 /
- photocatalysis /
- tetracycline /
- wastewater treatment.
-
表 1 不同材料的比表面积、孔径
Table 1. Specific surface area and pore size of different materials
样品
Samples比表面积/(m2·g−1)
Specific surface area平均孔径/nm
Average pore sizeTiO2 29.66 10.46 CT1 57.66 10.12 CT2 59.28 10.1 CT3 50.06 10.16 -
[1] LIU X H, LU S Y, MENG W, et al. Occurrence, source, and ecological risk of antibiotics in Dongting Lake, China [J]. Environmental Science and Pollution Research International, 2018, 25(11): 11063-11073. doi: 10.1007/s11356-018-1290-1 [2] KURNIAWAN T A, LO W H, CHAN G Y S. Radicals-catalyzed oxidation reactions for degradation of recalcitrant compounds from landfill leachate [J]. Chemical Engineering Journal, 2006, 125(1): 35-57. doi: 10.1016/j.cej.2006.07.006 [3] QIU G L, CHEN H, SRINIVASA RAGHAVAN D S, et al. Removal behaviors of antibiotics in a hybrid microfiltration-forward osmotic membrane bioreactor for real municipal wastewater treatment [J]. Chemical Engineering Journal, 2021, 417: 129146. doi: 10.1016/j.cej.2021.129146 [4] YANG X R, CHEN Z, ZHAO W, et al. Recent advances in photodegradation of antibiotic residues in water [J]. Chemical Engineering Journal, 2021, 405: 126806. doi: 10.1016/j.cej.2020.126806 [5] BAYAN E M, PUSTOVAYA L E, VOLKOVA M G. Recent advances in TiO2-based materials for photocatalytic degradation of antibiotics in aqueous systems [J]. Environmental Technology & Innovation, 2021, 24: 101822. [6] MURDOCH M, WATERHOUSE G I N, NADEEM M A, et al. The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO2 nanoparticles [J]. Nature Chemistry, 2011, 3(6): 489-492. doi: 10.1038/nchem.1048 [7] LI R G, WENG Y X, ZHOU X, et al. Achieving overall water splitting using titanium dioxide-based photocatalysts of different phases [J]. Energy & Environmental Science, 2015, 8(8): 2377-2382. [8] KAWAHARA T, OZAWA T, IWASAKI M, et al. Photocatalytic activity of rutile-anatase coupled TiO2 particles prepared by a dissolution-reprecipitation method [J]. Journal of Colloid and Interface Science, 2003, 267(2): 377-381. doi: 10.1016/S0021-9797(03)00755-0 [9] WANG W, LIU X L, FANG J J, et al. TiO2@g-C3N4 heterojunction with directional charge migration behavior for photodegradation of tetracycline antibiotics [J]. Materials Letters, 2019, 236: 622-624. doi: 10.1016/j.matlet.2018.11.025 [10] HAJIPOUR P, ESLAMI A, BAHRAMI A, et al. Surface modification of TiO2 nanoparticles with CuO for visible-light antibacterial applications and photocatalytic degradation of antibiotics [J]. Ceramics International, 2021, 47(23): 33875-33885. doi: 10.1016/j.ceramint.2021.08.300 [11] ALI A, SHOEB M, LI Y, et al. Enhanced photocatalytic degradation of antibiotic drug and dye pollutants by graphene-ordered mesoporous silica (SBA 15)/TiO2 nanocomposite under visible-light irradiation [J]. Journal of Molecular Liquids, 2021, 324: 114696. doi: 10.1016/j.molliq.2020.114696 [12] HENG Z W, CHONG W C, PANG Y L, et al. An overview of the recent advances of carbon quantum dots/metal oxides in the application of heterogeneous photocatalysis in photodegradation of pollutants towards visible-light and solar energy exploitation [J]. Journal of Environmental Chemical Engineering, 2021, 9(3): 105199. doi: 10.1016/j.jece.2021.105199 [13] LI T X, LI Z, HUANG T Z, et al. Carbon quantum dot-based sensors for food safety [J]. Sensors and Actuators A:Physical, 2021, 331: 113003. doi: 10.1016/j.sna.2021.113003 [14] YUE J, ZHANG K, YU H, et al. Mechanism insights into tunable photoluminescence of carbon dots by hydroxyl radicals [J]. Journal of Materials Science, 2019, 54(8): 6140-6150. doi: 10.1007/s10853-018-03254-1 [15] CHEN P, WANG F L, CHEN Z F, et al. Study on the photocatalytic mechanism and detoxicity of gemfibrozil by a sunlight-driven TiO2/carbon dots photocatalyst: The significant roles of reactive oxygen species [J]. Applied Catalysis B:Environmental, 2017, 204: 250-259. doi: 10.1016/j.apcatb.2016.11.040 [16] WANG J, GAO M M, HO G W. Bidentate-complex-derived TiO2/carbon dot photocatalysts: in situ synthesis, versatile heterostructures, and enhanced H2 evolution [J]. Journal of Materials Chemistry A, 2014, 2(16): 5703. doi: 10.1039/c3ta15114j [17] SHAFIQUE M, MAHR M S, YASEEN M, et al. CQD/TiO2 nanocomposite photocatalyst for efficient visible light-driven purification of wastewater containing methyl orange dye [J]. Materials Chemistry and Physics, 2022, 278: 125583. doi: 10.1016/j.matchemphys.2021.125583 [18] ZHUANG J D, DAI W X, TIAN Q F, et al. Photocatalytic degradation of RhB over TiO2 bilayer films: Effect of defects and their location [J]. Langmuir, 2010, 26(12): 9686-9694. doi: 10.1021/la100302m [19] LIU Y, YUAN X Z, WANG H, et al. Solvothermal synthesis of graphene/BiOCl0.75Br0.25 microspheres with excellent visible-light photocatalytic activity [J]. RSC Advances, 2015, 5(42): 33696-33704. doi: 10.1039/C5RA02852C [20] CHEN Y, LIU K R. Preparation and characterization of nitrogen-doped TiO2/diatomite integrated photocatalytic pellet for the adsorption-degradation of tetracycline hydrochloride using visible light [J]. Chemical Engineering Journal, 2016, 302: 682-696. doi: 10.1016/j.cej.2016.05.108 [21] LI T T, ZHANG S J, MENG S G, et al. Amino acid-assisted synthesis of In2S3 hierarchical architectures for selective oxidation of aromatic alcohols to aromatic aldehydes [J]. RSC Advances, 2017, 7(11): 6457-6466. doi: 10.1039/C6RA28560K [22] LYU J Z, ZHOU Z, WANG Y H, et al. Platinum-enhanced amorphous TiO2-filled mesoporous TiO2 crystals for the photocatalytic mineralization of tetracycline hydrochloride [J]. Journal of Hazardous Materials, 2019, 373: 278-284. doi: 10.1016/j.jhazmat.2019.03.096 [23] ZHAN Y, SHANG B, CHEN M, et al. One-step synthesis of silica-coated carbon dots with controllable solid-state fluorescence for white light-emitting diodes [J]. Small (Weinheim an Der Bergstrasse, Germany), 2019, 15(24): e1901161. doi: 10.1002/smll.201901161 [24] MAHATO D, KHARWAR Y P, RAMANUJAM K, et al. S, N co-doped graphene quantum dots decorated TiO2 and supported with carbon for oxygen reduction reaction catalysis [J]. International Journal of Hydrogen Energy, 2021, 46(41): 21549-21565. doi: 10.1016/j.ijhydene.2021.04.013 [25] CONG Y, LI X K, QIN Y, et al. Carbon-doped TiO2 coating on multiwalled carbon nanotubes with higher visible light photocatalytic activity [J]. Applied Catalysis B:Environmental, 2011, 107(1/2): 128-134. [26] LI F, TIAN F, LIU C J, et al. One-step synthesis of nanohybrid carbon dots and TiO2 composites with enhanced ultraviolet light active photocatalysis [J]. RSC Advances, 2015, 5(11): 8389-8396. doi: 10.1039/C4RA14865G [27] WANG J, WANG C F, CHEN S. Amphiphilic egg-derived carbon dots: Rapid plasma fabrication, pyrolysis process, and multicolor printing patterns [J]. Angewandte Chemie (International Ed. in English), 2012, 51(37): 9297-9301. doi: 10.1002/anie.201204381 [28] PHANG S J, TAN L L. Recent advances in carbon quantum dot (CQD)-based two dimensional materials for photocatalytic applications [J]. Catalysis Science & Technology, 2019, 9(21): 5882-5905. [29] XU Y G, LIU J, XIE M, et al. Construction of novel CNT/LaVO4 nanostructures for efficient antibiotic photodegradation [J]. Chemical Engineering Journal, 2019, 357: 487-497. doi: 10.1016/j.cej.2018.09.098 [30] HUNGE Y M, YADAV A A, KANG S W, et al. Photocatalytic degradation of tetracycline antibiotics using hydrothermally synthesized two-dimensional molybdenum disulfide/titanium dioxide composites [J]. Journal of Colloid and Interface Science, 2022, 606: 454-463. doi: 10.1016/j.jcis.2021.07.151 [31] FENG J W, ZHENG Z, SUN Y B, et al. Degradation of diuron in aqueous solution by dielectric barrier discharge [J]. Journal of Hazardous Materials, 2008, 154(1/2/3): 1081-1089. [32] RANJBARI A, DEMEESTERE K, VERPOORT F, et al. Novel kinetic modeling of thiabendazole removal by adsorption and photocatalysis on porous organic polymers: Effect of pH and visible light intensity [J]. Chemical Engineering Journal, 2022, 431: 133349. doi: 10.1016/j.cej.2021.133349 [33] SHARMA S, DUTTA V, SINGH P, et al. Carbon quantum dot supported semiconductor photocatalysts for efficient degradation of organic pollutants in water: A review [J]. Journal of Cleaner Production, 2019, 228: 755-769. doi: 10.1016/j.jclepro.2019.04.292 [34] YU X J, LIU J J, YU Y C, et al. Preparation and visible light photocatalytic activity of carbon quantum dots/TiO2 nanosheet composites [J]. Carbon, 2014, 68: 718-724. doi: 10.1016/j.carbon.2013.11.053