-
过氧化氢(hydrogen peroxide),即H2O2,是世界上100种最重要的化学品之一[1],在全pH 范围内具有高氧化电位(pH 为 0 时 E0=1.763 V,pH 为 14 时 E0 =0.878 V)[2]. 在合适活化条件下(如臭氧、紫外线、Fe2+等),可有效产生羟基自由基(•OH),在短时间内氧化有机污染物,将其转化成易生物降解的中间产物,因此可广泛应用于处理市政饮用水、工业废水和生活污水[2-3]. H2O2的反应产物为氧气和水,安全无毒易处理,所以H2O2也被称为最清洁的氧化剂[4] . 目前,H2O2的工业价值接近每年40亿美元,年需求量约550万吨[5-6],也正因如此,探寻高效廉价制取H2O2的方法具有重要的现实意义.
蒽醌法是目前国内外生产H2O2的主要方法,世界上大约 95% 的H2O2都是通过蒽醌法生产的[7]. 然而,该方法无法原位生产H2O2,且合成的H2O2浓度较高,在运输过程中存在爆炸风险,储存过程中也易发生分解,运输和储存成本较高.
由于现行方法的不足,如何绿色高效地合成H2O2成为越来越多学者研究的课题. 在各种方法当中,电催化two-electron oxygen reduction reaction(2e− ORR)法合成H2O2最具潜力. 该方法可在常温、常压下实现H2O2的合成,相比传统的蒽醌法具有进行原位水处理、绿色安全、工艺简单、能耗较低、无污染物排放等优点,更符合当今绿色化学的发展理念.
杂原子掺杂碳材料用于电合成过氧化氢的研究进展
Progress of heteroatom-doped carbon materials for the electro-synthesis of hydrogen peroxide
-
摘要: 过氧化氢(H2O2)可广泛应用于市政饮用水、工业废水和城市污水的处理. 然而,过氧化氢在储存和运输方面的风险(如腐蚀和爆炸)限制了其在分散式水处理中的应用. 以二电子氧还原反应(2e− ORR)原位合成H2O2用于分散式水处理具有良好的应用前景. 然而,未被催化的2e− ORR动力学缓慢、选择性差,不能满足大规模生产的要求. 相比之下,杂原子掺杂碳材料具有良好的2e− ORR活性、选择性和稳定性. 本文回顾了2e− ORR的反应机理和催化剂的改性原理,进一步描述了杂原子N、O、F掺杂碳材料的作用机理,并总结了几种具有优秀2e− ORR催化活性和选择性的掺杂结构. 最后,对杂原子掺杂碳材料合成H2O2应用于水处理的未来发展进行了展望.Abstract: Hydrogen peroxide (H2O2) is widely used in the treatment of municipal drinking water, industrial wastewater and municipal wastewater. However, the application of H2O2 in decentralized water treatment is limited by the risks (e.g., corrosion and explosion) associated with the transport and storage of H2O2 stocks. On-site production of H2O2 from 2-electron oxygen reduction (2e− ORR) is a promising way to supply H2O2 for decentralized water treatment. However, uncatalyzed 2e−ORR has slow kinetics and poor selectivity, and thus cannot meet the requirements of large-scale production. In contrast, heteroatom-doped carbon materials have good 2e− ORR activity, selectivity and stability. This paper reviews the mechanism of 2e− ORR reaction and the modification principle of the catalyst. Further, the mechanism of heteroatom nitrogen, oxygen and fluorine-doped carbon materials is described, and several doped structures with excellent 2e− ORR catalytic activity and selectivity are summarized. Finally, the future development of heteroatom-doped carbon material synthesis H2O2 and its application in water treatment is prospected.
-
图 4 (a)G-COF在不同温度处理后不同N掺杂类型的比例及含量;(b)N原子掺杂碳材料的可能机理[42]
Figure 4. (a) Percentages and amount of nitrogen functionality present in catalysts ; (b) Proposed mechanism of electrochemical 2e− ORR on COF-derived N-doped carbon catalysts
图 7 (a)不同官能团的ORR活性,用蓝色圆圈表示的碳原子为活性中心[44];(b)不同OG根据*OOH吸附能合成H2O2的活性火山图[44],包括了Pt–Hg和Pd–Au合金的活性[20].
Figure 7. (a) Different oxygen functional group type configurations examined in this study. The carbon atoms denoted by a blue circle are the active sites under investigation [44]; (b) Calculated two-electron (solid black) ORR-related volcano plot for the electro-reduction of oxygen to H2O2 displayed with the limiting potential plotted as a function of∆ GOOH*[44], including the activity of Pt -- Hg and Pd -- Au alloys[20].
图 8 (a)不同退火时间的催化剂中不同OG的催化活性和比率;(b)不同OG根据*OOH吸附能合成H2O2的活性火山图[57].
Figure 8. (a) Catalytic activity and ratio of the different oxygen-containing functional groups as a function of the series catalyst annealed with different activation time; (b) ORR activity volcano plot of the different oxygen-containing functional groups modified carbon for the synthesis of H2O2 according to the adsorption energy of HOO*[57].
图 10 (a)FPCs和HPC-800在(虚线-Ar)和(实线-O2)中的循环伏安曲线( 扫描速度10 mV·s−1 ,0.05 mol·L−1 H2SO4);(b)FPCs和HPC-800在0.05 mol·L−1H2SO4中的EIS数据(交流电压为5 mV,频率范围在100 kHz—0.1 Hz);(c)FPCs和HPC-800 的H2O2产量随时间的变化;(d)FPCs在不同F掺杂含量下H2O2的生成速率[39].
Figure 10. (a) CV curves of FPCs and HPC-800 in (Ar- dash line) or (O2-saturated solid line) 0.05 mol·L−1 H2SO4 solution with a scan rate of 10 mV·s−1; (b) EIS data of FPCs and HPC-800 in O2-saturated 0.05 mol·L−1 H2SO4 solution with an AC of 5 mV and a frequency range between 100 kHz and 0.1 Hz; (c) The concentration of H2O2 produced by FPCs and HPC-800 obtained at different carbonization temperature; (d) H2O2 production ration with F content [39]
图 12 (a) 不同B/N构型根据*OOH吸附能的2e− ORR活性火山图;(b)标准电位下O2还原成H2O2自由能变化图;(c) hBN-B1、hBN-D-B1 和 hBN-N6-B1 配置的电荷密度差,黄色和青色区域分别代表电子积累和耗尽[49].
Figure 12. (a) The calculated oxygen reduction volcano plot for the two-electron reduction of O2, with the limiting potential plotted as a function of ΔGHOO*; (b) The free energy diagram of O2 reduction to H2O2 at the standard potential (U = 0 V); (c) Charge density difference of hBN-B1, hBN-D-B1, and hBN-N6-B1 configurations. Yellow and cyan regions represent electron accumulation and depletion, respectively[49].
图 14 (a, d) Co—N—C 和 Co—N—C /Ti3C2Tx 的 Co 2p 光谱;(b, e)Co—N—C 和 Co—N—C / Ti3C2Tx的 N 1s 光谱;(c,f)Co—N—C 和 Co—N—C /Ti 3C2Tx的 O 1s 光谱[68].
Figure 14. (a, d) Co 2p spectra of Co—N—C and Co—N—C /Ti3C2Tx. (b, e) N 1s spectra of Co—N—C and Co—N—C /Ti3C2Tx; (c, f) O 1s spectra of Co—N—C and Co—N—C /Ti3C2Tx[68].
表 1 部分杂原子掺杂碳材料催化剂电合成H2O2的性能
Table 1. Performance of partially heteroatom-doped carbon material catalysts for the electro-synthesis of H2O2
掺杂类型
Doping type催化剂
Catalyst电解液
Electrolyte电位/V
Potential(vs. RHE)合成速率/ mmol·(gcat·h)−1
Synthesis rate选择性/%
Selectivity参考文献
ReferenceN掺杂 G-COF-950 0.1 mol·L−1KOH 0.1 1286.9 69.8(FE) [42] PEI50CMK3-800T 0.5 mol·L−1 H2SO4 0.35 570.1① 98.5 [43] CNT-M-15T 0.1 mol·L−1 KOH 0.6 — 93.5 [44] rGO-U-25T 0.1 mol·L−1 KOH 0.6 — 98.35 [44] 空心N掺杂碳球 0.1 mol·L−1 KOH 0.7 618.5 91.9,85.1(FE) [45] O掺杂 F-mrGO(600) 0.1 mol·L−1 KOH 0.75 770 接近100 [46] O-CNT 0.1 mol·L−1 KOH 0.65 — 约90 [35] 石墨毡 0.05 mol·L−1 Na2SO4 0.4 比未改性提高6倍 — [47] F掺杂 FPC-800 0.05 mol·L−1 H2SO4 0.2 714.1 82.1(CE) [39] CNT-F-0.6 0.6 mol·L−1 HF -0.323 — 89.5(CE) [48] B/N共掺杂 B/N-C-2 1 mol·L−1 KOH 0.82 — 94.16 [49] N/O共掺杂 O/N-OMC-700 0.05 mol·L−1 H2SO4 0.4 47.40 mg·L−1·h−1② 95 [50] Mn/N共掺杂 Mn-N-C纳米棒 0.1 mol·L−1 HClO4 0.5 — 98 [51] 注:①是在中性条件下取得的;②是在−0.2 V(vs. RHE)下取得的;FE表示法拉第效率;CE表示电流效率.
Note: ① is obtained under neutral conditions; ② is obtained at −0.2 V (vs. RHE); FE denotes Faraday efficiency; CE denotes current efficiency -
[1] MYERS R L. The 100 most important chemical compounds a reference guide[M]. Westport, Conn. : Greenwood Press, 2007 [2] CAMPOS-MARTIN J M, BLANCO-BRIEVA G, FIERRO J L G. Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process [J]. Angewandte Chemie International Edition, 2006, 45(42): 6962-6984. doi: 10.1002/anie.200503779 [3] 刘淼, 钱美荣, 苏荣梅, 等. 羟基自由基氧化处理垃圾渗滤液中高浓度氨氮 [J]. 水处理技术, 2007, 33(11): 79-81,88. doi: 10.16796/j.cnki.1000-3770.2007.11.022 LIU M, QIAN M R, SU R M, et al. High strength nh3-n removal in landfill leachate by hydroxy radical oxidation [J]. Technology of Water Treatment, 2007, 33(11): 79-81,88(in Chinese). doi: 10.16796/j.cnki.1000-3770.2007.11.022
[4] DOLL M, MORGAN D J, ANDERSON D, et al. Touchless technologies for decontamination in the hospital: A review of hydrogen peroxide and UV devices [J]. Current Infectious Disease Reports, 2015, 17(9): 498. [5] 潘智勇, 邢定峰. 过氧化氢市场现状和技术发展趋势 [J]. 现代化工, 2021, 41(4): 11-16. doi: 10.16606/j.cnki.issn0253-4320.2021.04.003 PAN Z Y, XING D F. Market status and technology development trend of hydrogen peroxide [J]. Modern Chemical Industry, 2021, 41(4): 11-16(in Chinese). doi: 10.16606/j.cnki.issn0253-4320.2021.04.003
[6] ZHANG Z H, MENG H S, WANG Y J, et al. Fabrication of graphene@graphite-based gas diffusion electrode for improving H2O2 generation in Electro-Fenton process [J]. Electrochimica Acta, 2018, 260: 112-120. doi: 10.1016/j.electacta.2017.11.048 [7] 陈君伟, 孙绍晖. 工业制过氧化氢的研究进展 [J]. 河南化工, 2017, 34(12): 12-17. doi: 10.14173/j.cnki.hnhg.2017.12.004 CHEN J W, SUN S H. Research progress of industrial hydrogen peroxide [J]. Henan Chemical Industry, 2017, 34(12): 12-17(in Chinese). doi: 10.14173/j.cnki.hnhg.2017.12.004
[8] 何峰, 张静静, 陈奕君, 等. 电化学氧还原反应合成H2O2碳基催化剂研究进展 [J]. 储能科学与技术, 2021, 10(6): 1963-1976. HE F, ZHANG J J, CHEN Y J, et al. Recent progress on carbon-based catalysts for electrochemical synthesis of H2O2 via oxygen reduction reaction [J]. Energy Storage Science and Technology, 2021, 10(6): 1963-1976(in Chinese).
[9] CHAI G L, HOU Z F, IKEDA T, et al. Two-electron oxygen reduction on carbon materials catalysts: Mechanisms and active sites [J]. The Journal of Physical Chemistry C, 2017, 121(27): 14524-14533. doi: 10.1021/acs.jpcc.7b04959 [10] 闫啸, 石文武, 王新中. 碳基电催化材料选择性合成过氧化氢研究进展 [J]. 新型炭材料, 2022, 37(1): 223-236. doi: 10.1016/S1872-5805(22)60582-1 YAN X, SHI W W, WANG X Z. Carbon based electrocatalysts for selective hydrogen peroxide conversion [J]. New Carbon Materials, 2022, 37(1): 223-236(in Chinese). doi: 10.1016/S1872-5805(22)60582-1
[11] ZHOU Y, CHEN G, ZHANG J J. A review of advanced metal-free carbon catalysts for oxygen reduction reactions towards the selective generation of hydrogen peroxide [J]. Journal of Materials Chemistry A, 2020, 8(40): 20849-20869. doi: 10.1039/D0TA07900F [12] BU Y F, WANG Y B, HAN G F, et al. Carbon-based electrocatalysts for efficient hydrogen peroxide production [J]. Advanced Materials, 2021, 33(49): e2103266. doi: 10.1002/adma.202103266 [13] VERDAGUER-CASADEVALL A, DEIANA D, KARAMAD M, et al. Trends in the electrochemical synthesis of H2O2: Enhancing activity and selectivity by electrocatalytic site engineering [J]. Nano Letters, 2014, 14(3): 1603-1608. doi: 10.1021/nl500037x [14] FORTUNATO G V, PIZZUTILO E, MINGERS A M, et al. Impact of palladium loading and interparticle distance on the selectivity for the oxygen reduction reaction toward hydrogen peroxide [J]. The Journal of Physical Chemistry C, 2018, 122(28): 15878-15885. doi: 10.1021/acs.jpcc.8b04262 [15] LEDENDECKER M, PIZZUTILO E, MALTA G, et al. Isolated Pd sites as selective catalysts for electrochemical and direct hydrogen peroxide synthesis [J]. ACS Catalysis, 2020, 10(10): 5928-5938. doi: 10.1021/acscatal.0c01305 [16] LEE S, CHUNG Y M. Direct synthesis of H2O2 over acid-treated Pd/C catalyst derived from a Pd-Co core-shell structure [J]. Catalysis Today, 2020, 352: 270-278. doi: 10.1016/j.cattod.2019.09.038 [17] CHOI C H, KWON H C, YOOK S, et al. Hydrogen peroxide synthesis via enhanced two-electron oxygen reduction pathway on carbon-coated Pt surface [J]. The Journal of Physical Chemistry C, 2014, 118(51): 30063-30070. doi: 10.1021/jp5113894 [18] CHOI C H, KIM M, KWON H C, et al. Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst [J]. Nature Communications, 2016, 7: 10922. doi: 10.1038/ncomms10922 [19] PIZZUTILO E, KASIAN O, CHOI C H, et al. Electrocatalytic synthesis of hydrogen peroxide on Au-Pd nanoparticles: From fundamentals to continuous production [J]. Chemical Physics Letters, 2017, 683: 436-442. doi: 10.1016/j.cplett.2017.01.071 [20] SIAHROSTAMI S, VERDAGUER-CASADEVALL A, KARAMAD M, et al. Enabling direct H2O2 production through rational electrocatalyst design [J]. Nature Materials, 2013, 12(12): 1137-1143. doi: 10.1038/nmat3795 [21] 周伟. H2O2的电催化合成及·OH产用效能提升[D]. 哈尔滨: 哈尔滨工业大学, 2019. ZHOU W. H2O2 electrocatalytic synthesis and the enhancement of generation and utilization efficiency of ·OH[D]. Harbin: Harbin Institute of Technology, 2019(in Chinese).
[22] LIU H, CHENG S A, LOGAN B E. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration [J]. Environmental Science & Technology, 2005, 39(14): 5488-5493. [23] da POZZO A, PALMA L D, MERLI C, et al. An experimental comparison of a graphite electrode and a gas diffusion electrode for the cathodic production of hydrogen peroxide [J]. Journal of Applied Electrochemistry, 2005, 35(4): 413-419. doi: 10.1007/s10800-005-0800-2 [24] SALARI D, NIAEI A, KHATAEE A, et al. Electrochemical treatment of dye solution containing C. I. Basic Yellow 2 by the peroxi-coagulation method and modeling of experimental results by artificial neural networks [J]. Journal of Electroanalytical Chemistry, 2009, 629(1/2): 117-125. [25] ÖZCAN A, ŞAHIN Y, SAVAŞ KOPARAL A, et al. Carbon sponge as a new cathode material for the electro-Fenton process: Comparison with carbon felt cathode and application to degradation of synthetic dye basic blue 3 in aqueous medium [J]. Journal of Electroanalytical Chemistry, 2008, 616(1/2): 71-78. [26] WANG A M, QU J H, RU J, et al. Mineralization of an azo dye Acid Red 14 by electro-Fenton's reagent using an activated carbon fiber cathode [J]. Dyes and Pigments, 2005, 65(3): 227-233. doi: 10.1016/j.dyepig.2004.07.019 [27] SANG Z Y, HOU F, WANG S H, et al. Research progress on carbon-based non-metallic nanomaterials as catalysts for the two-electron oxygen reduction for hydrogen peroxide production [J]. New Carbon Materials, 2022, 37(1): 136-151. doi: 10.1016/S1872-5805(22)60583-3 [28] YU F K, ZHOU M H, YU X M. Cost-effective electro-Fenton using modified graphite felt that dramatically enhanced on H2O2 electro-generation without external aeration [J]. Electrochimica Acta, 2015, 163: 182-189. doi: 10.1016/j.electacta.2015.02.166 [29] SHENG Y P, ZHAO Y, WANG X L, et al. Electrogeneration of H2O2 on a composite acetylene black-PTFE cathode consisting of a sheet active core and a dampproof coating [J]. Electrochimica Acta, 2014, 133: 414-421. doi: 10.1016/j.electacta.2014.04.071 [30] YANG W L, ZHOU M H, CAI J, et al. Ultrahigh yield of hydrogen peroxide on graphite felt cathode modified with electrochemically exfoliated graphene [J]. Journal of Materials Chemistry A, 2017, 5(17): 8070-8080. doi: 10.1039/C7TA01534H [31] FELLINGER T P, HASCHÉ F, STRASSER P, et al. Mesoporous nitrogen-doped carbon for the electrocatalytic synthesis of hydrogen peroxide [J]. Journal of the American Chemical Society, 2012, 134(9): 4072-4075. doi: 10.1021/ja300038p [32] LEE Y H, LI F, CHANG K H, et al. Novel synthesis of N-doped porous carbons from collagen for electrocatalytic production of H2O2 [J]. Applied Catalysis B:Environmental, 2012, 126: 208-214. doi: 10.1016/j.apcatb.2012.06.031 [33] ZHONG R S, QIN Y H, NIU D F, et al. Effect of carbon nanofiber surface functional groups on oxygen reduction in alkaline solution [J]. Journal of Power Sources, 2013, 225: 192-199. doi: 10.1016/j.jpowsour.2012.10.043 [34] HASCHÉ F, OEZASLAN M, STRASSER P, et al. Electrocatalytic hydrogen peroxide formation on mesoporous non-metal nitrogen-doped carbon catalyst [J]. Journal of Energy Chemistry, 2016, 25(2): 251-257. doi: 10.1016/j.jechem.2016.01.024 [35] LU Z Y, CHEN G X, SIAHROSTAMI S, et al. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials [J]. Nature Catalysis, 2018, 1(2): 156-162. doi: 10.1038/s41929-017-0017-x [36] ZHOU L, ZHOU M H, ZHANG C, et al. Electro-Fenton degradation of p-nitrophenol using the anodized graphite felts [J]. Chemical Engineering Journal, 2013, 233: 185-192. doi: 10.1016/j.cej.2013.08.044 [37] MIAO J, ZHU H, TANG Y, et al. Graphite felt electrochemically modified in H2SO4 solution used as a cathode to produce H2O2 for pre-oxidation of drinking water [J]. Chemical Engineering Journal, 2014, 250: 312-318. doi: 10.1016/j.cej.2014.03.043 [38] ZHAO K, QUAN X, CHEN S, et al. Enhanced electro-Fenton performance by fluorine-doped porous carbon for removal of organic pollutants in wastewater [J]. Chemical Engineering Journal, 2018, 354: 606-615. doi: 10.1016/j.cej.2018.08.051 [39] ZHAO K, SU Y, QUAN X, et al. Enhanced H2O2 production by selective electrochemical reduction of O2 on fluorine-doped hierarchically porous carbon [J]. Journal of Catalysis, 2018, 357: 118-126. doi: 10.1016/j.jcat.2017.11.008 [40] LIU L, ZHANG J, MA W J, et al. Co/N co-doped graphene-like nanocarbon for highly efficient oxygen reduction electrocatalyst [J]. Science China Materials, 2019, 62(3): 359-367. doi: 10.1007/s40843-018-9322-y [41] ZHANG W M, CHU J J, LI S F, et al. CoNxC active sites-rich three-dimensional porous carbon nanofibers network derived from bacterial cellulose and bimetal-ZIFs as efficient multifunctional electrocatalyst for rechargeable Zn-air batteries [J]. Journal of Energy Chemistry, 2020, 51: 323-332. doi: 10.1016/j.jechem.2020.04.067 [42] ZHANG J Y, ZHANG G, JIN S Y, et al. Graphitic N in nitrogen-Doped carbon promotes hydrogen peroxide synthesis from electrocatalytic oxygen reduction [J]. Carbon, 2020, 163: 154-161. doi: 10.1016/j.carbon.2020.02.084 [43] SUN Y Y, LI S, JOVANOV Z P, et al. Structure, activity, and faradaic efficiency of nitrogen-doped porous carbon catalysts for direct electrochemical hydrogen peroxide production [J]. ChemSusChem, 2018, 11(19): 3388-3395. doi: 10.1002/cssc.201801583 [44] WAN J, ZHANG G Q, JIN H R, et al. Microwave-assisted synthesis of well-defined nitrogen doping configuration with high centrality in carbon to identify the active sites for electrochemical hydrogen peroxide production [J]. Carbon, 2022, 191: 340-349. doi: 10.1016/j.carbon.2022.01.061 [45] HU Y Z, ZHANG J J, SHEN T, et al. Efficient electrochemical production of H2O2 on hollow N-doped carbon nanospheres with abundant micropores [J]. ACS Applied Materials & Interfaces, 2021, 13(25): 29551-29557. [46] KIM H W, ROSS M B, KORNIENKO N, et al. Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts [J]. Nature Catalysis, 2018, 1(4): 282-290. doi: 10.1038/s41929-018-0044-2 [47] MATSUBARA K, WAKI K. The effect of O-functionalities for the electrochemical reduction of oxygen on MWCNTs in acid media [J]. Electrochemical and Solid-State Letters, 2010, 13(8): F7. doi: 10.1149/1.3428472 [48] SUN X J, SONG P, ZHANG Y W, et al. A class of high performance metal-free oxygen reduction electrocatalysts based on cheap carbon blacks [J]. Scientific Reports, 2013, 3: 2505. doi: 10.1038/srep02505 [49] LI X Y, WANG X P, XIAO G Z, et al. Identifying active sites of boron, nitrogen co-doped carbon materials for the oxygen reduction reaction to hydrogen peroxide [J]. Journal of Colloid and Interface Science, 2021, 602: 799-809. doi: 10.1016/j.jcis.2021.06.068 [50] QIN M C, FAN S Y, WANG L, et al. Oxygen and nitrogen co-doped ordered mesoporous carbon materials enhanced the electrochemical selectivity of O2 reduction to H2O2 [J]. Journal of Colloid and Interface Science, 2020, 562: 540-549. doi: 10.1016/j.jcis.2019.11.080 [51] BIEMOLT J, van der VEEN K, GEELS N J, et al. Efficient oxygen reduction to H2O2 in highly porous Manganese and nitrogen co-doped carbon nanorods enabling electro-degradation of bulk organics [J]. Carbon, 2019, 155: 643-649. doi: 10.1016/j.carbon.2019.09.034 [52] 魏家崴, 李平, 强富强, 等. 杂原子掺杂碳材料用于氧还原反应催化剂的研究 [J]. 功能材料, 2021, 52(2): 2098-2108. WEI J W, LI P, QIANG F Q, et al. Review of heteroatom-doped carbon materials as catalysts for oxygen reduction reaction [J]. Journal of Functional Materials, 2021, 52(2): 2098-2108(in Chinese).
[53] 李宇明, 刘梓烨, 张启扬, 等. 氮掺杂碳材料的制备及其在催化领域中的应用 [J]. 化工学报, 2021, 72(8): 3919-3932. LI Y M, LIU Z Y, ZHANG Q Y, et al. Preparation of nitrogen-doped carbon materials and their applications in catalysis [J]. CIESC Journal, 2021, 72(8): 3919-3932(in Chinese).
[54] GUO D H, SHIBUYA R, AKIBA C, et al. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts [J]. Science, 2016, 351(6271): 361-365. doi: 10.1126/science.aad0832 [55] XING T, ZHENG Y, LI L H, et al. Observation of active sites for oxygen reduction reaction on nitrogen-doped multilayer graphene [J]. ACS Nano, 2014, 8(7): 6856-6862. doi: 10.1021/nn501506p [56] SCARDAMAGLIA M, SUSI T, STRUZZI C, et al. Spectroscopic observation of oxygen dissociation on nitrogen-doped graphene [J]. Scientific Reports, 2017, 7: 7960. doi: 10.1038/s41598-017-08651-1 [57] WANG W, HU Y C, LIU Y C, et al. Self-powered and highly efficient production of H2O2 through a Zn-air battery with oxygenated carbon electrocatalyst [J]. ACS Applied Materials & Interfaces, 2018, 10(38): 31855-31859. [58] WANG Y W, QIU W J, SONG E H, et al. Adsorption-energy-based activity descriptors for electrocatalysts in energy storage applications [J]. National Science Review, 2017, 5(3): 327-341. [59] GONG K P, DU F, XIA Z H, et al. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction [J]. Science, 2009, 323(5915): 760-764. doi: 10.1126/science.1168049 [60] XIE L, ZHOU W, QU Z B, et al. Understanding the activity origin of oxygen-doped carbon materials in catalyzing the two-electron oxygen reduction reaction towards hydrogen peroxide generation [J]. Journal of Colloid and Interface Science, 2022, 610: 934-943. doi: 10.1016/j.jcis.2021.11.144 [61] CHEN S Y, LUO T, CHEN K J, et al. Chemical identification of catalytically active sites on oxygen-doped carbon nanosheet to decipher the high activity for electro-synthesis hydrogen peroxide [J]. Angewandte Chemie, 2021, 60(30): 16607-16614. doi: 10.1002/anie.202104480 [62] SHENG Y P, SONG S L, WANG X L, et al. Electrogeneration of hydrogen peroxide on a novel highly effective acetylene black-PTFE cathode with PTFE film [J]. Electrochimica Acta, 2011, 56(24): 8651-8656. doi: 10.1016/j.electacta.2011.07.069 [63] WANG W, LU X Y, SU P, et al. Enhancement of hydrogen peroxide production by electrochemical reduction of oxygen on carbon nanotubes modified with fluorine [J]. Chemosphere, 2020, 259: 127423. doi: 10.1016/j.chemosphere.2020.127423 [64] LIU Z M, GAO D Z, HU L N, et al. Metal-free boron-rich borocarbonitride catalysts for high-efficient oxygen reduction to produce hydrogen peroxide [J]. ChemistrySelect, 2022, 7(5): e202104203. [65] PARSE H, PATIL I M, SWAMI A S, et al. TiO2-decorated titanium carbide MXene co-doped with nitrogen and sulfur for oxygen electroreduction [J]. ACS Applied Nano Materials, 2021, 4(2): 1094-1103. doi: 10.1021/acsanm.0c02695 [66] PERAZZOLO V, DURANTE C, GENNARO A. Nitrogen and sulfur doped mesoporous carbon cathodes for water treatment [J]. Journal of Electroanalytical Chemistry, 2016, 782: 264-269. doi: 10.1016/j.jelechem.2016.10.037 [67] GU Y Y, FU H J, HUANG Z W, et al. O/F co-doped CNTs promoted graphite felt gas diffusion cathode for highly efficient and durable H2O2 evolution without aeration [J]. Journal of Cleaner Production, 2022, 341: 130799. doi: 10.1016/j.jclepro.2022.130799 [68] HUANG X, LIU W, ZHANG J J, et al. Coupling Co-N-C with MXenes yields highly efficient catalysts for H 2 O2 production in acidic media [J]. ACS Applied Materials & Interfaces, 2022, 14(9): 11350-11358. [69] CHEN J N, YUAN X L, LYU F L, et al. Integrating MXene nanosheets with cobalt-tipped carbon nanotubes for an efficient oxygen reduction reaction [J]. Journal of Materials Chemistry A, 2019, 7(3): 1281-1286. doi: 10.1039/C8TA10574J [70] ZHANG T T, LI C, GU Y, et al. Fabrication of novel metal-free “graphene alloy” for the highly efficient electrocatalytic reduction of H2O2 [J]. Talanta, 2017, 165: 143-151. doi: 10.1016/j.talanta.2016.12.018