-
废弃生物质是生产和生活过程中产生的富含有机物质的废弃物,包括农林废弃物、畜禽粪便、食品加工废弃物、厨余垃圾和城市污泥等. 我国每年产生大量废弃生物质,其中仅约20%—30%被以堆肥或焚烧等低价值方式利用,剩余部分则被填埋、焚烧或丢弃到环境中,带来很大的处理压力和环境风险[1]. 废弃生物质的碳含量通常较高(质量分数为45%—55%),可以通过热化学技术将其转化为碳基功能材料,既可以满足废弃物减量化的需求,又实现其高值资源化利用. 传统碳基功能材料不仅以煤和石油等不可再生的化石为原料,也需要苛刻的制备条件并消耗大量能源. 因此,亟需开发更加符合绿色化学要求的碳基功能材料的制备技术. 水热炭化是一种兼具成本效益和环境效益的热化学转化技术,反应条件较温和,设备要求简单,原料容差性高,具有经济、高效和环保等特点. 废弃生物质通过水热炭化制备的水热炭、碳点和碳基复合材料在能源和环境等领域有广阔的应用前景[2].
光催化被认为是解决能源危机、温室效应和环境污染等问题最有效的技术之一,目前许多光催化剂存在制备成本高、可见光利用率低和稳定性差等问题,严重限制其大规模的商业化应用. 开发低成本的高效光催化剂、提升传统光催化剂的性能是目前研究的重点. 生物质通过简单的水热炭化制备的水热炭和碳点具有光催化活性,并且在改性之后表现出超过TiO2、g-C3N4和CdS等传统半导体光催化材料的光催化性能. 此外,水热炭化也可以将传统半导体光催化材料与生物质衍生碳复合,构建碳基复合光催化剂来改善其光催化性能. 以生物质尤其是废弃生物质为碳源的水热炭化制备廉价、高效和稳定的碳基光催化材料,具有巨大的应用潜力.
目前,已经有大量研究以废弃生物质为原料,通过水热炭化制备碳基光催化材料,并将其应用于环境和能源等领域. 有必要对这些研究进行系统性的总结,分析其优势和不足,展望未来的发展方向. 本文梳理了水热炭化制备的废弃生物质衍生碳基光催化材料的最新进展,归纳其制备方法、光催化机理和应用领域(图1),为未来更深入的研究提供理论指导、启发新思路和预测发展方向.
废弃生物质水热炭化衍生碳基光催化材料的研究进展
Research progress on waste-biomass-derived carbon-based photocatalysts by hydrothermal carbonization
-
摘要: 水热炭化是一种经济且环境友好的废弃生物质热化学转化技术. 废弃生物质通过水热炭化制备碳基光催化材料,不仅可实现废弃物的高值利用,而且可通过光催化材料的的应用缓解环境污染和能源危机. 本综述将水热炭化制备的废弃生物质碳基光催化材料分成水热炭、碳点和碳基复合材料三类,并系统总结其制备、光催化机理和应用方面的研究进展. 首先,归纳了3种光催化剂的制备,包括形成机理和物化结构;然后分别阐述了各类催化剂的光催化过程和光催化性能提高途径,以及从有机污染物降解、重金属去除、消毒、产氢和CO2还原等领域介绍了光催化应用;最后,对该领域未来的研究重点和发展方向进行了展望.Abstract: Hydrothermal carbonization (HTC) is a facile and environmentally friendly thermochemical conversion technique for waste biomass. The preparation of carbon-based photocatalysts from waste biomass by HTC can realize the value-added utilization of waste and alleviate environmental pollution and energy crisis through photocatalytic applications. In this review, photocatalysts derived from waste-biomass by HTC are divided into three categories: hydrochars, carbon dots, and carbon-based composite photocatalysts, and their research progress in preparation, photocatalytic mechanism, and application is comprehensively summarized. Firstly, the synthesis of these photocatalysts, including the formation mechanism and the physicochemical properties of the products, is outlined. Secondly, the photocatalytic process and performance improvement methods of three types of photocatalysts are described, respectively. Thirdly, the photocatalytic applications in organic pollutant degradation, heavy metal removal, disinfection, hydrogen production, and CO2 reduction are listed. Finally, the future research focus and development direction in this field are prospected.
-
Key words:
- waste biomass /
- hydrothermal carbonization /
- hydrochar /
- carbon dots /
- carbon-based photocatalyst /
- photocatalysis.
-
-
[1] ABBAS A, MARIANA L T, PHAN A N. Biomass-waste derived graphene quantum dots and their applications [J]. Carbon, 2018, 140: 77-99. doi: 10.1016/j.carbon.2018.08.016 [2] NICOLAE S A, AU H, MODUGNO P, et al. Recent advances in hydrothermal carbonisation: From tailored carbon materials and biochemicals to applications and bioenergy [J]. Green Chemistry, 2020, 22(15): 4747-4800. doi: 10.1039/D0GC00998A [3] LU X W, JORDAN B, BERGE N D. Thermal conversion of municipal solid waste via hydrothermal carbonization: Comparison of carbonization products to products from current waste management techniques [J]. Waste Management, 2012, 32(7): 1353-1365. doi: 10.1016/j.wasman.2012.02.012 [4] FUNKE A, ZIEGLER F. Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering [J]. Biofuels, Bioproducts and Biorefining, 2010, 4(2): 160-177. doi: 10.1002/bbb.198 [5] WIKBERG H, OHRA-AHO T, PILEIDIS F, et al. Structural and morphological changes in kraft lignin during hydrothermal carbonization [J]. ACS Sustainable Chemistry & Engineering, 2015, 3(11): 2737-2745. [6] HE C, GIANNIS A, WANG J Y. Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: Hydrochar fuel characteristics and combustion behavior [J]. Applied Energy, 2013, 111: 257-266. doi: 10.1016/j.apenergy.2013.04.084 [7] BACCILE N, LAURENT G, BABONNEAU F, et al. Structural characterization of hydrothermal carbon spheres by advanced solid-state MAS 13C NMR investigations [J]. The Journal of Physical Chemistry C, 2009, 113(22): 9644-9654. doi: 10.1021/jp901582x [8] SEVILLA M, FUERTES A. Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides [J]. Chemistry - A European Journal, 2009, 15(16): 4195-4203. doi: 10.1002/chem.200802097 [9] LI H T, HE X D, KANG Z H, et al. Water-soluble fluorescent carbon quantum dots and photocatalyst design [J]. Angewandte Chemie, 2010, 122(26): 4532-4536. doi: 10.1002/ange.200906154 [10] CHEN P, WANG F L, CHEN Z F, et al. Study on the photocatalytic mechanism and detoxicity of gemfibrozil by a sunlight-driven TiO2/carbon dots photocatalyst: The significant roles of reactive oxygen species [J]. Applied Catalysis B:Environmental, 2017, 204: 250-259. doi: 10.1016/j.apcatb.2016.11.040 [11] YE Q Y, HUANG Z Y, WU P X, et al. Promoting the photogeneration of hydrochar reactive oxygen species based on FeAl layered double hydroxide for diethyl phthalate degradation [J]. Journal of Hazardous Materials, 2020, 388: 122120. doi: 10.1016/j.jhazmat.2020.122120 [12] ZUO X J, CHEN M D, FU D F, et al. The formation of alpha -FeOOH onto hydrothermal biochar through H2O2 and its photocatalytic disinfection [J]. Chemical Engineering Journal, 2016, 294: 202-209. doi: 10.1016/j.cej.2016.02.116 [13] LEICHTWEIS J, SILVESTRI S, STEFANELLO N, et al. Degradation of ramipril by residues from the brewing industry: A new carbon-based photocatalyst compound [J]. Chemosphere, 2021, 281: 130987. doi: 10.1016/j.chemosphere.2021.130987 [14] WANG J, LIM Y F, WEI HO G. Carbon-ensemble-manipulated ZnS heterostructures for enhanced photocatalytic H2 evolution [J]. Nanoscale, 2014, 6(16): 9673-9680. doi: 10.1039/C4NR02368D [15] SHA L, JI X X, SI H Y, et al. The facile fabrication and structural control of carbon-MIL-125 by coupling pre-hydrolysate and Ti-MOF for photocatalytic sterilization under visible light [J]. Journal of Chemical Technology & Biotechnology, 2021, 96(9): 2579-2587. [16] HU Z F, SHEN Z R, YU J C. Converting carbohydrates to carbon-based photocatalysts for environmental treatment [J]. Environmental Science & Technology, 2017, 51(12): 7076-7083. [17] CHEN N, HUANG Y H, HOU X J, et al. Photochemistry of hydrochar: Reactive oxygen species generation and sulfadimidine degradation [J]. Environmental Science & Technology, 2017, 51(19): 11278-11287. [18] ZHANG Y T, SHEN Z R, XIN Z K, et al. Interfacial charge dominating major active species and degradation pathways: An example of carbon based photocatalyst [J]. Journal of Colloid and Interface Science, 2019, 554: 743-751. doi: 10.1016/j.jcis.2019.07.077 [19] LONG C C, JIANG Z X, SHANGGUAN J F, et al. Applications of carbon dots in environmental pollution control: A review [J]. Chemical Engineering Journal, 2021, 406: 126848. doi: 10.1016/j.cej.2020.126848 [20] ZHANG H Q, WANG H, WANG Y, et al. Controlled synthesis and photocatalytic performance of biocompatible uniform carbon quantum dots with microwave absorption capacity [J]. Applied Surface Science, 2020, 512: 145751. doi: 10.1016/j.apsusc.2020.145751 [21] LI H T, LIU R H, KONG W Q, et al. Carbon quantum dots with photo-generated proton property as efficient visible light controlled acid catalyst [J]. Nanoscale, 2014, 6(2): 867-873. doi: 10.1039/C3NR03996J [22] JIA Q Y, ZHENG X L, GE J C, et al. Synthesis of carbon dots from Hypocrella bambusae for bimodel fluorescence/photoacoustic imaging-guided synergistic photodynamic/photothermal therapy of cancer [J]. Journal of Colloid and Interface Science, 2018, 526: 302-311. doi: 10.1016/j.jcis.2018.05.005 [23] ZHOU Y Q, ZAHRAN E M, QUIROGA B A, et al. Size-dependent photocatalytic activity of carbon dots with surface-state determined photoluminescence [J]. Applied Catalysis B:Environmental, 2019, 248: 157-166. doi: 10.1016/j.apcatb.2019.02.019 [24] SUN Y P, ZHOU B, LIN Y, et al. Quantum-sized carbon dots for bright and colorful photoluminescence [J]. Journal of the American Chemical Society, 2006, 128(24): 7756-7757. doi: 10.1021/ja062677d [25] SARMA D, MAJUMDAR B, SARMA T K. Visible-light induced enhancement in the multi-catalytic activity of sulfated carbon dots for aerobic carbon–carbon bond formation [J]. Green Chemistry, 2019, 21(24): 6717-6726. doi: 10.1039/C9GC02658D [26] PHANG S J, TAN L L. Recent advances in carbon quantum dot (CQD)-based two dimensional materials for photocatalytic applications [J]. Catalysis Science & Technology, 2019, 9(21): 5882-5905. [27] SHEN T, WANG Q, GUO Z Y, et al. Hydrothermal synthesis of carbon quantum dots using different precursors and their combination with TiO2 for enhanced photocatalytic activity [J]. Ceramics International, 2018, 44(10): 11828-11834. doi: 10.1016/j.ceramint.2018.03.271 [28] BHATTACHARYYA S, EHRAT F, URBAN P, et al. Effect of nitrogen atom positioning on the trade-off between emissive and photocatalytic properties of carbon dots [J]. Nature Communications, 2017, 8: 1401. doi: 10.1038/s41467-017-01463-x [29] ZHU Z Q, YANG P, LI X H, et al. Green preparation of palm powder-derived carbon dots co-doped with sulfur/chlorine and their application in visible-light photocatalysis [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2020, 227: 117659. doi: 10.1016/j.saa.2019.117659 [30] BHATI A, ANAND S R, GUNTURE, et al. Sunlight-induced photocatalytic degradation of pollutant dye by highly fluorescent red-emitting Mg-N-embedded carbon dots [J]. ACS Sustainable Chemistry & Engineering, 2018, 6(7): 9246-9256. [31] ZHONG J, CHEN F, ZHANG J L. Carbon-deposited TiO2: Synthesis, characterization, and visible photocatalytic performance [J]. The Journal of Physical Chemistry C, 2010, 114(2): 933-939. doi: 10.1021/jp909835m [32] LIU B, LIU S, MENG L Y, et al. Microwave-hydrothermal synthesis and photocatalytic properties of biomass charcoal/ TiO2 nanocomposites [J]. Journal of Saudi Chemical Society, 2018, 22(5): 509-518. doi: 10.1016/j.jscs.2017.09.003 [33] DONG F, WANG H Q, WU Z B. One-step “green” synthetic approach for mesoporous C-doped titanium dioxide with efficient visible light photocatalytic activity [J]. The Journal of Physical Chemistry C, 2009, 113(38): 16717-16723. doi: 10.1021/jp9049654 [34] WANG D H, JIA L, WU X L, et al. One-step hydrothermal synthesis of N-doped TiO2/C nanocomposites with high visible light photocatalytic activity [J]. Nanoscale, 2012, 4(2): 576-584. doi: 10.1039/C1NR11353D [35] ROZA L, FAUZIA V, RAHMAN M Y A, et al. ZnO nanorods decorated with carbon nanodots and its metal doping as efficient photocatalyst for degradation of methyl blue solution [J]. Optical Materials, 2020, 109: 110360. doi: 10.1016/j.optmat.2020.110360 [36] ZHANG G Z, TENG F, WANG Y Q, et al. Preparation of carbon–TiO2 nanocomposites by a hydrothermal method and their enhanced photocatalytic activity [J]. RSC Advances, 2013, 3(46): 24644. doi: 10.1039/c3ra44950e [37] ZHANG L W, CHENG H Y, ZONG R L, et al. Photocorrosion suppression of ZnO nanoparticles via hybridization with graphite-like carbon and enhanced photocatalytic activity [J]. The Journal of Physical Chemistry C, 2009, 113(6): 2368-2374. doi: 10.1021/jp807778r [38] ZHAO W R, WANG Y, YANG Y, et al. Carbon spheres supported visible-light-driven CuO- BiVO4 heterojunction: Preparation, characterization, and photocatalytic properties [J]. Applied Catalysis B:Environmental, 2012, 115/116: 90-99. doi: 10.1016/j.apcatb.2011.12.018 [39] ZHOU L, CAI M, ZHANG X, et al. Key role of hydrochar in heterogeneous photocatalytic degradation of sulfamethoxazole using Ag3 PO 4-based photocatalysts [J]. RSC Advances, 2019, 9(61): 35636-35645. doi: 10.1039/C9RA07843F [40] HE D, LI Y L, WANG I S, et al. Carbon wrapped and doped TiO2 mesoporous nanostructure with efficient visible-light photocatalysis for NO removal [J]. Applied Surface Science, 2017, 391: 318-325. doi: 10.1016/j.apsusc.2016.06.186 [41] WANG T, LIU X Q, MA C C, et al. A two step hydrothermal process to prepare carbon spheres from bamboo for construction of core–shell non-metallic photocatalysts [J]. New Journal of Chemistry, 2018, 42(8): 6515-6524. doi: 10.1039/C8NJ00953H [42] ZOU S, FU Z H, XIANG C, et al. Mild, one-step hydrothermal synthesis of carbon-coated CdS nanoparticles with improved photocatalytic activity and stability [J]. Chinese Journal of Catalysis, 2015, 36(7): 1077-1085. doi: 10.1016/S1872-2067(15)60827-0 [43] SUN H Q, ZHOU G L, WANG Y X, et al. A new metal-free carbon hybrid for enhanced photocatalysis [J]. ACS Applied Materials & Interfaces, 2014, 6(19): 16745-16754. [44] WU Q, LI W, WU P, et al. Effect of reaction temperature on properties of carbon nanodots and their visible-light photocatalytic degradation of tetracyline [J]. RSC Advances, 2015, 5(92): 75711-75721. doi: 10.1039/C5RA16080D [45] DONAR Y O, BILGE S, SıNAĞ A, et al. TiO2/carbon materials derived from hydrothermal carbonization of waste biomass: A highly efficient, low-cost visible-light-driven photocatalyst [J]. ChemCatChem, 2018, 10(5): 1134-1139. doi: 10.1002/cctc.201701405 [46] TAI J Y, LEONG K H, SARAVANAN P, et al. Facile green synthesis of fingernails derived carbon quantum dots for Cu2+ sensing and photodegradation of 2, 4-dichlorophenol [J]. Journal of Environmental Chemical Engineering, 2021, 9(1): 104622. doi: 10.1016/j.jece.2020.104622 [47] WANG T, LIU X Q, MA C C, et al. Bamboo prepared carbon quantum dots (CQDs) for enhancing Bi3Ti4O12 nanosheets photocatalytic activity [J]. Journal of Alloys and Compounds, 2018, 752: 106-114. doi: 10.1016/j.jallcom.2018.04.085 [48] HU Z F, LIU G, CHEN X Q, et al. Enhancing charge separation in metallic photocatalysts: A case study of the conducting molybdenum dioxide [J]. Advanced Functional Materials, 2016, 26(25): 4445-4455. doi: 10.1002/adfm.201600239 [49] XU X X, RANDORN C, EFSTATHIOU P, et al. A red metallic oxide photocatalyst [J]. Nature Materials, 2012, 11(7): 595-598. doi: 10.1038/nmat3312 [50] XIE X Y, LI S, QI K M, et al. Photoinduced synthesis of green photocatalyst Fe3O4/BiOBr/CQDs derived from corncob biomass for carbamazepine degradation: The role of selectively more CQDs decoration and Z-scheme structure [J]. Chemical Engineering Journal, 2021, 420: 129705. doi: 10.1016/j.cej.2021.129705 [51] ZHANG P, CHEN Y, YANG X Y, et al. Pt/ZnO@C nanocable with dual-enhanced photocatalytic performance and superior photostability [J]. Langmuir:the ACS Journal of Surfaces and Colloids, 2017, 33(18): 4452-4460. doi: 10.1021/acs.langmuir.7b00995 [52] LI J Z, MA Y, YE Z F, et al. Fast electron transfer and enhanced visible light photocatalytic activity using multi-dimensional components of carbon quantum dots@3D daisy-like In2S3/single-wall carbon nanotubes [J]. Applied Catalysis B:Environmental, 2017, 204: 224-238. doi: 10.1016/j.apcatb.2016.11.021 [53] MEN Q Y, WANG T, MA C C, et al. In-suit preparation of CdSe quantum dots/porous channel biochar for improving photocatalytic activity for degradation of tetracycline [J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 99: 180-192. doi: 10.1016/j.jtice.2019.03.019 [54] MATHESWARAN P, THANGAVELU P, PALANIVEL B. Carbon dot sensitized integrative g-C3N4/AgCl Hybrids: An synergetic interaction for enhanced visible light driven photocatalytic process [J]. Advanced Powder Technology, 2019, 30(8): 1715-1723. doi: 10.1016/j.apt.2019.05.024 [55] QI K M, SONG M X, XIE X Y, et al. CQDs/biochar from reed straw modified Z-scheme MgIn2S4/BiOCl with enhanced visible-light photocatalytic performance for carbamazepine degradation in water [J]. Chemosphere, 2022, 287: 132192. doi: 10.1016/j.chemosphere.2021.132192 [56] CHEN N, SHANG H, TAO S Y, et al. Visible light driven organic pollutants degradation with hydrothermally carbonized sewage sludge and oxalate via molecular oxygen activation [J]. Environmental Science & Technology, 2018, 52(21): 12656-12666. [57] XU L P, LIU Y, HU Z F, et al. Converting cellulose waste into a high-efficiency photocatalyst for Cr(VI) reduction via molecular oxygen activation [J]. Applied Catalysis B:Environmental, 2021, 295: 120253. doi: 10.1016/j.apcatb.2021.120253 [58] QIANG T T, CHEN L, QIN X T. Biomass-based 0D/3D N-CQD/MIL-53(Fe) photocatalyst for the simultaneous remediation of multiple hazardous pollutants in sewage [J]. Catalysis Science & Technology, 2021, 11(14): 4931-4943. [59] XIAO K M, WANG T Q, SUN M Z, et al. Photocatalytic bacterial inactivation by a rape pollen- MoS 2 biohybrid catalyst: Synergetic effects and inactivation mechanisms [J]. Environmental Science & Technology, 2020, 54(1): 537-549. [60] ALEXPANDI R, GOPI C V V M, DURGADEVI R, et al. Metal sensing-carbon dots loaded TiO2-nanocomposite for photocatalytic bacterial deactivation and application in aquaculture [J]. Scientific Reports, 2020, 10: 12883. doi: 10.1038/s41598-020-69888-x [61] GOGOI D, KOYANI R, GOLDER A K, et al. Enhanced photocatalytic hydrogen evolution using green carbon quantum dots modified 1-D CdS nanowires under visible light irradiation [J]. Solar Energy, 2020, 208: 966-977. doi: 10.1016/j.solener.2020.08.061 [62] HU Z F, LIU W W. Conversion of biomasses and copper into catalysts for photocatalytic CO2 reduction [J]. ACS Applied Materials & Interfaces, 2020, 12(46): 51366-51373.