-
铬离子主要是通过铬盐生产行业及相关产业排放的废渣和废水流入环境中而引起污染. 其中的Cr(Ⅵ)具有强烈的毒性,可能造成遗传性基因缺陷,吸入可能致癌等,对环境危害极大并具有持久危险性[1]. 因此,Cr(Ⅵ)的污染治理已经引起研究者广泛关注. 对废水重金属铬污染的治理方法一般采用化学沉淀法[2]、氧化还原法[3]、离子交换法[4]和吸附法[5]等. 其中吸附法是使用较多的一种方法,而所选用的吸附剂的种类也很多,常用的有活性炭[1]、天然有机吸附剂[6]、无机吸附剂[7]和合成吸附剂[8]. 工业上最常用的吸附剂是活性氧化铝[9]、硅胶[10]、活性炭[11]和分子筛[12]. 在这种情况下,活性氧化铝因其对重金属离子的强亲和力而被认为是一种有前途的吸附剂. 一般来说,这些材料要么在其框架内提供大量官能团(如石墨烯氧化物和其他活性炭材料),要么晶格空位(如金属氧化物)可以有效去除废水中的污染物[13]. 废水中污染物富集的适宜材料应满足三个特点:(1)去除率快,对污染物的富集能力强;(2)环保、成本低;(3)结构稳定,可重复使用. 金属氧化物可以具备这些特性,各种金属氧化物由于其抗磨损的机械坚固性已被应用于废水中的污染物去除. Drisko等[14]发现,不同的大孔尺寸和形态的分层结构锆钛氧化物会极大地影响表面可进入性,从而影响扩散速率和U(Ⅵ)离子的空间容量. 为了提高材料的吸附速率和吸附容量,新的合成方法有望同时控制微/大孔特性(即孔体积和比表面积). 鉴于此,金属有机骨架(metal-organic frameworks, MOFs)合成金属氧化物为以简单、可控的方式合成定制功能材料提供了很大的可能性[15]. MOFs由与有机配体结合的金属离子簇或链组成[16],是一类具有超高比表面积和可调节孔径的新兴材料. MOFs经热煅烧后可生成孔隙均匀、比表面积高、结构有序的金属氧化物[17]. MOFs衍生的金属氧化物在电催化[18]和能量储存/转换[19]等方面都有很好的应用前景. 然而,目前废水中污染物的固定化应用还很少.
本研究针以MOFs为前驱体,在有氧条件下煅烧制备了多孔掺碳Al2O3材料,使用扫描电极(SEM)、X射线衍射仪(XRD)和孔隙度分析仪(BET)对该材料煅烧前后的表面形貌进行了表征分析,通过考察吸附剂投加量、初始浓度和共存阴离子等参数的影响分析其对水体中Cr(Ⅵ)的吸附能力,利用等温吸附模型和吸附动力学模型分析,揭示多孔掺碳Al2O3材料对水中Cr(Ⅵ)的去除提供新的途径.
以NH2-MIL-53(Al)为前驱体制备多孔掺碳Al2O3吸附剂及其对水中Cr(Ⅵ)的吸附性能
Porous carbon-doped Al2O3 derived from metal organic frameworks and its adsorption performance for Cr(Ⅵ) from water
-
摘要: 铬是污染性金属元素,铬含量是水质污染控制的一项重要指标,其中Cr(Ⅵ)的毒性最大,且易被人体吸收. 本研究以水中的Cr(Ⅵ)吸附传质分离为目标,利用以铝为金属源水热法合成的铝基MOFs为前驱体,600 ℃煅烧后制备了多孔掺碳Al2O3吸附材料,利用现代分析技术对其进行微观结构表征,探究了其吸附作用能力与机制. 研究结果表明,XRD、SEM、BET等表征手段证明了NH2-MIL-53(Al)与多孔掺碳Al2O3结构的成功合成. 前驱体NH2-MIL-53(Al)和煅烧后的衍生物多孔掺碳Al2O3,在形貌上相似,且多孔掺碳Al2O3材料(180.24 m2·g−1)的比表面积要大于NH2-MIL-53(Al)(116.73 m2·g−1). 多孔掺碳Al2O3材料对Cr(Ⅵ)的平衡吸附量最大可达到671.56 mg·g−1. 吸附动力学模型拟合结果显示,多孔掺碳Al2O3材料对Cr(Ⅵ)的吸附行为与Langmuir等温线模型和伪二阶动力学模型更加拟合. 研究显示,多孔掺碳Al2O3材料可以作为除Cr材料实现对Cr(Ⅵ)的高效去除.Abstract: Chromium is a pollutant metal element, and its content is an important index of water pollution control, among which Cr(Ⅵ) is the most toxic and easily absorbed by the human body. In this study, the adsorption and mass transfer separation of Cr(Ⅵ) in water was taken as the goal, and the porous carbon-doped Al2O3 adsorption material was prepared by calcination at 600℃ using aluminum-based MOFs synthesized by hydrothermal method with aluminum as metal source. The microstructure was characterized by modern analytical technology, and the adsorption capacity and mechanism were explored. The results showed that XRD, SEM, BET and other characterization methods proved the successful synthesis of NH2-MIL-53(Al) and porous carbon-doped Al2O3 structure. The precursor NH2-MIL-53 (Al) and the calcined derivative porous carbon-doped Al2O3 are similar in morphology, and the specific surface area of porous carbon-doped Al2O3 material (180.24 m2·g−1) is larger than that of NH2-MIL-53 (Al) (116.73 m2·g−1). The maximum equilibrium adsorption capacity of Cr(Ⅵ) on porous carbon-doped Al2O3 material is 671.56 mg·g−1. The fitting results of the adsorption kinetics model show that the adsorption behavior of porous carbon doped Al2O3 material for Cr(Ⅵ) is more consistent with the Langmuir isotherm model and pseudo-second-order kinetics model. The study shows that porous carbon-doped Al2O3 material can be used as a Cr removal material to achieve effective removal of Cr(Ⅵ).
-
Key words:
- MOFs derivatives /
- adsorption /
- metal Cr(Ⅵ) /
- adsorption kinetics.
-
图 3 NH2-MIL-53(Al)的氮气吸附脱附等温线图(a),孔径分布图(b);多孔掺碳Al2O3的的氮气吸附脱附等温线图(c),孔径分布图(d)
Figure 3. Nitrogen adsorption and desorption isotherm of NH2-MIL-53(Al) (a), pore size distribution of NH2-MIL-53(Al) (b); Nitrogen adsorption and desorption isotherm of Porous carbon-doped Al2O3 (c), pore size distribution of Porous carbon-doped Al2O3 (d)
表 1 多孔掺碳Al2O3吸附剂吸附Cr(VI)的动力学模型参数
Table 1. Kinetic model parameters of Cr(VI) adsorption on Porous carbon-doped Al2O3
C0/(mg·L−1) 伪一阶动力学模型
Pseudo-first-order model伪二阶动力学模型
Pseudo-second-order modelQe/(mg·g−1) R2 k1/(min−1) Qe/(mg·g−1) R2 k2/ (g·(mg·min)−1) 25 24.28 0.9685 2.45×10−3 24.32 0.9999 4.09×10−2 50 44.46 0.9282 1.23×10−3 45.10 0.9991 2.18×10−2 100 59.60 0.9733 1.30×10−2 60.75 0.9997 1.61×10−2 表 2 多孔掺碳Al2O3吸附剂吸附Cr(Ⅵ)的等温吸附模型参数
Table 2. Parameters of the isotherm adsorption model for Cr(Ⅵ) adsorption on Porous carbon-doped Al2O3
温度/℃ Langmuir 模型 Freundlich 模型 Qm/(mg·g−1) R2 b/(L·mg−1) R2 Kf/(mg·g−1) n 15 122.10 0.9963 2.31×10−4 0.9912 0.7836 1.0503 25 130.02 0.9883 2.17×10−5 0.9876 0.7254 1.0221 35 133.65 0.9889 2.31×10−4 0.9830 1.1342 1.1125 45 148.39 0.9853 2.58×10−3 0.9782 2.2831 1.2636 55 157.98 0.9901 2.42×10−3 0.9830 2.2828 1.2450 -
[1] 赵曼淑, 刘涛, 鹿文慧, 等. 基于CTAC改性活性炭的信封式膜包用于水溶液中六价铬去除 [J]. 环境化学, 2020, 39(9): 2593-2601. doi: 10.7524/j.issn.0254-6108.2019062401 ZHAO M S, LIU T, LU W H, et al. Envelope membrane packed with CTAC modified active carbon for Cr(Ⅵ) removal from aqueous solution [J]. Environmental Chemistry, 2020, 39(9): 2593-2601(in Chinese). doi: 10.7524/j.issn.0254-6108.2019062401
[2] 张诚, 陈远洪, 王庆森, 等. 连续电镀锡钝化六价铬废水的处理 [J]. 电镀与涂饰, 2020, 39(13): 875-878. ZHANG C, CHEN Y H, WANG Q S, et al. Treatment of hexavalent chromium-containing wastewater discharged from passivation phase in continuous tin electroplating process [J]. Electroplating & Finishing, 2020, 39(13): 875-878(in Chinese).
[3] 高卫国, 钱林波, 韩璐, 等. 锰铁氧体吸附及催化柠檬酸还原六价铬的过程及机理 [J]. 环境化学, 2018, 37(7): 1525-1533. doi: 10.7524/j.issn.0254-6108.2017101302 GAO W G, QIAN L B, HAN L, et al. Iron manganese minerals catalyzed Cr(Ⅵ) reduction by citric acid and its mechanism [J]. Environmental Chemistry, 2018, 37(7): 1525-1533(in Chinese). doi: 10.7524/j.issn.0254-6108.2017101302
[4] 范俊英. 回收电镀废水中六价铬的离子交换法应用分析 [J]. 资源节约与环保, 2015(8): 56. FAN J Y. Application analysis of ion exchange method for recovering hexavalent chromium from electroplating wastewater [J]. Resources Economization & Environmental Protection, 2015(8): 56(in Chinese).
[5] 张铁军, 李博, 韩剑宏, 等. 磁性改性玉米秸秆材料吸附铬的性能及机理研究 [J]. 工业水处理, 2020, 40(12): 100-105. ZHANG T J, LI B, HAN J H, et al. Study on adsorption performance and mechanism of chromium on magnetic modified corn stalk [J]. Industrial Water Treatment, 2020, 40(12): 100-105(in Chinese).
[6] 彭鑫, 王静蕾, 常金明, 等. 基于壳聚糖的吸附材料在六价铬吸附中的应用 [J]. 高分子材料科学与工程, 2021, 37(6): 181-190. PENG X, WANG J L, CHANG J M, et al. Removal of hexavalent chromium by chitosan-based adsorbents [J]. Polymer Materials Science & Engineering, 2021, 37(6): 181-190(in Chinese).
[7] 周晓倩, 郭华明, 赵凯. 改性天然菱铁矿去除水中六价铬 [J]. 环境工程学报, 2015, 9(9): 4171-4177. ZHOU X Q, GUO H M, ZHAO K. Removal of hexavalent chromium from water solution by modified natural siderite [J]. Chinese Journal of Environmental Engineering, 2015, 9(9): 4171-4177(in Chinese).
[8] DIM P E, MUSTAPHA L S, TERMTANUN M, et al. Adsorption of chromium (Ⅵ) and iron (Ⅲ) ions onto acid-modified kaolinite: Isotherm, kinetics and thermodynamics studies [J]. Arabian Journal of Chemistry, 2021, 14(4): 103064. doi: 10.1016/j.arabjc.2021.103064 [9] 聂兰玉, 陈海, 白智勇, 等. 羟基氧化铝吸附去除六价铬 [J]. 环境工程学报, 2015, 9(8): 3847-3853. doi: 10.12030/j.cjee.20150842 NIE L Y, CHEN H, BAI Z Y, et al. Adsorption of chromium(Ⅵ) by aluminum oxyhydroxide [J]. Chinese Journal of Environmental Engineering, 2015, 9(8): 3847-3853(in Chinese). doi: 10.12030/j.cjee.20150842
[10] 李雯, 张光华, 刘林涛. 硅胶负载微波交联壳聚糖对制革废水中Cr(Ⅵ)的吸附研究 [J]. 西部皮革, 2010, 32(1): 33-35,39. LI W, ZHANG G H, LIU L T. Silica gel based cross-linked chitosan prepared under microwave irradiation as Cr(Ⅵ) adsorbent [J]. West Leather, 2010, 32(1): 33-35,39(in Chinese).
[11] BOUSTILA H, BOUTILLARA Y, VELASCO L F, et al. Tailoring activated carbon properties for Pb(II) and Cr(VI) removal from water in continuous mode [J]. Chemical Engineering & Technology, 2022, 45(2): 258-265. [12] 贺龙强, 胡鹏, 付克明. 利用粉煤灰制备分子筛及对水体中六价铬的吸附研究 [J]. 硅酸盐通报, 2017, 36(10): 3493-3497,3503. doi: 10.16552/j.cnki.issn1001-1625.2017.10.045 HE L Q, HU P, FU K M. Adsorption of hexavalent chromium by zeolite synthesized of fly ash [J]. Bulletin of the Chinese Ceramic Society, 2017, 36(10): 3493-3497,3503(in Chinese). doi: 10.16552/j.cnki.issn1001-1625.2017.10.045
[13] HUANG S Y, PANG H W, LI L, et al. Unexpected ultrafast and high adsorption of U(Ⅵ) and Eu(Ⅲ) from solution using porous Al2O3 microspheres derived from MIL-53 [J]. Chemical Engineering Journal, 2018, 353: 157-166. doi: 10.1016/j.cej.2018.07.129 [14] DRISKO G L, CHEE KIMLING M, SCALES N, et al. One-pot preparation and uranyl adsorption properties of hierarchically porous zirconium titanium oxide beads using phase separation processes to vary macropore morphology [J]. Langmuir:the ACS Journal of Surfaces and Colloids, 2010, 26(22): 17581-17588. doi: 10.1021/la103177h [15] NI Y Y, YANG J H, SUN L X, et al. La/LaF3 co-modified MIL-53(Cr) as an efficient adsorbent for the removal of tetracycline [J]. Journal of Hazardous Materials, 2022, 426: 128112. doi: 10.1016/j.jhazmat.2021.128112 [16] OUYANG B W, CHEN Q, YUAN H H, et al. Reversible environmental impacts of iron-based metal-organic framework MIL-53(Fe) on nitrogen-fixing bacterium Azotobacter vinelandii [J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107794. doi: 10.1016/j.jece.2022.107794 [17] LI X, LIU Y, ZHANG C L, et al. Porous Fe2O3 microcubes derived from metal organic frameworks for efficient elimination of organic pollutants and heavy metal ions [J]. Chemical Engineering Journal, 2018, 336: 241-252. doi: 10.1016/j.cej.2017.11.188 [18] HUANG H L, LI J R, WANG K K, et al. An in situ self-assembly template strategy for the preparation of hierarchical-pore metal-organic frameworks [J]. Nature Communications, 2015, 6: 8847. doi: 10.1038/ncomms9847 [19] ZHANG L, WU HB, et al. Porous Fe2O3 nanocubes derived from MOFs for highly reversible lithium storage[J]. CrystEngComm. 2013(15): 9332-9335. [20] QIN Y Y, WANG Q Y, GE J L, et al. Microwave ultrasound-assisted synthesis of NH2-MIL-53(Al) for fluorescence detection of organosulfur compounds in model fuel [J]. Inorganic Chemistry Communications, 2021, 132: 108828. doi: 10.1016/j.inoche.2021.108828 [21] 邹文兵, 沈军, 邹丽萍, 等. La2O3掺杂氧化铝气凝胶的制备与耐温性能[J]. 稀有金属材料与工程, 2018, 47(S2): 99-103. ZOU W B, SHEN J, ZOU L P, et al. Fabrication and thermal stability of La2O3 doped alumina aerogel[J]. Rare Metal Materials and Engineering, 2018, 47(Sup 2): 99-103(in Chinese).
[22] 矫宝庆, 唐克, 洪新, 等. 活性氧化铝吸附脱除模拟油中吡啶的研究 [J]. 石油炼制与化工, 2022, 53(3): 91-98. JIAO B Q, TANG K, HONG X, et al. Study on adsorption removal of pyridine from model fuels by three kinds of activated alumina [J]. Petroleum Processing and Petrochemicals, 2022, 53(3): 91-98(in Chinese).
[23] LI G, ZHAO H F, GUO P T, et al. Effective removal of tinidazole by MIL-53(Al)-NDC metal-organic framework from aqueous solution [J]. Journal of Solid State Chemistry, 2022, 310: 123066. doi: 10.1016/j.jssc.2022.123066 [24] JIN X Y, LIU Y, TAN J, et al. Removal of Cr(VI) from aqueous solutions via reduction and absorption by green synthesized iron nanoparticles [J]. Journal of Cleaner Production, 2018, 176: 929-936. doi: 10.1016/j.jclepro.2017.12.026 [25] 谢发之, 李海斌, 李国莲, 等. 富里酸对针铁矿吸附Cr(Ⅵ)的影响机理 [J]. 环境科学研究, 2016, 29(10): 1506-1512. doi: 10.13198/j.issn.1001-6929.2016.10.14 XIE F Z, LI H B, LI G L, et al. Effects of fulvic acid on the adsorption of chromium(Ⅵ) to goethite [J]. Research of Environmental Sciences, 2016, 29(10): 1506-1512(in Chinese). doi: 10.13198/j.issn.1001-6929.2016.10.14
[26] DING J, PU L T, WANG Y F, et al. Adsorption and reduction of Cr(Ⅵ) together with Cr(Ⅲ) sequestration by polyaniline confined in pores of polystyrene beads [J]. Environmental Science & Technology, 2018, 52(21): 12602-12611. [27] LI Y X, HAN Y C, WANG C C. Fabrication strategies and Cr(Ⅵ) elimination activities of the MOF-derivatives and their composites [J]. Chemical Engineering Journal, 2021, 405: 126648. doi: 10.1016/j.cej.2020.126648 [28] WANG C, XIONG C, HE Y L, et al. Facile preparation of magnetic Zr-MOF for adsorption of Pb(Ⅱ) and Cr(VI) from water: Adsorption characteristics and mechanisms [J]. Chemical Engineering Journal, 2021, 415: 128923. doi: 10.1016/j.cej.2021.128923 [29] YI Y, WANG X Y, MA J, et al. Fe(Ⅲ) modified Egeria najas driven-biochar for highly improved reduction and adsorption performance of Cr(Ⅵ) [J]. Powder Technology, 2021, 388: 485-495. doi: 10.1016/j.powtec.2021.04.066 [30] LIM A, CHEW J J, NGU L H, et al. Synthesis, characterization, adsorption isotherm, and kinetic study of oil palm trunk-derived activated carbon for tannin removal from aqueous solution [J]. ACS Omega, 2020, 5(44): 28673-28683. doi: 10.1021/acsomega.0c03811 [31] FOO K Y, HAMEED B H. Insights into the modeling of adsorption isotherm systems [J]. Chemical Engineering Journal, 2010, 156(1): 2-10. doi: 10.1016/j.cej.2009.09.013 [32] KHAMWICHIT A, DECHAPANYA W, DECHAPANYA W. Adsorption kinetics and isotherms of binary metal ion aqueous solution using untreated Venus shell [J]. Heliyon, 2022, 8(6): e09610. doi: 10.1016/j.heliyon.2022.e09610