-
平原地区大型人工河道水质主要与汛期上游来水有关,而如何快速分析出上游来水对下游河道的影响是亟须解决的科学问题. 传统的水质参数(如:COD、TN、TP等)的测定耗时较长,无法即时分析出水质状况. 而溶解性有机物(DOM)对水质变化较为敏感、测试方便、耗时较小和可实现在线监测等优点,且DOM与水质参数之间也存在紧密联系[1].
溶解性有机质(DOM)是普遍存在于河流、土壤和沉积物中一类具有复杂结构的混合有机物,并在全球碳循环中具有重要作用[2-7]. 在自然水体中,DOM不仅可为水生生物提供能量,而且可参与水环境中物理、化学和生物反应等过程[8-12]. 同时可通过DOM荧光组分的荧光强度预测水质[13]. 此外DOM被认为是消毒副产物(DBPs)的前体,当饮用含有过量DBPs的饮用水,可能会对人体健康产生影响[14-15].
新汴河是当代挖掘的一条大型人工河流,流经安徽、江苏两省,最终汇入洪泽湖. 作为一条以引洪为主的人工河道,两岸几乎没有支流汇入,所谓支流皆为上游截引河道,有沱河上段和萧濉新河等,因此其水质多受控于上游来水,汛期时水质较差[16-17]. 新汴河不仅是“淮水北调”的重要通道,而且新汴河宿州市城区段为宿州市重要的备用水源地. 因此研究新汴河上覆水中DOM的三维荧光特征及水质状况将有利于汛期新汴河水环境管理工作的开展.
基于三维荧光-平行因子分析和自组织神经网络分析汛期上游来水对新汴河上覆水影响
Evaluating the influence of upstream inflow in flood season on the overlying water of the Xinbian River based on EEM-PARAFAC and SOM
-
摘要: 为探究汛期上游来水对新汴河上覆水水质影响,利用三维荧光-平行因子分析(EEM-PARAFAC)及自组织神经网络(SOM)分析上游来水前后新汴河上覆水水质参数、溶解性有机质(DOM)的变化. 结果表明:(1)汛期上游来水后CODCr和CODMn显著升高(P<0.01),而总氮(TN)的含量却显著降低(P<0.05),表明新汴河汛期上游来水中含有大量有机物;(2)基于EEM-PARAFAC解析出3种荧光组分,C1和C2为类腐殖质组分、C3为类蛋白质组分,上游来水后类蛋白质组分(C3)的含量显著提升(P<0.05),表明汛期上游来水中C3的含量相对较高;(3)SOM分析结果表明:新汴河汛期水质可能与城镇生活污水排放及城市地表径流有关;(4)新汴河上覆水中DOM受控于内源及陆源的共同作用,但汛期上游来水后新汴河上覆水DOM陆源性特征更加明显. 本研究探究了典型平原地区河流(新汴河)受汛期来水影响下水质及DOM的变化,以期为新汴河水环境管理方案的制订提供科学依据.Abstract: To explore the impact of upstream water in flood season on the water quality of the Xinbian River. The fluorescence emission excitation matrix combined with parallel factor analysis (EEM-PARAFAC) and self-organizing map (SOM) were used to analyze the changes in water quality parameters and dissolved organic matter (DOM) before and after upstream inflow. The results showed that: (1) CODCr and CODMn increased significantly (P<0.01) after the upstream inflow in the flood season, while the content of Total Nitrogen (TN) decreased significantly (P<0.05), indicating that the inflow water from the upstream of the Xinbian River during the flood season contained a large amount of organic matter; (2) Based on the EEM-PARAFAC analysis, three fluorescent components were analyzed, suggesting that C1 and C2 were humic-like components, and C3 was a protein-like component. The content of C3 in the upstream inflow water during the flood season was relatively high; (3) SOM analysis results show that: the water quality of the Xinbian River during flood season may be related to urban domestic sewage discharge and urban surface runoff; (4) DOM in the overlying water of Xinbian River was controlled by the combined effect of endogenous and terrestrial sources. However, the terrigenous characteristics of DOM in the overlying water of the Xinbian River were significant after the upper reaches of the flood season. This study explored the changes in water quality and DOM of the Xinbian River in a typical plain area under the influence of inflow during the flood season to provide a scientific basis for the formulation of the water environment management plan for the Xinbian River.
-
Key words:
- Xinbian river /
- dissolved organic matter /
- emission excitation matrix /
- PARAFAC.
-
表 1 荧光组分特征与同类组分匹配数目
Table 1. Spectral characteristics of Ex/Em of there fluorescent components.
组分
ComponentEx/Em 可能来源
Probable source匹配数目
Number of matchesC1 255/441 陆源,类腐殖质,分子量大 25 C2 250(285)/378 陆源,生物降解过程中产生小分子类腐殖质 27 C3 275/330 内源,类蛋白质,与人类活动有关 12 -
[1] 曹昌丽, 梁梦琦, 何桂英, 等. 城镇化河流溶解性有机质的荧光特性与水质相关性: 以宁波市北仑区芦江为例 [J]. 环境科学, 2018, 39(4): 1560-1567. CAO C L, LIANG M Q, HE G Y, et al. Fluorescent dissolved organic matter and its correlation with water quality in a urban river: A case study of the Lujiang River in Beilun, Ningbo [J]. Environmental Science, 2018, 39(4): 1560-1567(in Chinese).
[2] TANG J F, LI X H, CAO C L, et al. Compositional variety of dissolved organic matter and its correlation with water quality in peri-urban and urban river watersheds [J]. Ecological Indicators, 2019, 104: 459-469. doi: 10.1016/j.ecolind.2019.05.025 [3] HU Y, LU Y H, EDMONDS J, et al. Irrigation alters source-composition characteristics of groundwater dissolved organic matter in a large arid river basin, Northwestern China [J]. Science of the Total Environment, 2021, 767: 144372. doi: 10.1016/j.scitotenv.2020.144372 [4] 鲁宗杰, 邓娅敏, 杜尧, 等. 江汉平原高砷地下水中DOM三维荧光特征及其指示意义 [J]. 地球科学, 2017, 42(5): 771-782. LU Z J, DENG Y M, DU Y, et al. EEMs characteristics of dissolved organic matter and their implication in high arsenic groundwater of Jianghan plain [J]. Earth Science, 2017, 42(5): 771-782(in Chinese).
[5] XU R H, OU H S, YU X B, et al. Spectroscopic characterization of dissolved organic matter in coking wastewater during bio-treatment: Full-scale plant study[J]. Water Science and Technology2015, 72(8): 1411-1420. [6] GU N T, SONG Q B, YANG X L, et al. Fluorescence characteristics and biodegradability of dissolved organic matter (DOM) leached from non-point sources in southeastern China [J]. Environmental Pollution, 2020, 258: 113807. doi: 10.1016/j.envpol.2019.113807 [7] MUELLER K K, FORTIN C, CAMPBELL P G C. Spatial variation in the optical properties of dissolved organic matter (DOM) in lakes on the Canadian Precambrian shield and links to watershed characteristics [J]. Aquatic Geochemistry, 2012, 18(1): 21-44. doi: 10.1007/s10498-011-9147-y [8] REN H Y, YAO X, MA F Y, et al. Characterizing variations in dissolved organic matter (DOM) properties in Nansi Lake: A typical macrophytes-derived lake in Northern China [J]. Environmental Science and Pollution Research, 2021, 28(41): 58730-58741. doi: 10.1007/s11356-021-14266-x [9] YU K, DUAN Y H, GAN Y Q, et al. Anthropogenic influences on dissolved organic matter transport in high arsenic groundwater: Insights from stable carbon isotope analysis and electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry [J]. Science of the Total Environment, 2020, 708: 135162. doi: 10.1016/j.scitotenv.2019.135162 [10] GUO H M, LI X M, XIU W, et al. Controls of organic matter bioreactivity on arsenic mobility in shallow aquifers of the Hetao Basin, P. R. China [J]. Journal of Hydrology, 2019, 571: 448-459. doi: 10.1016/j.jhydrol.2019.01.076 [11] CHEN M L, PRICE R M, YAMASHITA Y, et al. Comparative study of dissolved organic matter from groundwater and surface water in the Florida coastal Everglades using multi-dimensional spectrofluorometry combined with multivariate statistics [J]. Applied Geochemistry, 2010, 25(6): 872-880. doi: 10.1016/j.apgeochem.2010.03.005 [12] STAHL M, WASSIK J, GEHRING J, et al. Connecting the age and reactivity of organic carbon to watershed geology and land use in tributaries of the Hudson River [J]. Journal of Geophysical Research:Biogeosciences, 2021, 126(9): 1-17. [13] SHANG Y X, SONG K S, JACINTHE P A, et al. Fluorescence spectroscopy of CDOM in urbanized waters across gradients of development/industrialization of China [J]. Journal of Hazardous Materials, 2021, 415: 125630. doi: 10.1016/j.jhazmat.2021.125630 [14] WANG Y L, HU Y Y, YANG C M, et al. Variations of DOM quantity and compositions along WWTPs-river-lake continuum: Implications for watershed environmental management [J]. Chemosphere, 2019, 218: 468-476. doi: 10.1016/j.chemosphere.2018.11.037 [15] YU H, FENG S B. Optical property of dissolved organic matter and its correlation with heavy metals in surface water around metal mines to be exploited in southern Anhui Province, China [J]. Water Supply, 2022, 22(8): 6765-6776. doi: 10.2166/ws.2022.289 [16] YU H, LIN M L, PENG W H, et al. Seasonal changes of heavy metals and health risk assessment based on Monte Carlo simulation in alternate water sources of the Xinbian River in Suzhou City, Huaibei Plain, China [J]. Ecotoxicology and Environmental Safety, 2022, 236: 113445. doi: 10.1016/j.ecoenv.2022.113445 [17] JIANG Y Q, GUI H R, LI C, et al. Evaluation of the difference in water quality between urban and suburban rivers based on self-organizing map [J]. Acta Geophysica, 2021, 69(5): 1855-1864. doi: 10.1007/s11600-021-00631-4 [18] 江雅琪, 桂和荣, 陈晨, 等. 宿州市城市景区水域底泥重金属含量特征及生态风险评价 [J]. 环境化学, 2021, 40(8): 2410-2418. doi: 10.7524/j.issn.0254-6108.2020111302 JIANG Y Q, GUI H R, CHEN C, et al. Distribution and ecological risk assessment of heavy metals in sediment in urban scenic area [J]. Environmental Chemistry, 2021, 40(8): 2410-2418(in Chinese). doi: 10.7524/j.issn.0254-6108.2020111302
[19] WICKLAND K P, NEFF J C, AIKEN G R. Dissolved organic carbon in Alaskan boreal forest: Sources, chemical characteristics, and biodegradability [J]. Ecosystems, 2007, 10(8): 1323-1340. doi: 10.1007/s10021-007-9101-4 [20] MA Y, LIU Z H, XI B D, et al. Characteristics of groundwater pollution in a vegetable cultivation area of typical facility agriculture in a developed city [J]. Ecological Indicators, 2019, 105: 709-716. doi: 10.1016/j.ecolind.2018.10.056 [21] 于会彬, 宋永会, 杨楠, 等. 三维荧光与神经网络研究城市河流沉积物孔隙水有机物组成与结构特征 [J]. 光谱学与光谱分析, 2015, 35(4): 934-939. doi: 10.3964/j.issn.1000-0593(2015)04-0934-06 YU H B, SONG Y H, YANG N, et al. Characterizing structural composition of dissolved and particulate organic matter from sediment pore water in a urban river using excitation-emission matrix fluorescence with self-organizing map [J]. Spectroscopy and Spectral Analysis, 2015, 35(4): 934-939(in Chinese). doi: 10.3964/j.issn.1000-0593(2015)04-0934-06
[22] 聂泽宇, 邬剑宇, 吴小东, 等. 荧光溶解性有机质EEMs的新旧自组织映射图解析方法比较研究 [J]. 环境科学学报, 2017, 37(1): 357-369. doi: 10.13671/j.hjkxxb.2016.0149 NIE Z Y, WU J Y, WU X D, et al. Comparative study on the interpretation of EEMs of fluorescent dissolved organic matter using the new and traditional self-organizing map methods [J]. Acta Scientiae Circumstantiae, 2017, 37(1): 357-369(in Chinese). doi: 10.13671/j.hjkxxb.2016.0149
[23] RAHMAN A T M S, KONO Y, HOSONO T. Self-organizing map improves understanding on the hydrochemical processes in aquifer systems [J]. Science of the Total Environment, 2022, 846: 157281. doi: 10.1016/j.scitotenv.2022.157281 [24] DERRIEN M, KIM M S, OCK G, et al. Estimation of different source contributions to sediment organic matter in an agricultural-forested watershed using end member mixing analyses based on stable isotope ratios and fluorescence spectroscopy [J]. Science of the Total Environment, 2018, 618: 569-578. doi: 10.1016/j.scitotenv.2017.11.067 [25] ZHUANG W E, CHEN W, CHENG Q, et al. Assessing the priming effect of dissolved organic matter from typical sources using fluorescence EEMs-PARAFAC [J]. Chemosphere, 2021, 264: 128600. doi: 10.1016/j.chemosphere.2020.128600 [26] LU K T, GAO H J, YU H B, et al. Insight into variations of DOM fractions in different latitudinal rural black-odor waterbodies of Eastern China using fluorescence spectroscopy coupled with structure equation model [J]. Science of the Total Environment, 2022, 816: 151531. doi: 10.1016/j.scitotenv.2021.151531 [27] YANG X L, YU X B, CHENG J R, et al. Impacts of land-use on surface waters at the watershed scale in southeastern China: Insight from fluorescence excitation-emission matrix and PARAFAC [J]. Science of the Total Environment, 2018, 627,15: 647-657. [28] 高凤, 邵美玲, 唐剑锋, 等. 城镇流域水体-沉积物中溶解性有机质的荧光特性及影响因素: 以宁波市小浃江为例 [J]. 环境科学, 2019, 40(9): 4009-4017. GAO F, SHAO M L, TANG J F, et al. Fluorescence characteristics and influencing factors of dissolved organic matter (DOM) in water and sediment of urban watershed: A case study of Xiaojia River in Ningbo City [J]. Environmental Science, 2019, 40(9): 4009-4017(in Chinese).
[29] 张志彬, 孟庆宇, 马征. 城市面源污染的污染特征研究 [J]. 给水排水, 2016, 52(S1): 163-167. ZHANG Z B, MENG Q Y, MA Z, Study on pollution characteristics of urban non-point source pollution [J], Water & Wastewater Engineering, 2016, 52(S1): 163-167 (in Chinese). .
[30] 后希康, 张凯, 段平洲, 等. 基于APCS-MLR模型的沱河流域污染来源解析 [J]. 环境科学研究, 2021, 34(10): 2350-2357. doi: 10.13198/j.issn.1001-6929.2021.05.30 HOU X K, ZHANG K, DUAN P Z, WANG X, TA L, GUO Y, XIA R. Pollution Source Apportionment of Tuohe River Based on Absolute Principal Component Score-Multiple Linear Regression [J]. Research of Environmental Sciences, 2021, 34(10): 2350-2357(in Chinese). doi: 10.13198/j.issn.1001-6929.2021.05.30