-
随着新型冠状病毒肺炎(COVID-19)在全球流行加剧,消毒剂在医院、医疗保健设施以及日常生活中广泛大量使用[1]. 消毒剂中最常见的活性成分之一就是苯扎氯铵(benzalkonium chlorides,BACs),它们是含有C8—C18烷基的各种烷基苄基二甲基氯化铵的混合物[2]. 目前环境中发现的BACs主要来自于医院废水和市政污水处理厂. 医院废水中的BACs浓度被检测高达2800 μg·L−1[3]. 在市政污水处理厂的检测中,其进水和出水中的BACs浓度分别为25—170 μg·L−1[4]和0.3—4.1 μg·L−1[5]. 然而,目前的污水处理工艺难以用于处理BACs,由于其化学结构中存在苄基而难以生物降解,导致BACs在处置时以生物固体形式存在或经过处理后作为微污染物释放到环境中[6]. 根据毒理学研究表明,BACs对无脊椎动物、鱼类、藻类、水蚤、轮虫和原生动物也表现出急性毒性,其半最大效应浓度EC50为5.1—2940 μg·L−1[5, 7 − 8]. 因此,我们需要关注其在环境中的排放和危害.
高级氧化工艺(AOPs)通过产生强氧化性的自由基将有机污染物降解甚至矿化为无毒的无机物,被视为处理难生物降解废水的有效方法. 关于使用AOPs降解BACs的研究较少,主要集中在紫外(Ultraviolet,UV)光催化降解BACs. UV可以直接光催化降解部分有机污染物. 通过投加一些化学氧化剂如过氧化氢(H2O2)、臭氧(O3)、过硫酸盐(PS)和氯(Cl)等来产生具有强氧化性的自由基(·OH、·
${\rm{SO}}_4^{2-} $ 、·Cl)也能实现大部分有机污染物的降解[9 − 12]. 与单独的UV光催化降解和氧化剂氧化降解相比,UV/PS[13]、UV/Cl[9]和UV/O3[6]对BACs的氧化降解有协同作用. 铁基催化剂由于其丰富和低成本以及无毒的性质也得到广泛的研究和应用. Hong等[14]通过使用Fe2+活化PS,在60 min的反应时间内去除了91.4%的BACs和52.5%的COD;Zhang等[15]通过使用Fe2+活化H2O2,在60 min的反应时间内BACs的去除率大于80%. 尽管Fe2+可有效活化H2O2和PS等氧化剂,但它们通过水被氧化消耗从而难以重复使用. 这种通过牺牲其他化学品来获得高效率并非是长久之计.开发具有光催化活性且稳定的固体铁基光催化材料值得去探索. 传统的半导体光催化材料如赤铁矿(Fe2O3)都存在明显的局限性,存在比表面积小、易光腐蚀和光生电子-空穴复合快等问题[16]. 铁基金属有机骨架MIL-88A由于具有高比表面积、晶格稳定和结构可调是个不错的选择. 更重要的是,大多数铁基MOF都是使用二甲基甲酰胺(DMF)合成的,一种国际癌症研究机构认定的致癌溶剂[17 − 18],而MIL-88A是唯一可以在没有有机溶剂参与的情况下用水去合成,没有造成二次污染. 因此,本研究将十二烷基二甲基苄基氯化铵(Dodecyl dimethyl benzyl ammonium chloride,DDBAC)作为目标污染物,BACs的最主要同系物,以水热法制备MIL-88A将其作为非均相光催化剂,实现了DDBAC在可见光下的降解,探究DDBAC在可见光下的降解性能、降解途径、降解机理、急性毒性以及材料的稳定性进行评估.
MIL-88A作为非均相光芬顿催化剂在可见光下降解水中苯扎氯铵:性能、降解途径和急性毒性评估
MIL-88A as a heterogeneous photo-Fenton catalyst for the degradation of benzalkonium chloride under visible light: Performance, degradation pathway, and toxicity evaluation
-
摘要: 随着新型冠状病毒肺炎(COVID-19)在全球的流行,主要成分为苯扎氯铵的消毒剂大量使用对环境带来威胁. 本研究通过水热法成功制备了铁基金属有机骨架MIL-88A,将其作为光催化剂成功实现了苯扎氯铵在可见光下的高效降解. 通过SEM、XRD、XPS以及UV-vis DRS等表征方法研究了MIL-88A的形貌、结构以及光催化性能. 为了达到光催化降解苯扎氯铵的最佳效率,探究了MIL-88A在不同条件下的光催化降解性能. 结果表明,MIL-88A在pH=5,H2O2投加量为0.9 mL·L−1,MIL-88A剂量为0.25 g·L−1时,降解效果最好,35 min DDBAC降解效率达到100%. 采用UHPLC-Q-TOF-MS确定了降解中间产物,分析了苯扎氯铵可能的降解途径. 此外,基于分子轨道理论和自由基淬灭实验证明了氧化降解苯扎氯铵过程中羟基自由基是主要贡献者. 通过发光细菌法对DDBAC及其中间体的毒性进行了评估,结果表明,MIL-88A可见光光芬顿工艺能够实现溶液脱毒. 光催化降解循环实验以及对催化剂反应前后的表征证明了MIL-88A具有较高的稳定性.Abstract: With the increased global epidemic of novel coronavirus disease (COVID-19), the extensive use of disinfectants containing high levels of benzalkonium chlorides (BACs) poses a threat to the environment. In this study, iron-based organic framework MIL-88A was successfully prepared by hydrothermal method, which was used as a photocatalyst to achieve efficient degradation of BACs under visible light. The morphology, structure and photocatalytic properties of MIL-88A were studied by SEM, XRD, XPS and UV-vis DRS characterization. In order to achieve the best photocatalytic degradation efficiency of BACs, the photocatalytic degradation performance of MIL-88A was investigated under different conditions. The results showed the degradation efficiency of DDBAC was the best at pH=5, H2O2 concentration of 0.9 mL·L−1, and MIL-88A dosage of 0.25 g·L−1, and the degradation efficiency of DDBAC reached 100% after 35 minutes. The degradation intermediates were determined by UHPLC-Q-TOF-MS and the possible degradation pathway of BACs was analyzed. In addition, it was demonstrated that hydroxyl radicals are the main contributors to the oxidative degradation of benzalkonium chloride based on molecular orbital theory and free radical quenching experiments. The toxicity of DDBAC and its intermediates was assessed by the luminescent bacterial method, and the results showed that the MIL-88A visible light photo-Fenton process was able to achieve solution detoxification. The photocatalytic degradation cycle experiment and the characterization of the catalyst before and after the reaction proved that MIL-88A had high stability.
-
Key words:
- MIL-88A /
- DDBAC /
- visible light /
- degradation pathway /
- degradation mechanism /
- toxicity assessment.
-
图 5 (a)不同条件对DDBAC降解的影响;(b)不同条件下的DDBAC降解反应速率常数kobs实验条件:[DDBAC]0 = 40 mg·L−1;[H2O2]0 = 0.9 mL·L−1;[MIL-88A]0 = 0.25 g·L−1;pH = 5
Figure 5. (a) Effects of comparative experiments on the DDBAC photo-Fenton oxidation process;(b) degradation rate constants (kobs)as a function of the photo-Fenton oxidation process
图 12 (a)不同DDBAC浓度对发光细菌的急性毒性;(b)光Fenton氧化过程中DDBAC溶液的急性毒性和DDBAC浓度变化实验条件:[DDBAC]0 = 10 mg·L−1;[H2O2]0 = 30 μL·L−1;[MIL-88A]0 = 50 mg·L−1;pH = 7
Figure 12. (a) Acute toxicity of DDBAC of different concentrations to luminescent bacteria;(b) Acute toxicity and DDBAC concentration changes in DDBAC solutions during photo-Fenton oxidation
表 1 DDBAC氧化产物的经验公式和可能的结构
Table 1. The proposed empirical formulas and structures of oxidation products of DDBAC
化合物
Compound保留时间/min
Retention
Time
可能的化学式
Proposed empirical
formula质荷比
Mass (m/z)可能的结构
Proposed structure理论值
Theoretical实验值
ExperimentalDDBAC 1.64 C21H38N 304.3004 304.3026 TP-1 1.76 C21H36NO 318.2797 318.3171 TP-2 2.09 C21H34NO2 332.2589 332.3345 TP-3 1.23 C14H32N 214.2535 214.2551 TP-4 1.34 C14H30NO 228.2327 228.2704 TP-5 1.41 C14H30NO2 244.2277 244.2656 TP-6 1.16 C21H38NO 320.2953 320.2978 TP-7 1.27 C21H38NO2 336.2903 336.2939 -
[1] BARBER O W, HARTMANN E M. Benzalkonium chloride: A systematic review of its environmental entry through wastewater treatment, potential impact, and mitigation strategies [J]. Critical Reviews in Environmental Science and Technology, 2022, 52(15): 2691-2719. doi: 10.1080/10643389.2021.1889284 [2] KAHRILAS G A, BLOTEVOGEL J, STEWART P S, et al. Biocides in hydraulic fracturing fluids: A critical review of their usage, mobility, degradation, and toxicity [J]. Environmental Science & Technology, 2015, 49(1): 16-32. [3] HUANG N, WANG W L, XU Z B, et al. A study of synergistic oxidation between ozone and chlorine on benzalkonium chloride degradation: Reactive species and degradation pathway [J]. Chemical Engineering Journal, 2020, 382: 122856. doi: 10.1016/j.cej.2019.122856 [4] CARBAJO J B, PETRE A L, ROSAL R, et al. Ozonation as pre-treatment of activated sludge process of a wastewater containing benzalkonium chloride and NiO nanoparticles [J]. Chemical Engineering Journal, 2016, 283: 740-749. doi: 10.1016/j.cej.2015.08.001 [5] LAVORGNA M, RUSSO C, D'ABROSCA B, et al. Toxicity and genotoxicity of the quaternary ammonium compound benzalkonium chloride (BAC) using Daphnia magna and Ceriodaphnia dubia as model systems [J]. Environmental Pollution, 2016, 210: 34-39. doi: 10.1016/j.envpol.2015.11.042 [6] YU X B, KAMALI M, VANAKEN P, et al. Advanced oxidation of benzalkonium chloride in aqueous media under ozone and ozone/UV systems - Degradation kinetics and toxicity evaluation [J]. Chemical Engineering Journal, 2021, 413: 127431. doi: 10.1016/j.cej.2020.127431 [7] MATARACI-KARA E, ATAMAN M, YILMAZ G, et al. Evaluation of antifungal and disinfectant-resistant Candida species isolated from hospital wastewater [J]. Archives of Microbiology, 2020, 202(9): 2543-2550. doi: 10.1007/s00203-020-01975-z [8] MOHAPATRA S, LIN Y, GOH S G, et al. Quaternary ammonium compounds of emerging concern: Classification, occurrence, fate, toxicity and antimicrobial resistance [J]. Journal of Hazardous Materials, 2023, 445: 130393. doi: 10.1016/j.jhazmat.2022.130393 [9] HUANG N, WANG T, WANG W L, et al. UV/chlorine as an advanced oxidation process for the degradation of benzalkonium chloride: Synergistic effect, transformation products and toxicity evaluation [J]. Water Research, 2017, 114: 246-253. doi: 10.1016/j.watres.2017.02.015 [10] MIKLOS D B, HARTL R, MICHEL P, et al. UV/H2O2 process stability and pilot-scale validation for trace organic chemical removal from wastewater treatment plant effluents [J]. Water Research, 2018, 136: 169-179. doi: 10.1016/j.watres.2018.02.044 [11] SRITHEP S, PHATTARAPATTAMAWONG S. Kinetic removal of haloacetonitrile precursors by photo-based advanced oxidation processes (UV/H2O2, UV/O3, and UV/H2O2/O3) [J]. Chemosphere, 2017, 176: 25-31. doi: 10.1016/j.chemosphere.2017.02.107 [12] WACŁAWEK S, LUTZE H V, GRÜBEL K, et al. Chemistry of persulfates in water and wastewater treatment: A review [J]. Chemical Engineering Journal, 2017, 330: 44-62. doi: 10.1016/j.cej.2017.07.132 [13] LEE M Y, WANG W L, WU Q Y, et al. Degradation of dodecyl dimethyl benzyl ammonium chloride (DDBAC) as a non-oxidizing biocide in reverse osmosis system using UV/persulfate: Kinetics, degradation pathways, and toxicity evaluation [J]. Chemical Engineering Journal, 2018, 352: 283-292. doi: 10.1016/j.cej.2018.04.174 [14] HONG J M, XIA Y F, ZHANG Q, et al. Oxidation of benzalkonium chloride in aqueous solution by S2O82−/Fe2+ process: Degradation pathway, and toxicity evaluation [J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 78: 230-239. doi: 10.1016/j.jtice.2017.06.005 [15] ZHANG Q, XIA Y F, HONG J M. Mechanism and toxicity research of benzalkonium chloride oxidation in aqueous solution by H2O2/Fe2+ process [J]. Environmental Science and Pollution Research, 2016, 23(17): 17822-17830. doi: 10.1007/s11356-016-6986-5 [16] XIA T L, LIN Y C, LI W Z, et al. Photocatalytic degradation of organic pollutants by MOFs based materials: A review [J]. Chinese Chemical Letters, 2021, 32(10): 2975-2984. doi: 10.1016/j.cclet.2021.02.058 [17] MAHMOODI N M, ABDI J, OVEISI M, et al. Metal-organic framework (MIL-100 (Fe)): Synthesis, detailed photocatalytic dye degradation ability in colored textile wastewater and recycling [J]. Materials Research Bulletin, 2018, 100: 357-366. doi: 10.1016/j.materresbull.2017.12.033 [18] YU J, XIONG W P, LI X, et al. Functionalized MIL-53(Fe) as efficient adsorbents for removal of tetracycline antibiotics from aqueous solution [J]. Microporous and Mesoporous Materials, 2019, 290: 109642. doi: 10.1016/j.micromeso.2019.109642 [19] EL ASMAR R, BAALBAKI A, ABOU KHALIL Z, et al. Iron-based metal organic framework MIL-88-A for the degradation of naproxen in water through persulfate activation [J]. Chemical Engineering Journal, 2021, 405: 126701. doi: 10.1016/j.cej.2020.126701 [20] WANG J M, WAN J Q, MA Y W, et al. Metal-organic frameworks MIL-88A with suitable synthesis conditions and optimal dosage for effective catalytic degradation of Orange G through persulfate activation [J]. RSC Advances, 2016, 6(113): 112502-112511. doi: 10.1039/C6RA24429G [21] DAOUD F, PELZER D, ZUEHLKE S, et al. Ozone pretreatment of process waste water generated in course of fluoroquinolone production [J]. Chemosphere, 2017, 185: 953-963. doi: 10.1016/j.chemosphere.2017.07.040 [22] VISWANATHAN V P, MATHEW S V, DUBAL D P, et al. Exploring the effect of morphologies of Fe(III) metal-organic framework MIL-88A(Fe) on the photocatalytic degradation of rhodamine B [J]. ChemistrySelect, 2020, 5(25): 7534-7542. doi: 10.1002/slct.202001670 [23] LIAO X Y, WANG F, WANG F, et al. Synthesis of (100) surface oriented MIL-88A-Fe with rod-like structure and its enhanced fenton-like performance for phenol removal [J]. Applied Catalysis B: Environmental, 2019, 259: 118064. doi: 10.1016/j.apcatb.2019.118064 [24] LIN K Y A, CHANG H A, HSU C J. Iron-based metal organic framework, MIL-88A, as a heterogeneous persulfate catalyst for decolorization of Rhodamine B in water [J]. RSC Advances, 2015, 5(41): 32520-32530. doi: 10.1039/C5RA01447F [25] LI Q W, LI L M, LONG X Y, et al. Rational design of MIL-88A(Fe)/Bi2WO6 heterojunctions as an efficient photocatalyst for organic pollutant degradation under visible light irradiation [J]. Optical Materials, 2021, 118: 111260. doi: 10.1016/j.optmat.2021.111260 [26] YU D Y, LI L B, WU M H, et al. Enhanced photocatalytic ozonation of organic pollutants using an iron-based metal-organic framework [J]. Applied Catalysis B: Environmental, 2019, 251: 66-75. doi: 10.1016/j.apcatb.2019.03.050 [27] XUE B, DU L, JIN J S, et al. In situ growth of MIL-88A into polyacrylate and its application in highly efficient photocatalytic degradation of organic pollutants in water [J]. Applied Surface Science, 2021, 564: 150404. doi: 10.1016/j.apsusc.2021.150404 [28] YI X H, JI H D, WANG C C, et al. Photocatalysis-activated SR-AOP over PDINH/MIL-88A(Fe) composites for boosted chloroquine phosphate degradation: Performance, mechanism, pathway and DFT calculations [J]. Applied Catalysis B: Environmental, 2021, 293: 120229. doi: 10.1016/j.apcatb.2021.120229 [29] XU W T, MA L, KE F, et al. Metal-organic frameworks MIL-88A hexagonal microrods as a new photocatalyst for efficient decolorization of methylene blue dye [J]. Dalton Transactions, 2014, 43(9): 3792-3798. doi: 10.1039/C3DT52574K [30] CHEN X J, DAI Y Z, WANG X Y, et al. Synthesis and characterization of Ag3PO4 immobilized with graphene oxide (GO) for enhanced photocatalytic activity and stability over 2, 4-dichlorophenol under visible light irradiation [J]. Journal of Hazardous Materials, 2015, 292: 9-18. doi: 10.1016/j.jhazmat.2015.01.032 [31] WANG D B, JIA F Y, WANG H, et al. Simultaneously efficient adsorption and photocatalytic degradation of tetracycline by Fe-based MOFs [J]. Journal of Colloid and Interface Science, 2018, 519: 273-284. doi: 10.1016/j.jcis.2018.02.067 [32] FU H, SONG X X, WU L, et al. Room-temperature preparation of MIL-88A as a heterogeneous photo-Fenton catalyst for degradation of rhodamine B and bisphenol a under visible light [J]. Materials Research Bulletin, 2020, 125: 110806. doi: 10.1016/j.materresbull.2020.110806 [33] BUXTON G V, GREENSTOCK C L, HELMAN W P, et al. Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals ( OH/ O–in Aqueous Solution [J]. Journal of Physical and Chemical Reference Data, 1988, 17(2): 513-886. doi: 10.1063/1.555805 [34] ZUO Z H, CAI Z L, KATSUMURA Y, et al. Reinvestigation of the acid–base equilibrium of the (bi)carbonate radical and pH dependence of its reactivity with inorganic reactants [J]. Radiation Physics and Chemistry, 1999, 55(1): 15-23. doi: 10.1016/S0969-806X(98)00308-9 [35] LE V T, TRAN V A, TRAN D L, et al. Fabrication of Fe3O4/CuO@C composite from MOF-based materials as an efficient and magnetically separable photocatalyst for degradation of ciprofloxacin antibiotic [J]. Chemosphere, 2021, 270: 129417. doi: 10.1016/j.chemosphere.2020.129417 [36] GAO Y X, YU G, LIU K, et al. Integrated adsorption and visible-light photodegradation of aqueous clofibric acid and carbamazepine by a Fe-based metal-organic framework [J]. Chemical Engineering Journal, 2017, 330: 157-165. doi: 10.1016/j.cej.2017.06.139 [37] WANG J Q, QIAN Q R, CHEN Q H, et al. Significant role of carbonate radicals in tetracycline hydrochloride degradation based on solar light-driven TiO2-seashell composites: Removal and transformation pathways [J]. Chinese Journal of Catalysis, 2020, 41(10): 1511-1521. doi: 10.1016/S1872-2067(19)63525-4 [38] XIE A T, CUI J Y, YANG J, et al. Graphene oxide/Fe(III)-based metal-organic framework membrane for enhanced water purification based on synergistic separation and photo-Fenton processes [J]. Applied Catalysis B: Environmental, 2020, 264: 118548. doi: 10.1016/j.apcatb.2019.118548 [39] YANG Y, LU X L, JIANG J, et al. Degradation of sulfamethoxazole by UV, UV/H2O2 and UV/persulfate (PDS): Formation of oxidation products and effect of bicarbonate [J]. Water Research, 2017, 118: 196-207. doi: 10.1016/j.watres.2017.03.054