-
在煤炭开采和使用过程中会生产大量煤矸石、粉煤灰等固体废弃物,这些固废的堆存既占用土地又会造成严重的环境污染. 当前,煤基固废作为大宗固废,其利用方式主要有如下几种:一是直接利用,如作为填筑材料用于筑路、回填,或者制备型煤用于燃烧;二是制备建材或者其他材料,如利用煤矸石制备水泥和建筑材料[1];三是提取有价元素,粉煤灰中富含铝、镓、锂等有价元素,可以通过提取工艺对其进行回收[2]. 由于受处理成本和效率的制约,目前煤基固废的综合利用率仍不到53.1%[3]. 推进煤基固废减量化、资源化规模利用,将其由燃料化应用向高值材料化应用方面转变是双碳背景下可持续发展的必然要求. 由于部分煤基固废中碳含量较高,将其作为制备炭材料的原料之一,可实现其高值化利用,因此利用碳含量高的煤基固废制备多孔炭意义重大.
另一方面,中国人民共和国生态环境部于2023年发布的《2021年中国生态环境统计年报》数据显示,2021年全国废水中重金属(总砷、总铅、总镉、总汞、总铬)排放量为50.5 t[4]. 其中,铬作为废水中的典型重金属,在环境中主要以六价铬和三价铬的形式存在. 六价铬具有急性毒性、难降解、迁移性强、易富集和致癌性等特点,其毒性是三价铬的500倍[5]. 与有机物不同,重金属不能通过生物降解,在人体内积累到一定浓度后会危害身体健康,而且含铬废水还会对水生生物群落造成严重威胁(如图1所示)[6 − 8]. 因此如何降低废水中六价铬的浓度是目前亟需解决的难题之一. 多孔炭作为炭材料的一种,其表面活性官能团和重金属之间存在物理和化学作用,可以有效去除水体中的重金属[9 − 10]. 基于此,本文综述了煤基多孔炭制备和改性方法以及其对重金属吸附性能的研究进展,并针对目前的局限性和挑战对改性多孔炭吸附重金属未来的发展方向进行了展望.
煤基固废多孔炭的制备及其对废水中六价铬的去除性能研究进展
Progress in preparation and modification of coal-based porous carbon and the adsorption performance of Cr(Ⅵ) in waste water
-
摘要: 推进煤炭清洁高效利用是助力双碳目标的重要途径之一,而煤基固废高值化利用是煤炭清洁高效利用过程中很重要的一个方面,利用煤基固废制备多孔炭可实现煤基固废高值化利用. 本文综述了以各种煤基固废为原料制备多孔炭和多孔炭改性的方法,并介绍了煤基多孔炭对六价铬的吸附性能研究进展. 目前,煤基固废制备多孔炭的方法主要有热解、水热碳化、模板法和活化法;而掺杂改性则主要是通过浸渍或者原位合成等手段对多孔炭进行氮、硫、铁等原子的掺杂. 多孔炭对水中六价铬有良好的吸附性能,其吸附机理主要包括静电作用、氧化还原反应、离子交换作用和表面络合作用等. 由于废水中的重金属离子种类繁多、存在形态多样,且各种离子之间存在一定的相互作用,因此实际废水体系中重金属离子和多孔炭之间的作用机理较为复杂. 明确多孔炭与重金属之间的选择吸附性关系以及重金属离子吸附效率与多孔炭结构之间的构效关系,开发绿色、环保、低碳、高效的重金属吸附技术是未来废水中重金属离子去除的重要研究方向之一.Abstract: Promoting the clean and efficient utilization of coal is an important way to achieve carbon peaking and carbon neutrality goals. High-value utilization of coal-based solid waste is an important aspect for clean and efficient utilization of coal. Preparation of porous carbon from coal-based solid waste is one of the effective ways to achieving high-value utilization of coal-based solid waste. This paper reviews the preparation of porous carbon from various coal-based solid wastes and the modification of porous carbon, and presents the progress of research on the adsorption performance of coal-based porous carbon for Cr(Ⅵ). At present, the main methods for preparing porous carbon from coal-based solid waste are pyrolysis, hydrothermal carbonization, template and activation etc. And through impregnation or in situ synthesis, heteroatoms such as N, S and Fe can be doped into the porous carbon. Porous carbon has good adsorption properties for Cr(Ⅵ) in water, and its adsorption mechanism mainly includes electrostatic interaction, redox reaction, ion exchange and surface complexation. For the actual wastewater, there are many types of heavy metals, as well as their existence forms, so the certain interactions between various ions are complex, and the mechanism of action between heavy metal ions and porous carbon are not very clear. In the future, the constitutive relationship between heavy metal ion adsorption efficiency and porous carbon structure needs to be clarified. Furthermore, developing green, environmentally friendly, low-carbon and efficient heavy metal adsorption technologies is also one of the important tasks for the removal of heavy metal ions from wastewater.
-
Key words:
- porous carbon /
- preparation methods /
- doping modification /
- adsorption /
- Cr(Ⅵ).
-
图 11 (a)重金属的5种吸附机制[17];(b) Hg的吸附机理示意图[81];(c) As的吸附机理示意图[120 − 121];(d) Cr的吸附机理示意图[81]
Figure 11. (a) Five sorption mechanisms for heavy metals[17]; (b) schematic diagram of the sorption mechanism for Hg [81]; (c) schematic diagram of the sorption mechanism for As [120 − 121]; (d) schematic diagram of the sorption mechanism for Cr [81]
表 1 各种煤基多孔炭的制备参数及孔结构参数
Table 1. Preparation parameters and pore structure parameters of various coal-based porous carbon
原料
Material制备参数
Preparation parameters孔结构参数
Hole structure parameters参考文献
References制备方式
Method温度/℃
Temperature时间/min
Time活化剂/模板剂
Activator/ Template比表面积/(m2·g−1)
Specific surface area孔体积/(cm3·g−1)
Pore volume褐煤1 化学氧化法(H3PO4) 500 420 未使用活化剂/模板剂 5.46 0.079 [23] 褐煤2 常规热解 800 60 未使用活化剂/模板剂 242.73 0.186 [24] 褐煤3 活化法,水蒸汽等离子体改性 800 120 MgCO3 1989 1.09 [25] 烟煤 活化法 800 120 NH3 1235 0.58 [26] 无烟煤1 常规热解 700 120 KOH 3550.7 — [27] 无烟煤2 活化法 880 180 水蒸气 993.5 0.5086 [28] 煤泥 活化法 485 90 ZnCl2 918.15 0.511 [29] 煤沥青1 活化法 800 60 KOH 1649 1.0 [30] 煤沥青2 活化法 800 60 KOH 2168 1.14 [31] 煤沥青3 模板法 700 120 NaCl 332 0.422 [32] 煤焦油+沥青 常规热解 900 120 未使用活化剂/模板剂 3305 1.66 [33] 煤气化粗渣 活化法 700 360 CO2 862.76 0.684 [34] 煤气化细渣 活化法 750 80 KOH 2481 1.711 [35] 煤矸石 活化法 850 180 K2CO3 1160 0.512 [36] 煤矸石+松木屑 热解法 500 60 未使用活化剂/模板剂 80.725 0.094 [37] —,文献中未提及. —, not mentioned in the literature. 表 2 多孔炭杂原子掺杂改性
Table 2. Porous carbon modified by heteroatom doping
掺杂原子
Atomic type添加剂
Additives研究结果
Research results参考文献
References氮原子 氨气 活性炭表面固定的吡啶氮、胺基、吡咯氮等官能团,提高Cu(Ⅱ) 离子的吸附速率和容量. [78] 甲壳素 较高的温度以石墨型氮的形态存在,相比前者,在较低温度主要是以吡咯氮和胺基的形式存在. [76] g-C3N4 g-C3N4 的引入能够显著提高催化剂的比表面积,提高铁纳米颗粒在碳载体材料上的均匀分散程度. [79] 铁原子 Fe3O4 Fe3O4有利于多孔炭材料中孔的形成和发育、催化孔隙的生成,其中添加质量分数10%的Fe3O4 产生的中孔率高达76.0%. [80] 磁铁矿 磁铁矿的存在可以增加炭化和活化速率,形成大的比表面积和高的孔体积,并且促进了活性炭中微孔和中孔数量的增加. [28] 赤泥 赤泥中的Fe2O3 先还原成Fe3O4,再进一步还原成Fe0;Fe0 将Cr(Ⅵ) 还原成Cr(Ⅲ) 再进行吸附. [24] 赤泥 赤泥改性水热炭中形成Fe3O4 和Fe0 磁性成分,对Cr(Ⅵ) 展现出较好的化学还原和吸附效果. [81] 磁铁矿 磁铁矿在pH≥5.5时对Pb(Ⅱ) 具有很好的吸附效果,这是因为较高的pH值有利于磁铁矿表面去质子化导致其表面负电荷位点增多,与带正电荷的Pb(Ⅱ) 之间产生强烈静电引力而提升吸附性能. [82] 硫原子 SO2、H2S SO2改性后的活性炭可提高对Cd(Ⅱ) 约70%的吸附容量;吸附Pb(Ⅱ) 时,随着活性炭中硫含量的增加,对Pb(Ⅱ) 的吸附量增加. [83 − 84] 废旧聚苯硫醚 所制备的材料是微孔与介孔复合材料且主要孔型为微孔,对于Cd(Ⅱ) 吸附量24.69 mg·g−1. 其比表面积为466.69 m2·g−1,微孔体积为0.1469 cm3·g−1,平均孔径为2.3287 nm. [85] 表 3 部分煤基多孔炭吸附六价铬的最佳条件
Table 3. Optimal conditions for the adsorption of hexavalent chromium on some coal-based porous carbon
原料
Material吸附方式
Adsorption
methods吸附参数
Adsorption Parameters吸附性能
Adsorption properties参考文献
ReferencespH 初始浓度/
(mg·L−1)
Concentration时间/h
Time投加量/
(g·L−1)
Dosage温度/℃
Temperature吸附量/
(mg·g−1)
Capacity去除率/%
Removal rate商业煤质活性炭 静态吸附 1 200 12 1 25 151.88 75.83 [122] 褐煤 1 20 4 3.5 25 5.6* 98 [118] 煤泥 2 50 24 4 25 9.32 74.56* [24] 煤泥 2 100 1 3 25 99.87 86.88 [123] 煤矸石 5 100 24 0.2 35 9.2 91 [124] 煤矸石 动态吸附 2 15.8 Φ=10 mm*
H=5 mm45 320.51 [125] *, 根据文献提供的数据进行计算所得. *, calculations based on data provided in the literature. 表 4 煤基多孔炭吸附六价铬的动力学和热力学模型
Table 4. Kinetic and isotherm models for the adsorption of hexavalent chromium on coal-based porous carbon
原料
Material动力学模型
Kinetic model热力学模型
Isotherm吸附方式
Adsorption method吸附量/(mg·g−1)
Maximum adsorption
capacity参考文献
References煤泥 准二级动力学模型 Langmuir 化学吸附 86. 88 [123] 煤矸石 拟二阶动力学模型 Langmuir 化学吸附 55.08 [131] 煤矸石 拟二阶动力学模型 Langmuir 化学吸附 320.51 [125] 煤矸石+油菜秸秆 拟二阶动力学模型 Langmuir 化学吸附 9.2 [124] 粉煤灰 准二级动力学模型 — 物理吸附和化学吸附 1.394 [134] 酸化后的褐煤 二级动力学模型 Freundlich — 5.6* [118] 褐煤 准一级或准二级动力学模型 Freundlich — 12.965 [24] *, 根据文献提供的数据进行计算所得;—, 文献中未提及.
*, calculations based on data provided in the literature; —, not mentioned in the literature. -
[1] 孙志军, 李贞, 赵俊吉, 等. 山西省典型煤电基地煤基固废综合利用研究与资源化分析[J]. 中国煤炭, 2021, 47(4): 70-80. SUN Z J, LI Z, ZHAO J J, et al. Comprehensive utilization study and resource recycling analysis of coal based solid waste in Shanxi typical coal power base[J]. China Coal, 2021, 47(4): 70-80 (in Chinese).
[2] REZAEI H, SHAFAEI S Z, ABDOLLAHI H, et al. Spent-medium leaching of germanium, vanadium and lithium from coal fly ash with biogenic carboxylic acids and comparison with chemical leaching[J]. Hydrometallurgy, 2023, 217: 106038. doi: 10.1016/j.hydromet.2023.106038 [3] 张吉雄, 张强, 周楠, 等. 煤基固废充填开采技术研究进展与展望[J]. 煤炭学报, 2022, 47(12): 4167-4181. ZHANG J X, ZHANG Q, ZHOU N, et al. Research progress and prospect of coal based solid waste backfilling mining technology[J]. Journal of China Coal Society, 2022, 47(12): 4167-4181 (in Chinese).
[4] 2021年中国生态环境统计年报_中华人民共和国生态环境部[EB/OL 2023-07-01
[5] 袁飞. 华宁煤基多孔炭制备与粉体成型及对Cr(Ⅵ)吸附性能研究[D]. 徐州: 中国矿业大学, 2022. YUAN F. Preparation and powder forming of Huaning coal based porous carbon and its adsorption properties study for Cr(Ⅵ)[D]. Xuzhou: China University of Mining and Technology, 2022 (in Chinese).
[6] 施周, 邓林. 水中重金属离子吸附材料的研究现状与发展趋势[J]. 建筑科学与工程学报, 2017, 34(5): 21-30. doi: 10.3969/j.issn.1673-2049.2017.05.003 SHI Z, DENG L. Research progresses and trends in materials for adsorption of heavy metal ions in aqueous phase[J]. Journal of Architecture and Civil Engineering, 2017, 34(5): 21-30 (in Chinese). doi: 10.3969/j.issn.1673-2049.2017.05.003
[7] NADAROGLU H, KALKAN E, DEMIR N. Removal of copper from aqueous solution using red mud[J]. Desalination, 2010, 251(1/2/3): 90-95. [8] AHMARUZZAMAN M. Industrial wastes as low-cost potential adsorbents for the treatment of wastewater laden with heavy metals[J]. Advances in Colloid and Interface Science, 2011, 166(1/2): 36-59. [9] STRELKO V, MALIK D J, STREAT M. Characterisation of the surface of oxidised carbon adsorbents[J]. Carbon, 2002, 40(1): 95-104. doi: 10.1016/S0008-6223(01)00082-3 [10] XIE R Z, JIN Y, CHEN Y, et al. The importance of surface functional groups in the adsorption of copper onto walnut shell derived activated carbon[J]. Water Science and Technology:a Journal of the International Association on Water Pollution Research, 2017, 76(11/12): 3022-3034. [11] 牛桃霞. 多孔碳材料的制备及其吸附性能研究[D]. 西安: 西北大学, 2018. NIU T X. Preparation and adsorption properties study of porous carbon materials[D]. Xi'an: Northwest University, 2018 (in Chinese).
[12] PUREVSUREN B, LIOU Y H, DAVAAJAV Y, et al. Investigation of adsorption of methylene blue from aqueous phase onto coal-based activated carbons[J]. Journal of the Chinese Institute of Engineers, 2017, 40(4): 355-360. doi: 10.1080/02533839.2017.1308273 [13] 陈春瑞, 王鹏程, 杨凤玲, 等. 煤泥浓密膏体流变特性测试方法研究进展[J]. 中国煤炭, 2022, 48(5): 60-67. doi: 10.3969/j.issn.1006-530X.2022.05.011 CHEN C R, WANG P C, YANG F L, et al. Research progress on testing methods of rheological properties of coal slime dense paste[J]. China Coal, 2022, 48(5): 60-67 (in Chinese). doi: 10.3969/j.issn.1006-530X.2022.05.011
[14] 杜韫哲, 柳一灵, 沈伟, 等. 山西省部分地区煤矸石基础理化性质研究[J]. 煤炭加工与综合利用, 2023(4): 80-83. doi: 10.16200/j.cnki.11-2627/td.2023.04.019 DU Y Z, LIU Y L, SHEN W, et al. The basic physical and chemical properties of coal gangue in some typical areas of Shanxi Province[J]. Coal Processing & Comprehensive Utilization, 2023(4): 80-83 (in Chinese). doi: 10.16200/j.cnki.11-2627/td.2023.04.019
[15] 张丽宏, 金要茹, 程芳琴. 煤气化渣资源化利用[J]. 化工进展, 2023, 42(8): 4447-4457. doi: 10.16085/j.issn.1000-6613.2022-1845 ZHANG L H, JIN YAO R, CHENG F Q. Resource utilization of coal gasification slag[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4447-4457 (in Chinese). doi: 10.16085/j.issn.1000-6613.2022-1845
[16] 韩露. 山西典型煤种制备超级活性炭的正交试验研究[D]. 太原: 太原理工大学, 2008. HAN L. Preparation of super-activated carbon from typical Shanxi coals by the method of orthogonal design[D]. Taiyuan: Taiyuan University of Technology, 2008 (in Chinese).
[17] YANG X D, WAN Y S, ZHENG Y L, et al. Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: A critical review[J]. Chemical Engineering Journal, 2019, 366: 608-621. doi: 10.1016/j.cej.2019.02.119 [18] CIOFU F. Activated carbon (charcoal) obtaining. application[J]. Fiabilitate şi Durabilitate, 2015, suppl(1): 98-103. [19] 程彬海. 有机固体废物热解制备功能多孔碳材料中氮的增效机制研究[D]. 合肥: 中国科学技术大学, 2019. CHENG B H. Mechanism elucidation of nitrogen in functional porous carbon materials prepared by pyrolysis of organic solid waste[D]. Hefei: University of Science and Technology of China, 2019 (in Chinese).
[20] 杨晓阳, 王宝凤, 宋旭涛, 等. 污泥与高硫煤共水热碳化过程中硫氮形态转化规律[J]. 化工学报, 2022, 73(11): 5211-5219. YANG X Y, WANG B F, SONG X T, et al. Migration of sulfur and nitrogen during co-hydrothermal carbonization process of sewage sludge and high-sulfur coal[J]. CIESC Journal, 2022, 73(11): 5211-5219 (in Chinese).
[21] WANG C S, YAN B, ZHENG J J, et al. Recent progress in template-assisted synthesis of porous carbons for supercapacitors[J]. Advanced Powder Materials, 2022, 1(2): 100018. doi: 10.1016/j.apmate.2021.11.005 [22] HE X J, ZHAO N, QIU J S, et al. Synthesis of hierarchical porous carbons for supercapacitors from coal tar pitch with nano-Fe2O3 as template and activation agent coupled with KOH activation[J]. Journal of Materials Chemistry A, 2013, 1(33): 9440-9448. doi: 10.1039/c3ta10501f [23] 张崎. 煤基吸附剂的制备及其去除废水中重金属的研究[D]. 武汉: 武汉科技大学, 2016. ZHANG Q. Preparation of coal based sorbent and its application for the removal of heavy metal from wastewater[D]. Wuhan: Wuhan University of Science and Technology, 2016 (in Chinese).
[24] 仇雅丽, 李长明, 王德亮, 等. 赤泥/煤基铁炭材料的制备及其脱除废水Cr(Ⅵ)的性能[J]. 化工学报, 2018, 69(7): 3216-3225. QIU Y L, LI C M, WANG D L, et al. Preparation of red mud/coal based material and its performance to remove Cr(Ⅵ) in waste water[J]. CIESC Journal, 2018, 69(7): 3216-3225 (in Chinese).
[25] DONG D, ZHANG Y S, XIAO Y, et al. Oxygen-enriched coal-based porous carbon under plasma-assisted MgCO3 activation as supercapacitor electrodes[J]. Fuel, 2022, 309: 122168. doi: 10.1016/j.fuel.2021.122168 [26] SUN F, GAO J H, YANG Y Q, et al. One-step ammonia activation of Zhundong coal generating nitrogen-doped microporous carbon for gas adsorption and energy storage[J]. Carbon, 2016, 109: 747-754. doi: 10.1016/j.carbon.2016.08.076 [27] SHI M, XIN Y F, CHEN X X, et al. Coal-derived porous activated carbon with ultrahigh specific surface area and excellent electrochemical performance for supercapacitors[J]. Journal of Alloys and Compounds, 2021, 859: 157856. doi: 10.1016/j.jallcom.2020.157856 [28] ZHANG J. Preparation and characterization of magnetic coal-based activated carbon in the presence of Fe3O4[J]. Advanced Materials Research, 2011, 393/394/395: 1355-1358. [29] ZHANG G, YANG H F, JIANG M L, et al. Preparation and characterization of activated carbon derived from deashing coal slime with ZnCl2 activation[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2022, 641: 128124. doi: 10.1016/j.colsurfa.2021.128124 [30] WEI Q H, QIN F F, MA Q X, et al. Coal tar- and residual oil-derived porous carbon as metal-free catalyst for nitroarene reduction to aminoarene[J]. Carbon, 2019, 141: 542-552. doi: 10.1016/j.carbon.2018.09.087 [31] QIN F F, TIAN X D, GUO Z Y, et al. Asphaltene-based porous carbon nanosheet as electrode for supercapacitor[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 15708-15719. [32] MA X Q, XIAO N, XIAO J, et al. Nitrogen and phosphorus dual-doped porous carbons for high-rate potassium ion batteries[J]. Carbon, 2021, 179: 33-41. doi: 10.1016/j.carbon.2021.03.067 [33] QIN B, WANG Q, ZHANG X H, et al. One-pot synthesis of interconnected porous carbon derived from coal tar pitch and cellulose for high-performance supercapacitors[J]. Electrochimica Acta, 2018, 283: 655-663. doi: 10.1016/j.electacta.2018.06.201 [34] 亢玉红, 冯博洪, 李珍妮, 等. 煤气化废渣基活性炭吸附对二甲苯动力学与热力学研究[J]. 离子交换与吸附, 2020, 36(1): 49-57. KANG Y H, FENG B H, LI Z N, et al. Adsorption thermodynamics and kinetics of p-xylene on activated carbon prepared by coal gasificationwaste residue[J]. Ion Exchange and Adsorption, 2020, 36(1): 49-57 (in Chinese).
[35] XU Y T, CHAI X L. Characterization of coal gasification slag-based activated carbon and its potential application in lead removal[J]. Environmental Technology, 2018, 39(3): 382-391. doi: 10.1080/09593330.2017.1301569 [36] 邓晓虎, 乐英红, 高滋. K2CO3活化煤矸石制备活性炭吸附剂[J]. 应用化学, 1997, 14(3): 49-52. DENG X H, YUE Y H, GAO Z. Preparation of active carbon adsorbents from elutrilithe via K2CO3 activation[J]. Chinese Journal of Applied Chemistry, 1997, 14(3): 49-52 (in Chinese).
[37] QIU B B, DUAN F. Synthesis of industrial solid wastes/biochar composites and their use for adsorption of phosphate: From surface properties to sorption mechanism[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2019, 571: 86-93. [38] QUAN C, ZHOU Y Y, WANG J W, et al. Biomass-based carbon materials for CO2 capture: A review[J]. Journal of CO2 Utilization, 2023, 68: 102373. doi: 10.1016/j.jcou.2022.102373 [39] ALLENDE S, BRODIE G, JACOB M V. Breakdown of biomass for energy applications using microwave pyrolysis: A technological review[J]. Environmental Research, 2023, 226: 115619. doi: 10.1016/j.envres.2023.115619 [40] 李宇轩, 张纯, 刘辉, 等. 微波辅助热解制备铁氮/生物炭及其芬顿催化活性[J]. 有色金属科学与工程, 2022, 13(6): 34-41. LI Y X, ZHANG C, LIU H, et al. Preparation of Fe-N/biochar by microwave-assisted pyrolysis and its Fenton catalytic activity[J]. Nonferrous Metals Science and Engineering, 2022, 13(6): 34-41 (in Chinese).
[41] 李京书, 张媛媛, 王兰慧, 等. 污泥热解生物炭中重金属与磷的转化行为研究进展[J]. 能源环境保护, 2023, 37(2): 30-38. doi: 10.20078/j.eep.20230307 LI J S, ZHANG Y Y, WANG L H, et al. Review on transformation behavior of heavy metals and phosphorus in sewage sludge pyrolysis biochar[J]. Energy Environmental Protection, 2023, 37(2): 30-38 (in Chinese). doi: 10.20078/j.eep.20230307
[42] 陈太平. 准东煤微波热解并向功能性碳材料转化的研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. CHEN T P. Microwave pyrolysis of Zhundong coal and its transformation to functional carbon materials[D]. Harbin: Harbin Institute of Technology, 2020 (in Chinese).
[43] 靳庆壮. 生物质水热碳化废水循环利用过程中水热炭的形成机制研究[D]. 北京: 华北电力大学, 2021. JIN Q Z. Study on the formation mechanism of hydrochar in the recycling process of biomass hydrothermal carbonization wastewater[D]. Beijing: North China Electric Power University, 2021 (in Chinese).
[44] GONG Y T, XIE L, CHEN C H, et al. Bottom-up hydrothermal carbonization for the precise engineering of carbon materials[J]. Progress in Materials Science, 2023, 132: 101048. doi: 10.1016/j.pmatsci.2022.101048 [45] YANG X Y, WANG B F, SONG X T, et al. Co-hydrothermal carbonization of sewage sludge and coal slime with sulfuric acid for N, S doped hydrochar[J]. Journal of Cleaner Production, 2022, 354: 131615. doi: 10.1016/j.jclepro.2022.131615 [46] 雷艳秋. 生物质基碳材料的制备及在环境与能源中的应用[D]. 呼和浩特: 内蒙古大学, 2017. LEI Y Q. The biomass-based carbon material prepartion and application in environment and energy[D]. Hohhot: Inner Mongolia University, 2017 (in Chinese).
[47] PAVLENKO V, KHOSRAVI H S, ŻÓŁTOWSKA S, et al. A comprehensive review of template-assisted porous carbons: Modern preparation methods and advanced applications[J]. Materials Science and Engineering:R:Reports, 2022, 149: 100682. doi: 10.1016/j.mser.2022.100682 [48] 苏丽. 功能化多孔碳材料的制备及其电化学性能研究[D]. 秦皇岛: 燕山大学, 2021. SU L. Preparation and electrochemical properties of functionalized porous carbon materials[D]. Qinhuangdao: Yanshan University, 2021 (in Chinese).
[49] ZHANG W, CHENG R R, BI H H, et al. A review of porous carbons produced by template methods for supercapacitor applications[J]. New Carbon Materials, 2021, 36(1): 69-81. doi: 10.1016/S1872-5805(21)60005-7 [50] TIAN P F, ZANG J B, SONG S W, et al. In situ template reaction method to prepare three-dimensional interconnected Fe-N doped hierarchical porous carbon for efficient oxygen reduction reaction catalysts and high performance supercapacitors[J]. Journal of Power Sources, 2020, 448: 227443. doi: 10.1016/j.jpowsour.2019.227443 [51] HE X J, ZHANG H B, ZHANG H, et al. Direct synthesis of 3D hollow porous graphene balls from coal tar pitch for high performance supercapacitors[J]. Journal of Materials Chemistry A, 2014, 2(46): 19633-19640. doi: 10.1039/C4TA03323J [52] 周颖, 宋晓娜, 舒成, 等. 模板法煤沥青基中孔炭的制备及其电化学性能[J]. 新型炭材料, 2011, 26(3): 187-191. ZHOU Y, SONG X N, SHU C, et al. The electrochemical properties of templated and activated mesoporous carbons produced from coal pitch[J]. New Carbon Materials, 2011, 26(3): 187-191 (in Chinese).
[53] WU T T, JIN B Y, LI H Q, et al. Foam-like porous carbons with ultrahigh surface area from petroleum pitch and their supercapacitive performance[J]. Chemical Physics Letters, 2021, 783: 139058. doi: 10.1016/j.cplett.2021.139058 [54] HE X J, LI X J, WANG X T, et al. Efficient preparation of porous carbons from coal tar pitch for high performance supercapacitors[J]. New Carbon Materials, 2014, 29(6): 493-502. doi: 10.1016/S1872-5805(14)60150-5 [55] JIANG Y C, HE Z F, DU Y Y, et al. In-situ ZnO template preparation of coal tar pitch-based porous carbon-sheet microsphere for supercapacitor[J]. Journal of Colloid and Interface Science, 2021, 602: 721-731. doi: 10.1016/j.jcis.2021.06.037 [56] SRIVASTAVA A, GUPTA B, MAJUMDER A, et al. A comprehensive review on the synthesis, performance, modifications, and regeneration of activated carbon for the adsorptive removal of various water pollutants[J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 106177. doi: 10.1016/j.jece.2021.106177 [57] 贺新福, 张小琴, 安得宁, 等. 低阶型煤热解半焦制备活性炭的试验研究[J]. 煤炭技术, 2017, 36(4): 290-293. HE X F, ZHANG X Q, AN D N, et al. Study on preparation of activated carbon from briquette char[J]. Coal Technology, 2017, 36(4): 290-293 (in Chinese).
[58] 田叶顺, 任文, 王国袖, 等. 微波加热CO2活化法制备生物质活性炭及其脱硫性能研究[J]. 化工学报, 2020, 71(12): 5774-5784. TIAN Y S, REN W, WANG G X, et al. Study on preparation and desulfurization characteristics of biomass activated carbon by microwave heating CO2 activation method[J]. CIESC Journal, 2020, 71(12): 5774-5784 (in Chinese).
[59] 侯志勇, 郝亮亮, 沈小瑞, 等. 煤气化细渣制备吸附材料研究进展[J]. 洁净煤技术, 2021, 27(增刊2): 201-205. HOU Z Y, HAO L L, SHEN X R, et al. Research progress on preparation of adsorption materials from coal gasification fine slaget[J]. Clean Coal Technology, 2021, 27(Sup 2): 201-205 (in Chinese).
[60] WANG L W, SHA L, ZHANG S H, et al. Preparation of activated coke by carbonization, activation, ammonization and thermal treatment of sewage sludge and waste biomass for SO2 absorption applications[J]. Fuel Processing Technology, 2022, 231: 107233. doi: 10.1016/j.fuproc.2022.107233 [61] 虞军伟. 碳基常压储氢材料的制备及其微观结构调控[D]. 济南: 山东大学, 2021. YU J W. Preparation and microstructure control of carbon-based atmospheric hydrogen storage materials[D]. Jinan: Shandong University, 2021 (in Chinese).
[62] LU C L, XU S P, GAN Y X, et al. Effect of pre-carbonization of petroleum cokes on chemical activation process with KOH[J]. Carbon, 2005, 43(11): 2295-2301. doi: 10.1016/j.carbon.2005.04.009 [63] LILLO-RÓDENAS M A, JUAN-JUAN J, CAZORLA-AMORÓS D, et al. About reactions occurring during chemical activation with hydroxides[J]. Carbon, 2004, 42(7): 1371-1375. doi: 10.1016/j.carbon.2004.01.008 [64] WANG Z H, CAO Q F, GUO F J, et al. Preparation and electrochemical properties of low-temperature activated porous carbon from coal tar pitch[J]. Diamond and Related Materials, 2023, 135: 109855. doi: 10.1016/j.diamond.2023.109855 [65] LIU Y, ZHU Z S, CHENG Q, et al. One-step preparation of environment-oriented magnetic coal-based activated carbon with high adsorption and magnetic separation performance[J]. Journal of Magnetism and Magnetic Materials, 2021, 521: 167517. doi: 10.1016/j.jmmm.2020.167517 [66] ZHU Y W, WANG Y J, WANG T Y, et al. One-step preparation of coal-based magnetic activated carbon with hierarchically porous structure and easy magnetic separation capability for adsorption applications[J]. Journal of Magnetism and Magnetic Materials, 2023, 569: 170480. doi: 10.1016/j.jmmm.2023.170480 [67] 王李炜. 污泥与生物质制备活性焦脱硫性能的研究[D]. 济南: 山东大学, 2022. WANG L W. Study on desulfurization performance of activated coke prepared from sludge and biomass[D]. Jinan: Shandong University, 2022 (in Chinese).
[68] 张傲. 氧解残煤微波制备多孔炭及吸波应用[D]. 徐州: 中国矿业大学, 2019. ZHANG A. Preparation of porous carbon by microwave irradiation from oxidized coal and its microwave absorbing application[D]. Xuzhou: China University of Mining and Technology, 2019 (in Chinese).
[69] 于馨凝, 华哲生, 杨洋, 等. Ca(NO3)2改性对煤基多孔炭结构及甲苯吸附性能的影响[J]. 煤炭学报, 2021, 46(12): 4063-4070. YU X N, HUA Z S, YANG Y, et al. Effects of Ca(NO3)2 pretreatment on structure of coal-based porous carbon and its adsorption properties for toluene[J]. Journal of China Coal Society, 2021, 46(12): 4063-4070 (in Chinese).
[70] 徐园园, 陆倩, 木沙江, 等. 煤基多孔炭的制备及其在超级电容器中的应用[J]. 煤炭转化, 2016, 39(1): 76-81. XU Y Y, LU Q, MU S J, et al. Preparation of coal-based porous carbon and utilization in supercapacitor[J]. Coal Conversion, 2016, 39(1): 76-81 (in Chinese).
[71] WANG X L, LI Y Z, YANG C, et al. Self-template porous carbon by direct activation of high-ash coal liquefaction residue for high-rate supercapacitor electrodes[J]. International Journal of Energy Research, 2021, 45(3): 4782-4792. doi: 10.1002/er.6096 [72] 王相龙. 煤液化残渣制备多孔炭及其电容性能研究[D]. 乌鲁木齐: 新疆大学, 2021. WANG X L. Capacitive properties of porous carbons prepared from coal liquefaction residue[D]. Urumqi: Xinjiang University, 2021 (in Chinese).
[73] 仇微微. 杂原子掺杂碳微球的制备及其电化学性能研究[D]. 大连: 大连理工大学, 2020. QIU W W. Preparation and electrochemical properties of heteroatom-doped carbon spheres [D]. Dalian: Dalian University of Technology, 2020 (in Chinese).
[74] 阚渝姣. 废旧电路板基活性炭的制备及吸附性能研究[D]. 济南: 山东大学, 2018. KAN Y J. Study on the preparation and adsorption property of activated carbon from waste circuit boards [D]. Jinan: Shandong University, 2018 (in Chinese).
[75] BIAN Y, BIAN Z Y, ZHANG J X, et al. Effect of the oxygen-containing functional group of graphene oxide on the aqueous cadmium ions removal[J]. Applied Surface Science, 2015, 329: 269-275. doi: 10.1016/j.apsusc.2014.12.090 [76] WANG H Y, GAO B, WANG S S, et al. Removal of Pb(Ⅱ), Cu(Ⅱ), and Cd(Ⅱ) from aqueous solutions by biochar derived from KMnO4 treated hickory wood[J]. Bioresource Technology, 2015, 197: 356-362. doi: 10.1016/j.biortech.2015.08.132 [77] LYU H H, GAO B, HE F, et al. Ball-milled carbon nanomaterials for energy and environmental applications[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(11): 9568-9585. [78] KASNEJAD M H, ESFANDIARI A, KAGHAZCHI T, et al. Effect of pre-oxidation for introduction of nitrogen containing functional groups into the structure of activated carbons and its influence on Cu (Ⅱ) adsorption[J]. Journal of the Taiwan Institute of Chemical Engineers, 2012, 43(5): 736-740. doi: 10.1016/j.jtice.2012.02.006 [79] 徐朝权. 铁氮共掺杂多孔碳材料的制备及其氧还原性能研究[D]. 乌鲁木齐: 新疆大学, 2018. XU Z Q. The preparation and application of Fe and N co-doped porous carbon catalyst for oxygen reduction reaction[D]. Urumqi: Xinjiang University, 2018 (in Chinese).
[80] 邢雯雯, 周铁桥, 张军, 等. 煤基磁性活性炭的制备[J]. 北京科技大学学报, 2009, 31(1): 83-87. XING W W, ZHOU T Q, ZHANG J, et al. Preparation of magnetic coal-based activated carbon[J]. Journal of University of Science and Technology Beijing, 2009, 31(1): 83-87 (in Chinese).
[81] 王华斌. 金属盐及赤泥改性水热炭吸附重金属的性能与机理研究[D]. 武汉: 华中科技大学, 2020. WANG H B. Performance and mechanism study on engineered hydrochar modified by metal salts or industrial red mud for heavy metals immobilization[D]. Wuhan: Huazhong University of Science and Technology, 2020 (in Chinese).
[82] NASSAR N N. Rapid removal and recovery of Pb(Ⅱ) from wastewater by magnetic nanoadsorbents[J]. Journal of Hazardous Materials, 2010, 184(1/2/3): 538-546. [83] MACı́AS-GARCı́A A, GÓMEZ-SERRANO V, ALEXANDRE-FRANCO M F, et al. Adsorption of cadmium by sulphur dioxide treated activated carbon[J]. Journal of Hazardous Materials, 2003, 103(1/2): 141-152. [84] MACı́AS-GARCı́A A, VALENZUELA-CALAHORRO C, ESPINOSA-MANSILLA A, et al. Adsorption of Pb2+ in aqueous solution by SO2-treated activated carbon[J]. Carbon, 2004, 42(8/9): 1755-1764. [85] 苏文韬, 蔡铭, 车美红, 等. 由聚苯硫醚废料制备硫掺杂多孔碳处理含重金属废水[J]. 工业技术创新, 2022, 9(3): 83-90. SU W T, CAI M, CHE M H, et al. Preparing the sulfur-doped porous carbon from polyphenylene sulfide waste to treat wastewater contained heavy metals[J]. Industrial Technology Innovation, 2022, 9(3): 83-90 (in Chinese).
[86] WANG B, GAO B, FANG J N. Recent advances in engineered biochar productions and applications[J]. Critical Reviews in Environmental Science and Technology, 2017, 47(22): 2158-2207. doi: 10.1080/10643389.2017.1418580 [87] GARCı́A T, MURILLO R, CAZORLA-AMORÓS D, et al. Role of the activated carbon surface chemistry in the adsorption of phenanthrene[J]. Carbon, 2004, 42(8/9): 1683-1689. [88] BAI J, SUN H M, YIN X J, et al. Oxygen-content-controllable graphene oxide from electron-beam-irradiated graphite: Synthesis, characterization, and removal of aqueous lead [Pb(Ⅱ)][J]. ACS Applied Materials & Interfaces, 2016, 8(38): 25289-25296. [89] ZHOU Y M, GAO B, ZIMMERMAN A R, et al. Sorption of heavy metals on chitosan-modified biochars and its biological effects[J]. Chemical Engineering Journal, 2013, 231: 512-518. doi: 10.1016/j.cej.2013.07.036 [90] CAZETTA A L, VARGAS A M M, NOGAMI E M, et al. NaOH-activated carbon of high surface area produced from coconut shell: Kinetics and equilibrium studies from the methylene blue adsorption[J]. Chemical Engineering Journal, 2011, 174(1): 117-125. doi: 10.1016/j.cej.2011.08.058 [91] HU X, DING Z H, ZIMMERMAN A R, et al. Batch and column sorption of arsenic onto iron-impregnated biochar synthesized through hydrolysis[J]. Water Research, 2015, 68: 206-216. doi: 10.1016/j.watres.2014.10.009 [92] ZHANG J, ZHANG N, TACK F M G, et al. Modification of ordered mesoporous carbon for removal of environmental contaminants from aqueous phase: A review[J]. Journal of Hazardous Materials, 2021, 418: 126266. [93] 黄美苓. 多孔碳复合材料的制备及吸附六价铬的研究[D]. 济南: 济南大学, 2017. HUANG M L. The preparation of porous carbon composite materials and the adsorption of hexavalent chromium[D]. Jinan: University of Jinan, 2017 (in Chinese).
[94] 王帅晴, 杨思文, 李娜, 等. 元素掺杂生物质碳材料在电化学储能中的研究进展[J]. 化工进展, 2023, 42(8): 4296-4306. doi: 10.16085/j.issn.1000-6613.2022-1797 YANG S W, LI N, et al. Research progress of element doped biomass carbon materials for electrochemical energy storage[J]. Chemical Progress, 2023, 42(8): 4296-4306 (in Chinese). doi: 10.16085/j.issn.1000-6613.2022-1797
[95] LI F B, QIAN Q L, YAN F, et al. Nitrogen-doped porous carbon microspherules as supports for preparing monodisperse nickel nanoparticles[J]. Carbon, 2006, 44(1): 128-132. doi: 10.1016/j.carbon.2005.06.049 [96] GAO Y J, CHEN X, ZHANG J G, et al. Chitin-derived mesoporous, nitrogen-containing carbon for heavy-metal removal and styrene epoxidation[J]. ChemPlusChem, 2015, 80(10): 1556-1564. doi: 10.1002/cplu.201500293 [97] MA G X, NING G Q, WEI Q. S-doped carbon materials: Synthesis, properties and applications[J]. Carbon, 2022, 195: 328-340. doi: 10.1016/j.carbon.2022.03.043 [98] 朱俊生, 丁晓波, 曹景沛, 等. 褐煤基多孔炭/CoNi2S4复合材料的制备及电容特性研究[J]. 燃料化学学报, 2021, 49(1): 20-26. doi: 10.1016/S1872-5813(21)60006-3 ZHU J S, DING X B, CAO J P, et al. Preparation of lignite-based porous carbon/ CoNi2S4 composite materials and their capacitance performance[J]. Journal of Fuel Chemistry and Technology, 2021, 49(1): 20-26 (in Chinese). doi: 10.1016/S1872-5813(21)60006-3
[99] ZHENG Y F, CHEN K M, JIANG K P, et al. Progress of synthetic strategies and properties of heteroatoms-doped (N, P, S, O) carbon materials for supercapacitors[J]. Journal of Energy Storage, 2022, 56: 105995. doi: 10.1016/j.est.2022.105995 [100] SHEN Y, CHEN B L. Sulfonated graphene nanosheets as a superb adsorbent for various environmental pollutants in water[J]. Environmental Science & Technology, 2015, 49(12): 7364-7372. [101] 毛玉婷. GS@LDO吸附水中污染物的机制研究及其工程应用[D]. 南昌: 南昌大学, 2022. MAO Y T. Study on the adsorption mechanism of pollutants by GS@LDO and its engineering application[D]. Nanchang: Nanchang University, 2022 (in Chinese).
[102] 黄雪琼. 硫掺杂Fe3O4纳米吸附剂的制备及其对水中重金属离子Pb(Ⅱ)的去除及性能研究[D]. 上海: 上海交通大学, 2018. HUANG X Q. Synthesis of novel magnetic sulfur-doped Fe3O4 nanoparticles and their application for efficient removal of Pb(Ⅱ)[D]. Shanghai: Shanghai Jiao Tong University, 2018 (in Chinese).
[103] 何静. 新型硫掺杂凹凸棒的可控制备及其对MB、Pb2+、Cu2+的吸附性能研究[D]. 兰州: 西北民族大学, 2019. HE J. Controllable preparation of new sulfur-doped attapulgite composites and their adsorption properties for MB, Pb2+ and Cu2+ [D]. Lanzhou: Northwest University for Nationalities, 2019 (in Chinese).
[104] ZHANG Y Z, HE R, ZHAO J. Removal mechanism of tetracycline-Cr(Ⅵ) combined pollutants by different S-doped sludge biochars: Role of environmentally persistent free radicals[J]. Chemosphere, 2023, 317: 137856. doi: 10.1016/j.chemosphere.2023.137856 [105] 段昕辉. 废煤基活性炭再生制备载铁复合材料及除砷机理研究[D]. 昆明: 昆明理工大学, 2012. DUAN X H. Preparation of iron-loaded composite by regeneration of waste coal-based activated carbon and study on arsenic removal mechanism[D]. Kunming: Kunming University of Science and Technology, 2012 (in Chinese).
[106] 范明霞, 童仕唐. 活性炭孔隙结构对重金属离子吸附性能的影响[J]. 功能材料, 2016, 47(1): 1012-1016. FAN M X, TONG S T. Effect of pore structure of activated carbon on heavy metal ions adsorption performance[J]. Journal of Functional Materials, 2016, 47(1): 1012-1016 (in Chinese).
[107] YOSHIZAWA N, YAMADA Y, SHIRAISHI M, et al. Dispersion properties of metal oxide nanoparticles supportedin mesoporous activated carbons[J]. TANSO, 1998, 1998(181): 8-13. doi: 10.7209/tanso.1998.8 [108] CHU T T H, NGUYEN M V. Improved Cr (VI) adsorption performance in wastewater and groundwater by synthesized magnetic adsorbent derived from Fe3O4 loaded corn straw biochar[J]. Environmental Research, 2023, 216(Pt 4): 114764. [109] 杨妍, 刘国涛, 余庆慧, 等. 多孔炭材料改性纳米零价铁的研究进展[J]. 化工进展, 2021, 40(增刊2): 198-202. YANG Y, LIU G T, YU Q H, et al. Research progress of nano-zero-valent iron modified by porous carbon materials [J]. Chemical Industry and Engineering Progress, 2021, 40(Sup 2): 198-202 (in Chinese).
[110] 李改平. 煤基吸附剂的制备及其吸附Cr6+的研究[D]. 青岛: 山东科技大学, 2011. LI G P. The preparation of coal based sorbents and study on Cr6+ adsorption[D]. Qingdao: Shandong University of Science and Technology, 2011 (in Chinese).
[111] HU S J, LIU C S, BU H L, et al. Efficient reduction and adsorption of Cr(VI) using FeCl3-modified biochar: Synergistic roles of persistent free radicals and Fe(II)[J]. Journal of Environmental Sciences, 2024, 137: 626-638. doi: 10.1016/j.jes.2023.03.011 [112] 沈玲芳. 生物质基磁性炭定向制备及其对水体中Pb(Ⅱ)、Cr(Ⅵ)的去除机理研究[D]. 杭州: 浙江科技学院, 2022. SHEN L F. Preparation of magnetic biochar and its removal mechanism of Pb(Ⅱ) and Cr(Ⅵ) from aqueous solution[D]. Hangzhou: Zhejiang University of Science & Technology, 2022 (in Chinese).
[113] 董建华. 铁掺杂生物质炭对六价铬的还原-吸附去除行为机制研究[D]. 西安: 西安建筑科技大学, 2020. DONG J H. Mechanism study on reduction assisted adsorption removal of hexavalent chromium by iron-doped biochar[D]. Xi'an: Xi'an University of Architecture and Technology, 2020 (in Chinese).
[114] BIN Q, LIN B, ZHU K, et al. Superior trichloroethylene removal from water by sulfide-modified nanoscale zero-valent iron/graphene aerogel composite[J]. Journal of Environmental Sciences (China), 2020, 88: 90-102. doi: 10.1016/j.jes.2019.08.011 [115] 刘丽, 梁乐缤, 时悦, 等. 硫掺杂零价铁去除Cr(Ⅵ)的机理及环境影响因素[J]. 农业环境科学学报, 2021, 40(5): 1079-1087. LIU L, LIANG L B, SHI Y, et al. Sulfidation enhanced Cr(VI) reduction by zerovalent iron under different environmental conditions: A mechanistic study[J]. Journal of Agro-Environment Science, 2021, 40(5): 1079-1087 (in Chinese).
[116] 刘丽. 生物炭负载硫化零价铁去除水体中Cr(Ⅵ)的机理研究[D]. 扬州: 扬州大学, 2021. LIU L. Research on removal mechanism of Cr(Ⅵ) from water by biochar supported sulfide-modified zero-valent iron[D]. Yangzhou: Yangzhou University, 2021 (in Chinese).
[117] MA L J, WANG Q, ISLAM S M, et al. Highly selective and efficient removal of heavy metals by layered double hydroxide intercalated with the MoS4(2-) ion[J]. Journal of the American Chemical Society, 2016, 138(8): 2858-2866. doi: 10.1021/jacs.6b00110 [118] BEKSISSA R, TEKOLA B, AYALA T, et al. Investigation of the adsorption performance of acid treated lignite coal for Cr (VI) removal from aqueous solution[J]. Environmental Challenges, 2021, 4: 100091. doi: 10.1016/j.envc.2021.100091 [119] 于树芳. 活性炭吸附去除水中砷的效能研究[D]. 哈尔滨: 哈尔滨工程大学, 2014. YU S F. Study on removel eeffectioncy of arsenic from aquous solution by activated carbon adsorption[D]. Harbin: Harbin Engineering University, 2014 (in Chinese).
[120] 殷慧卿, 郭成, 胡笳, 等. 生物质基材料吸附水中砷离子的研究进展[J]. 化学工业与工程, 2022, 39(4): 71-82. doi: 10.13353/j.issn.1004.9533.20216003 YIN H Q, GUO C, HU J, et al. Adsorption of arsenic ions from water by biomass derived materials: A review[J]. Chemical Industry and Engineering, 2022, 39(4): 71-82 (in Chinese). doi: 10.13353/j.issn.1004.9533.20216003
[121] 李莹莹, 朱永建, 陈国梁, 等. 磁性生物炭对高砷煤矿酸性废水的净化处理[J]. 矿业工程研究, 2022, 37(1): 70-78. LI Y Y, ZHU Y J, CHEN G L, et al. Purification of high arsenic acid mine wastewater by magnetic biochar[J]. Mineral Engineering Research, 2022, 37(1): 70-78 (in Chinese).
[122] 单鑫, 陈荟蓉, 禹洪丽, 等. 不同炭材料吸附Cr(Ⅵ)的热力学研究[J]. 环境工程学报, 2016, 10(3): 1109-1115. doi: 10.12030/j.cjee.20160317 SHAN X, CHEN H R, YU H L, et al. Study of thermodynamics for adsorption of Cr(Ⅵ) by different carbon materials[J]. Chinese Journal of Environmental Engineering, 2016, 10(3): 1109-1115 (in Chinese). doi: 10.12030/j.cjee.20160317
[123] 杨慧芬, 姜美苓, 高春庆, 等. 赤铁矿渣—煤泥铁碳基复合材料的制备及除Cr(Ⅵ)性能研究[J]. 金属矿山, 2023(1): 269-275. YANG H F, JIANG M L, GAO C Q, et al. Preparation of iron-carbon based composite material with hematite residue and coal slime and removal of Cr(Ⅵ) in aqueous solution[J]. Metal Mine, 2023(1): 269-275 (in Chinese).
[124] ZHAO R H, WANG B, ZHANG X Y, et al. Insights into Cr(VI) removal mechanism in water by facile one-step pyrolysis prepared coal gangue-biochar composite[J]. Chemosphere, 2022, 299: 134334. doi: 10.1016/j.chemosphere.2022.134334 [125] WU J X, YAN X L, LI L, et al. High-efficiency adsorption of Cr(Ⅵ) and RhB by hierarchical porous carbon prepared from coal gangue[J]. Chemosphere, 2021, 275: 130008. doi: 10.1016/j.chemosphere.2021.130008 [126] 范明霞, 赵春玲. pH值、离子强度和共存离子对活性炭吸附Cr(Ⅵ)的影响[J]. 化学工程师, 2017, 31(10): 25-27. FAN M X, ZHAO C L. Effect of pH, ion strength and coexistence ion for Cr(VI) adsorption on activated carbon[J]. Chemical Engineer, 2017, 31(10): 25-27 (in Chinese).
[127] 王鲁敏, 邓昌亮, 殷军港, 等. 硝化褐煤对铬离子溶液的吸附研究[J]. 环境化学, 2001, 20(1): 54-58. WANG L M, DENG C L, YIN J G, et al. Study on adsorption of nitrify lignite forchromium-ion solution[J]. Environmental Chemistry, 2001, 20(1): 54-58 (in Chinese).
[128] 刘美丽, 牛其建, 俞洋洋, 等. 碳基材料负载纳米零价铁去除六价铬的研究进展[J]. 环境科学研究, 2022, 35(3): 768-779. LIU M L, NIU Q J, YU Y Y, et al. Progress in removal of hexavalent chromium by carbon-based materials loaded with nano zero-valent iron[J]. Research of Environmental Sciences, 2022, 35(3): 768-779 (in Chinese).
[129] 吴吉昀, 冯博, 陈燕, 等. 粉煤灰-硅藻土复合材料对选矿废水中Cr(Ⅵ)的吸附行为研究[J]. 矿冶工程, 2022, 42(4): 125-129. WU J Y, FENG B, CHEN Y, et al. Adsorption of Cr(Ⅵ) in mineral processing wastewater by fly ash-diatomite composite[J]. Mining and Metallurgical Engineering, 2022, 42(4): 125-129 (in Chinese).
[130] WU Z Y, ZHANG H, ALI E, et al. Synthesis of novel magnetic activated carbon for effective Cr(Ⅵ) removal via synergistic adsorption and chemical reduction[J]. Environmental Technology & Innovation, 2023, 30: 103092. [131] ZHANG X, LI M, SU Y G, et al. A novel and green strategy for efficient removing Cr(Ⅵ) by modified kaolinite-rich coal gangue[J]. Applied Clay Science, 2021, 211: 106208. doi: 10.1016/j.clay.2021.106208 [132] KAZAK O. Fabrication of in situ magnetic activated carbon by co-pyrolysis of sucrose with waste red mud for removal of Cr(Ⅵ) from waters[J]. Environmental Technology & Innovation, 2021, 24: 101856. [133] QU J H, WANG Y X, TIAN X, et al. KOH-activated porous biochar with high specific surface area for adsorptive removal of chromium (Ⅵ) and naphthalene from water: Affecting factors, mechanisms and reusability exploration[J]. Journal of Hazardous Materials, 2021, 401: 123292. doi: 10.1016/j.jhazmat.2020.123292 [134] 任贵宁. 赤泥吸附剂的制备及对溶液中磷和铬(Ⅵ)的吸附研究[D]. 长春: 吉林大学, 2016. REN G N. Preparation of red mud adsorbent and its using on adsorption of phosphate and Cr(Ⅵ)[D]. Changchun: Jilin University, 2016 (in Chinese).
[135] 江钰. 不同构型富氮生物炭与典型重金属的相互作用机制[D]. 广州: 华南理工大学, 2021. JIANG Y. Interaction mechanism between different configurations of nitrogen-rich biochars and typical heavy metals[D]. Guangzhou: South China University of Technology, 2021 (in Chinese).
[136] 张力文, 李德亮. 改性粉煤灰吸附重金属Pb2+和Cu2+的机理探讨[C]//2018中国环境科学学会科学技术年会论文集(第三卷). 合肥, 2018: 966-974. ZHANG L W, LI D L. Exploration of the mechanism of heavy metal Pb2+ and Cu2+ adsorption by modified fly ash[C]. Proceedings of the 2018 Annual Scientific and Technical Conference of the Chinese Society of Environmental Sciences (Volume III), Hefei, 2018: 966-974.
[137] SONG Y, WANG L C, LV B L, et al. Removal of trace Cr(VI) from aqueous solution by porous activated carbon balls supported by nanoscale zero-valent iron composites[J]. Environmental Science and Pollution Research, 2020, 27(7): 7015-7024. doi: 10.1007/s11356-019-07027-4 [138] 张建, 马锋锋, 郝爱红, 等. 改性生物炭对水中Cr(Ⅵ)的去除研究进展[J]. 环境科学与技术, 2020, 43(12): 38-46. ZHANG J, MA F F, HAO A H, et al. Research progress of Cr(Ⅵ) removal from water by modified biochar[J]. Environmental Science & Technology, 2020, 43(12): 38-46 (in Chinese).
[139] WANG Q Y, LI L P, TIAN Y, et al. Shapeable amino-functionalized sodium alginate aerogel for high-performance adsorption of Cr(VI) and Cd(II): Experimental and theoretical investigations[J]. Chemical Engineering Journal, 2022, 446: 137430. doi: 10.1016/j.cej.2022.137430 [140] WANG H, WANG W C, ZHOU S, et al. Adsorption mechanism of Cr(Ⅵ) on woody-activated carbons[J]. Heliyon, 2023, 9(2): e13267. doi: 10.1016/j.heliyon.2023.e13267 [141] YANG H F, LI Z F, FU P, et al. Cr(Ⅵ) removal from a synthetic solution using a novel carbonaceous material prepared from oily sludge of tank bottom[J]. Environmental Pollution, 2019, 249: 843-850. doi: 10.1016/j.envpol.2019.03.065 [142] 黎艳, 窦亚芳, 肖文理, 等. 煤矸石还原酸性废水中Cr(Ⅵ)的机理分析[J]. 矿产保护与利用, 2022, 42(6): 30-35. LI Y, DOU Y F, XIAO W L, et al. Mechanism analysis of Cr(Ⅵ) reduction by coal gangue in acidic wastewater[J]. Conservation and Utilization of Mineral Resources, 2022, 42(6): 30-35 (in Chinese).
[143] KUMARI M, PITTMAN C U, MOHAN D. Heavy metals [chromium (Ⅵ) and lead (II)] removal from water using mesoporous magnetite (Fe3O4) nanospheres[J]. Journal of Colloid and Interface Science, 2015, 442: 120-132. doi: 10.1016/j.jcis.2014.09.012 [144] WANG H B, CAI J Y, LIAO Z W, et al. Black liquor as biomass feedstock to prepare zero-valent iron embedded biochar with red mud for Cr(Ⅵ) removal: Mechanisms insights and engineering practicality[J]. Bioresource Technology, 2020, 311: 123553. doi: 10.1016/j.biortech.2020.123553 [145] SHI Y Y, SHAN R, LU L L, et al. High-efficiency removal of Cr(Ⅵ) by modified biochar derived from glue residue[J]. Journal of Cleaner Production, 2020, 254: 119935. doi: 10.1016/j.jclepro.2019.119935 [146] PHOLOSI A, NAIDOO E B, OFOMAJA A E. Batch and continuous flow studies of Cr(Ⅵ) adsorption from synthetic and real wastewater by magnetic pine cone composite[J]. Chemical Engineering Research and Design, 2020, 153: 806-818. doi: 10.1016/j.cherd.2019.11.004