传粉蜜蜂介导的细菌耐药性传播及其生态与健康风险
Dissemination of Antimicrobial Resistance Mediated by Pollinating Honeybees and Its Ecological and Health Risks
-
摘要: 目前,抗菌药物的滥用造成了临床和环境中普遍存在的细菌耐药性问题,而细菌耐药性在环境中不断富集和传播扩散会通过食物网对生态安全及人体健康构成威胁。蜜蜂作为最重要的传粉昆虫,在世界各地广泛分布。然而,蜜蜂近年来频繁暴露于抗生素、杀虫剂和杀螨剂等药物,而野外杀虫剂的大量使用被认为是导致世界各地蜜蜂种群数量下降的关键因素。蜜蜂传花授粉的生物学特性使得蜂群与周围环境之间发生频繁的交流,可能导致蜜蜂传粉过程中蜂群与周围环境的交叉污染并发生细菌耐药性的传递。因此,蜜蜂可能成为生态系统中细菌耐药性传播的潜在“帮凶”。传粉蜜蜂介导下的细菌耐药性传播也将对蜂群健康、食品安全乃至生态系统安全构成威胁。本文综合国内外相关研究进展,系统分析了环境污染物暴露对蜜蜂以及蜜蜂肠道耐药基因组的潜在影响,并详细阐述了传粉蜜蜂介导下的细菌耐药性的传播,总结了蜜蜂主要通过蜜蜂-蜜蜂、蜜蜂-植物以及蜜蜂-环境的途径促进细菌耐药性的传播。最后,探讨了蜜蜂介导的细菌耐药性传播对蜂群健康、生态环境以及人体健康的潜在影响。Abstract: At present, the abuse of antimicrobial drugs has caused widespread problem of bacterial resistance in the clinic and environment, and the continuous enrichment and spread of bacterial resistance in the environment can pose a threat to ecological safety and human health through the food web. Honeybees, as the most important pollinator, are widely distributed throughout the world. However, honeybees have been frequently exposed to antibiotics, insecticides, acaricides, and other drugs in recent years, and the extensive application of outdoor insecticides is considered to be the key factor in the decline of honeybee populations worldwide. The biological characteristic of honeybee pollination enables frequent communication between honeybee colonies and the surrounding environment, which may lead to cross-contamination between honeybee colonies and the surrounding environment and transmission of bacterial resistance during honeybee pollination. Therefore, honeybees could be a potential "accomplice" in the spread of antimicrobial resistance in ecosystems. The dissemination of antimicrobial resistance mediated by pollinating honeybees will also pose a threat to colony health, food safety and even ecosystem security. In this review, we synthesized relevant research progress at home and abroad to analyse the potential effects of environmental pollutants exposure on honeybees and their gut resistome. The dissemination routes of antimicrobial resistance mediated by pollinating honeybees were described in detail. We summarized that honeybees transmit antimicrobial resistance mainly through the honeybee-honeybee, honeybee-plant and honeybee-surrounding environment routes. Finally, we explored the potential impact of honeybee-mediated dissemination of antimicrobial resistance on honeybee colony health, ecological environment and human health.
-
Key words:
- antibiotic resistance bacteria /
- resistome /
- honeybee /
- ecological risk /
- drug residues /
- dissemination route
-
World Health Organization (WHO). Antimicrobial resistance:Global report on surveillance[J]. Australasian Medical Journal, 2014, 7:237 O'Neill J. Tackling drug-resistant infections globally:Final report and recommendations, the review on antimicrobial resistance[R]. London:HM Government and the Wellcome Trust, 2016 Loncaric I, Kübber-Heiss A, Posautz A, et al. Characterization of methicillin-resistant Staphylococcus spp. carrying the mecC gene, isolated from wildlife[J]. The Journal of Antimicrobial Chemotherapy, 2013, 68(10):2222-2225 Drobni M, Bonnedahl J, Hernandez J, et al. Vancomycin-resistant Enterococci, point barrow, Alaska, USA[J]. Emerging Infectious Diseases, 2009, 15(5):838-839 Weis A M, Storey D B, Taff C C, et al. Genomic comparison of Campylobacter spp. and their potential for zoonotic transmission between birds, primates, and livestock[J]. Applied and Environmental Microbiology, 2016, 82(24):7165-7175 Wang X M, Wang Y, Wang Y, et al. Emergence of the colistin resistance gene mcr-1 and its variant in several uncommon species of Enterobacteriaceae from commercial poultry farm surrounding environments[J]. Veterinary Microbiology, 2018, 219:161-164 Wannigama D L, Dwivedi R, Zahraei-Ramazani A. Prevalence and antibiotic resistance of Gram-negative pathogenic bacteria species isolated from Periplaneta americana and Blattella germanica in Varanasi, India[J]. Journal of Arthropod-Borne Diseases, 2013, 8(1):10-20 Zhu G B, Wang X M, Yang T, et al. Air pollution could drive global dissemination of antibiotic resistance genes[J]. The ISME Journal, 2021, 15(1):270-281 Wang F H, Qiao M, Su J Q, et al. High throughput profiling of antibiotic resistance genes in urban park soils with reclaimed water irrigation[J]. Environmental Science&Technology, 2014, 48(16):9079-9085 Kampouris I D, Klümper U, Agrawal S, et al. Treated wastewater irrigation promotes the spread of antibiotic resistance into subsoil pore-water[J]. Environment International, 2021, 146:106190 Udikovic-Kolic N, Wichmann F, Broderick N A, et al. Bloom of resident antibiotic-resistant bacteria in soil following manure fertilization[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(42):15202-15207 Zhang Y J, Hu H W, Chen Q L, et al. Transfer of antibiotic resistance from manure-amended soils to vegetable microbiomes[J]. Environment International, 2019, 130:104912 Verraes C, van Boxstael S, van Meervenne E, et al. Antimicrobial resistance in the food chain:A review[J]. International Journal of Environmental Research and Public Health, 2013, 10(7):2643-2669 Rossi F, Rizzotti L, Felis G E, et al. Horizontal gene transfer among microorganisms in food:Current knowledge and future perspectives[J]. Food Microbiology, 2014, 42:232-243 Zurek L, Ghosh A. Insects represent a link between food animal farms and the urban environment for antibiotic resistance traits[J]. Applied and Environmental Microbiology, 2014, 80(12):3562-3567 Milanovic V, Osimani A, Pasquini M, et al. Getting insight into the prevalence of antibiotic resistance genes in specimens of marketed edible insects[J]. International Journal of Food Microbiology, 2016, 227:22-28 Roncolini A, Cardinali F, Aquilanti L, et al. Investigating antibiotic resistance genes in marketed ready-to-eat small crickets ( Acheta domesticus )[J]. Journal of Food Science, 2019, 84(11):3222-3232 Potts S G, Imperatriz-Fonseca V, Ngo H T, et al. Safeguarding pollinators and their values to human well-being[J]. Nature, 2016, 540(7632):220-229 Powney G D, Carvell C, Edwards M, et al. Widespread losses of pollinating insects in Britain[J]. Nature Communications, 2019, 10(1):1018 Kemper N. Veterinary antibiotics in the aquatic and terrestrial environment[J]. Ecological Indicators, 2008, 8(1):1-13 El-Nahhal Y, El-Dahdouh N, Hamdona N, et al. Toxicological data of some antibiotics and pesticides to fish, mosquitoes, cyanobacterial mats and to plants[J]. Data in Brief, 2016, 6:871-880 Pan L X, Feng X X, Cao M, et al. Determination and distribution of pesticides and antibiotics in agricultural soils from Northern China[J]. RSC Advances, 2019, 9(28):15686-15693 Hakami B A. Impacts of soil and water pollution on food safety and health risks[J]. International Journal of Civil Engineering and Technology, 2015, 6(11):32-38 Xie H J, Wang X P, Chen J W, et al. Occurrence, distribution and ecological risks of antibiotics and pesticides in coastal waters around Liaodong Peninsula, China[J]. The Science of the Total Environment, 2019, 656:946-951 Mullin C A, Frazier M, Frazier J L, et al. High levels of miticides and agrochemicals in North American apiaries:Implications for honey bee health[J]. PLoS One, 2010, 5(3):e9754 Pruden A, Pei R T, Storteboom H, et al. Antibiotic resistance genes as emerging contaminants:Studies in northern Colorado[J]. Environmental Science&Technology, 2006, 40(23):7445-7450 段宇婧,吴新颜,陈则友,等.人体肠道耐药基因组的研究进展[J].生态毒理学报, 2020, 15(4):1-10 Duan Y J, Wu X Y, Chen Z Y, et al. Advances in human gut resistome[J]. Asian Journal of Ecotoxicology, 2020, 15(4):1-10(in Chinese)
Nadeem S F, Gohar U F, Tahir S F, et al. Antimicrobial resistance:More than 70 years of war between humans and bacteria[J]. Critical Reviews in Microbiology, 2020, 46(5):578-599 Dantas G, Sommer M. How to fight back against antibiotic resistance[J]. American Scientist, 2014, 102(1):42 Waite R, Jackson S, Thompson H. Preliminary investigations into possible resistance to oxytetracycline in Melissococcus plutonius , a pathogen of honeybee larvae[J]. Letters in Applied Microbiology, 2003, 36(1):20-24 Alippi A M. Characterization of isolates of Paenibacillus larvae with biochemical type and oxytetracycline resistance[J]. Revista Argentina De Microbiologia, 1996, 28(4):197-203 Miyagi T, Peng C Y, Chuang R Y, et al. Verification of oxytetracycline-resistant American foulbrood pathogen Paenibacillus larvae in the United States[J]. Journal of Invertebrate Pathology, 2000, 75(1):95-96 Murray K D, Aronstein K A. Oxytetracycline-resistance in the honey bee pathogen Paenibacillus larvae is encoded on novel plasmid pMA67[J]. Journal of Apicultural Research, 2006, 45(4):207-214 Murray K D, Aronstein K A, de León J H. Analysis of pMA67, a predicted rolling-circle replicating, mobilizable, tetracycline-resistance plasmid from the honey bee pathogen, Paenibacillus larvae[J]. Plasmid, 2007, 58(2):89-100 Ebrahimi A, Lotfalian S. Isolation and antibiotic resistance patterns of Escherichia coli and coagulase positive Staphylococcus aureus from the digestive tract of honey bees[J]. Iranian Journal of Veterinary Research, 2005, 6:51-97 Kacániová M, Gasper J, Brindza J, et al. Bacteria of Apis mellifera Gastrointestinal Tract:Counts, Identification and Their Antibiotic Resistance[M]//Agrobiodiversity for Improving Nutrition, Health and Life Quality. Slovak University of Agriculture in Nitra, Slovakia, 2017:210-215 Kacániová M, Gasper J, Terentjeva M, et al. Antibacterial activity of bees gut Lactobacilli against Paenibacillus larvae in vitro [J]. Advanced Research in Life Sciences, 2018, 2(1):7-10 Ludvigsen J, Amdam G V, Rudi K, et al. Detection and characterization of streptomycin resistance (strA-strB) in a honeybee gut symbiont ( Snodgrassella alvi ) and the associated risk of antibiotic resistance transfer[J]. Microbial Ecology, 2018, 76(3):588-591 郭艾云,鲍艳宇,周启星.土壤农药污染与细菌农药-抗生素交叉抗性研究进展[J].微生物学通报, 2020, 47(9):2984-2995 Guo A Y, Bao Y Y, Zhou Q X. Advances in soil pesticide contamination and bacterial pesticide-antibiotic cross-resistance[J]. Microbiology China, 2020, 47(9):2984-2995(in Chinese)
Arismendi N L, Reyes M, Miller S A, et al. Infection of' Candidatus Phytoplasma ulmi'reduces the protein content and alters the activity of detoxifying enzymes in Amplicephalus curtulus [J]. Entomologia Experimentalis et Applicata, 2015, 157(3):334-345 Soltani A, Vatandoost H, Oshaghi M A, et al. The role of midgut symbiotic bacteria in resistance of Anopheles stephensi (Diptera:Culicidae) to organophosphate insecticides[J]. Pathogens and Global Health, 2017, 111(6):289-296 Pietri J E, Liang D S. The links between insect symbionts and insecticide resistance:Causal relationships and physiological tradeoffs[J]. Annals of the Entomological Society of America, 2018, 111(3):92-97 Wu Y Q, Zheng Y F, Chen Y N, et al. Honey bee ( Apis mellifera ) gut microbiota promotes host endogenous detoxification capability via regulation of P450 gene expression in the digestive tract[J]. Microbial Biotechnology, 2020, 13(4):1201-1212 Zheng H, Steele M I, Leonard S P, et al. Honey bees as models for gut microbiota research[J]. Lab Animal, 2018, 47(11):317-325 Guo M T, Yuan Q B, Yang J. Distinguishing effects of ultraviolet exposure and chlorination on the horizontal transfer of antibiotic resistance genes in municipal wastewater[J]. Environmental Science&Technology, 2015, 49(9):5771-5778 Zhang Y, Gu A Z, He M, et al. Subinhibitory concentrations of disinfectants promote the horizontal transfer of multidrug resistance genes within and across genera[J]. Environmental Science&Technology, 2017, 51(1):570-580 Berendonk T U, Manaia C M, Merlin C, et al. Tackling antibiotic resistance:The environmental framework[J]. Nature Reviews Microbiology, 2015, 13(5):310-317 Jun H, Kurenbach B, Aitken J, et al. Effects of sub-lethal concentrations of copper ammonium acetate, pyrethrins and atrazine on the response of Escherichia coli to antibiotics[J]. F1000Research, 2019, 8:32 Rangasamy K, Athiappan M, Devarajan N, et al. Emergence of multi drug resistance among soil bacteria exposing to insecticides[J]. Microbial Pathogenesis, 2017, 105:153-165 Kurenbach B, Marjoshi D, Amábile-Cuevas C F, et al. Sublethal exposure to commercial formulations of the herbicides dicamba, 2,4-dichlorophenoxyacetic acid, and glyphosate cause changes in antibiotic susceptibility in Escherichia coli and Salmonella enterica serovar Typhimurium[J]. mBio, 2015, 6(2):e00009-e00015 Lau C H, van Engelen K, Gordon S, et al. Novel antibiotic resistance determinants from agricultural soil exposed to antibiotics widely used in human medicine and animal farming[J]. Applied and Environmental Microbiology, 2017, 83(16):e00989-e00917 Anjum R, Grohmann E, Malik A. Molecular characterization of conjugative plasmids in pesticide tolerant and multi-resistant bacterial isolates from contaminated alluvial soil[J]. Chemosphere, 2011, 84(1):175-181 Motta E V S, Raymann K, Moran N A. Glyphosate perturbs the gut microbiota of honey bees[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(41):10305-10310 Raymann K, Shaffer Z, Moran N A. Antibiotic exposure perturbs the gut microbiota and elevates mortality in honeybees[J]. PLoS Biology, 2017, 15(3):e2001861 Raymann K, Bobay L M, Moran N A. Antibiotics reduce genetic diversity of core species in the honeybee gut microbiome[J]. Molecular Ecology, 2018, 27(8):2057-2066 Kakumanu M L, Reeves A M, Anderson T D, et al. Honey bee gut microbiome is altered by in-hive pesticide exposures[J]. Frontiers in Microbiology, 2016, 7:1255 Liu Y J, Qiao N H, Diao Q Y, et al. Thiacloprid exposure perturbs the gut microbiota and reduces the survival status in honeybees[J]. Journal of Hazardous Materials, 2020, 389:121818 Ji X L, Shen Q H, Liu F, et al. Antibiotic resistance gene abundances associated with antibiotics and heavy metals in animal manures and agricultural soils adjacent to feedlots in Shanghai; China[J]. Journal of Hazardous Materials, 2012, 235-236:178-185 Wang Q, Mao D Q, Mu Q H, et al. Enhanced horizontal transfer of antibiotic resistance genes in freshwater microcosms induced by an ionic liquid[J]. PLoS One, 2015, 10(5):e0126784 Xu Y, Xu J, Mao D Q, et al. Effect of the selective pressure of sub-lethal level of heavy metals on the fate and distribution of ARGs in the catchment scale[J]. Environmental Pollution, 2017, 220(Pt B):900-908 Lu J, Jin M, Nguyen S H, et al. Non-antibiotic antimicrobial triclosan induces multiple antibiotic resistance through genetic mutation[J]. Environment International, 2018, 118:257-265 Zhang H P, Chen S Y, Zhang Q K, et al. Fungicides enhanced the abundance of antibiotic resistance genes in greenhouse soil[J]. Environmental Pollution, 2020, 259:113877 Penesyan A, Nagy S S, Kjelleberg S, et al. Rapid microevolution of biofilm cells in response to antibiotics[J]. NPJ Biofilms and Microbiomes, 2019, 5(1):34 Kwong W K, Moran N A. Gut microbial communities of social bees[J]. Nature Reviews Microbiology, 2016, 14(6):374-384 Ludvigsen J, Porcellato D, L'Abée-Lund T M, et al. Geographically widespread honeybee-gut symbiont subgroups show locally distinct antibiotic-resistant patterns[J]. Molecular Ecology, 2017, 26(23):6590-6607 Takamatsu D, Yoshida E, Watando E, et al. A frameshift mutation in the rRNA large subunit methyltransferase gene rlmAⅡ determines the susceptibility of a honey bee pathogen Melissococcus plutonius to mirosamicin[J]. Environmental Microbiology, 2018, 20(12):4431-4443 Hughes D, Andersson D I. Evolutionary trajectories to antibiotic resistance[J]. Annual Review of Microbiology, 2017, 71:579-596 Tian B Y, Fadhil N H, Powell J E, et al. Long-term exposure to antibiotics has caused accumulation of resistance determinants in the gut microbiota of honeybees[J]. mBio, 2012, 3(6):e00377-e00312 Gullberg E, Cao S, Berg O G, et al. Selection of resistant bacteria at very low antibiotic concentrations[J]. PLoS Pathogens, 2011, 7(7):e1002158 Gao Q, Dong Q, Wu L W, et al. Environmental antibiotics drives the genetic functions of resistome dynamics[J]. Environment International, 2020, 135:105398 Jutkina J, Rutgersson C, Flach C F, et al. An assay for determining minimal concentrations of antibiotics that drive horizontal transfer of resistance[J]. The Science of the Total Environment, 2016, 548-549:131-138 Twiss E, Coros A M, Tavakoli N P, et al. Transposition is modulated by a diverse set of host factors in Escherichia coli and is stimulated by nutritional stress[J]. Molecular Microbiology, 2005, 57(6):1593-1607 Hinnebusch B J, Rosso M L, Schwan T G, et al. High-frequency conjugative transfer of antibiotic resistance genes to Yersinia pestis in the flea midgut[J]. Molecular Microbiology, 2002, 46(2):349-354 Zhang Y, Gu A Z, Cen T Y, et al. Sub-inhibitory concentrations of heavy metals facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes in water environment[J]. Environmental Pollution, 2018, 237:74-82 Qiu Z G, Yu Y M, Chen Z L, et al. Nanoalumina promotes the horizontal transfer of multiresistance genes mediated by plasmids across genera[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(13):4944-4949 Dong H, Chen Y L, Wang J, et al. Interactions of microplastics and antibiotic resistance genes and their effects on the aquaculture environments[J]. Journal of Hazardous Materials, 2021, 403:123961 Wang K, Li J H, Zhao L W, et al. Gut microbiota protects honey bees ( Apis mellifera L.) against polystyrene microplastics exposure risks[J]. Journal of Hazardous Materials, 2021, 402:123828 Li J, Zhang K N, Zhang H. Adsorption of antibiotics on microplastics[J]. Environmental Pollution, 2018, 237:460-467 Pei R T, Cha J, Carlson K H, et al. Response of antibiotic resistance genes (ARG) to biological treatment in dairy lagoon water[J]. Environmental Science&Technology, 2007, 41(14):5108-5113 Lin H, Zhang J, Chen H J, et al. Effect of temperature on sulfonamide antibiotics degradation, and on antibiotic resistance determinants and hosts in animal manures[J]. The Science of the Total Environment, 2017, 607-608:725-732 Sun W, Qian X, Gu J, et al. Mechanism and effect of temperature on variations in antibiotic resistance genes during anaerobic digestion of dairy manure[J]. Scientific Reports, 2016, 6:30237 Ma Z, Wu H H, Zhang K S, et al. Long-term low dissolved oxygen accelerates the removal of antibiotics and antibiotic resistance genes in swine wastewater treatment[J]. Chemical Engineering Journal, 2018, 334:630-637 Xue G, Diao R Q, Jiang M J, et al. Significant effect of pH on tetracycline resistance genes reduction during sludge thermal hydrolysis treatment[J]. Waste Management, 2021, 124:36-45 钱燕云,徐莉柯,苏超,等.初始pH对厌氧环境下污泥中抗生素抗性基因行为特征的影响[J].生态毒理学报, 2015, 10(5):47-55 Qian Y Y, Xu L K, Su C, et al. Effect of initial pH on antibiotic resistance genes behavior during anaerobic treatment of sludge[J]. Asian Journal of Ecotoxicology, 2015, 10(5):47-55(in Chinese)
MacFadden D R, McGough S F, Fisman D, et al. Antibiotic resistance increases with local temperature[J]. Nature Climate Change, 2018, 8(6):510-514 Burnham J P. Climate change and antibiotic resistance:A deadly combination[J]. Therapeutic Advances in Infectious Disease, 2021, 8:2049936121991374 Li X D, Chen Y H, Liu C, et al. Eutrophication and related antibiotic resistance of Enterococci in the Minjiang River, China[J]. Microbial Ecology, 2020, 80(1):1-13 Garner E, Wallace J S, Argoty G A, et al. Metagenomic profiling of historic Colorado Front Range flood impact on distribution of riverine antibiotic resistance genes[J]. Scientific Reports, 2016, 6:38432 Zhang P Y, Xu P P, Xia Z J, et al. Combined treatment with the antibiotics kanamycin and streptomycin promotes the conjugation of Escherichia coli [J]. FEMS Microbiology Letters, 2013, 348(2):149-156 Xiang Q, Chen Q L, Zhu D, et al. Spatial and temporal distribution of antibiotic resistomes in a peri-urban area is associated significantly with anthropogenic activities[J]. Environmental Pollution, 2018, 235:525-533 Ludvigsen J, Rangberg A, Avershina E, et al. Shifts in the midgut/pyloric microbiota composition within a honey bee apiary throughout a season[J]. Microbes and Environments, 2015, 30(3):235-244 Clark T B. Spiroplasmas:Diversity of arthropod reservoirs and host-parasite relationships[J]. Science, 1982, 217(4554):57-59 Kešnerová L, Emery O, Troilo M, et al. Gut microbiota structure differs between honeybees in winter and summer[J]. The ISME Journal, 2020, 14(3):801-814 Cenci-Goga B T, Sechi P, Karama M, et al. Cross-sectional study to identify risk factors associated with the occurrence of antimicrobial resistance genes in honey bees Apis mellifera in Umbria , Central Italy[J]. Environmental Science and Pollution Research International, 2020, 27(9):9637-9645 David A, Botías C, Abdul-Sada A, et al. Widespread contamination of wildflower and bee-collected pollen with complex mixtures of neonicotinoids and fungicides commonly applied to crops[J]. Environment International, 2016, 88:169-178 Mitchell E A D, Mulhauser B, Mulot M, et al. A worldwide survey of neonicotinoids in honey[J]. Science, 2017, 358(6359):109-111 Wang X R, Goulson D, Chen L Z, et al. Occurrence of neonicotinoids in Chinese apiculture and a corresponding risk exposure assessment[J]. Environmental Science&Technology, 2020, 54(8):5021-5030 Rundl f M, Andersson G K, Bommarco R, et al. Seed coating with a neonicotinoid insecticide negatively affects wild bees[J]. Nature, 2015, 521(7550):77-80 Doughty S W, Goodman R, Luck J. Evaluating alternative antibiotics for control of European Foulbrood Disease[R]. Rural Industries Research and Development Corporation, 2004 Sanchez-Bayo F, Goka K. Pesticide residues and bees:A risk assessment[J]. PLoS One, 2014, 9(4):e94482 Jabot C, Fieu M, Giroud B, et al. Trace-level determination of pyrethroid, neonicotinoid and carboxamide pesticides in beeswax using dispersive solid-phase extraction followed by ultra-high-performance liquid chromatography-tandem mass spectrometry[J]. International Journal of Environmental Analytical Chemistry, 2015, 95(3):240-257 Tsvetkov N, Samson-Robert O, Sood K, et al. Chronic exposure to neonicotinoids reduces honey bee health near corn crops[J]. Science, 2017, 356(6345):1395-1397 Edo C, Fernández-Alba A R, Vejsnæs F, et al. Honeybees as active samplers for microplastics[J]. The Science of the Total Environment, 2021, 767:144481 Federici E, Petroselli C, Montalbani E, et al. Airborne bacteria and persistent organic pollutants associated with an intense Saharan dust event in the Central Mediterranean[J]. The Science of the Total Environment, 2018, 645:401-410 Roberts T L. Cadmium and phosphorous fertilizers:The issues and the science[J]. Procedia Engineering, 2014, 83:52-59 Zaric N M, Ilijevic K, Stanisavljevic L, et al. Metal concentrations around thermal power plants, rural and urban areas using honeybees ( Apis mellifera L.) as bioindicators[J]. International Journal of Environmental Science and Technology, 2016, 13(2):413-422 Milivojevic T, Glavan G, Božic J, et al. Neurotoxic potential of ingested ZnO nanomaterials on bees[J]. Chemosphere, 2015, 120:547-554 Maxim L, Arnold G. Pesticides and bees[J]. EMBO Reports, 2014, 15(1):4 Djordjevic S P, Stokes H W, Roy Chowdhury P. Mobile elements, zoonotic pathogens and commensal bacteria:Conduits for the delivery of resistance genes into humans, production animals and soil microbiota[J]. Frontiers in Microbiology, 2013, 4:86 Fürst M A, McMahon D P, Osborne J L, et al. Disease associations between honeybees and bumblebees as a threat to wild pollinators[J]. Nature, 2014, 506(7488):364-366 Alger S A, Burnham P A, Boncristiani H F, et al. RNA virus spillover from managed honeybees ( Apis mellifera ) to wild bumblebees ( Bombus spp.)[J]. PLoS One, 2019, 14(6):e0217822 Card S D, Pearson M N, Clover G R G. Plant pathogens transmitted by pollen[J]. Australasian Plant Pathology, 2007, 36(5):455 Kim D R, Cho G, Jeon C W, et al. A mutualistic interaction between Streptomyces bacteria, strawberry plants and pollinating bees[J]. Nature Communications, 2019, 10:4802 Chen Q L, Cui H L, Su J Q, et al. Antibiotic resistomes in plant microbiomes[J]. Trends in Plant Science, 2019, 24(6):530-541 Zhang Z J, Huang M F, Qiu L F, et al. Diversity and functional analysis of Chinese bumblebee gut microbiota reveal the metabolic niche and antibiotic resistance variation of Gilliamella [J]. Insect Science, 2021, 28(2):302-314 Li S S, Wei R J, Lin Y Z, et al. A preliminary study of antibiotic resistance genes in domestic honey produced in China[J]. Foodborne Pathogens and Disease, 2021, 18(12):859-866 Aleklett K, Hart M, Shade A. The microbial ecology of flowers:An emerging frontier in phyllosphere research[J]. Botany, 2014, 92(4):253-266 Jacoby R, Peukert M, Succurro A, et al. The role of soil microorganisms in plant mineral nutrition-current knowledge and future directions[J]. Frontiers in Plant Science, 2017, 8:1617 Schweitzer J A, Bailey J K, Fischer D G, et al. Plant-soil-microorganism interactions:Heritable relationship between plant genotype and associated soil microorganisms[J]. Ecology, 2008, 89(3):773-781 Cerqueira F, Matamoros V, Bayona J, et al. Antibiotic resistance genes distribution in microbiomes from the soil-plant-fruit continuum in commercial Lycopersicon esculentum fields under different agricultural practices[J]. The Science of the Total Environment, 2019, 652:660-670 Zhou S Y, Zhu D, Giles M, et al. Phyllosphere of staple crops under pig manure fertilization, a reservoir of antibiotic resistance genes[J]. Environmental Pollution, 2019, 252(Pt A):227-235 Hannula S E, Zhu F, Heinen R, et al. Foliar-feeding insects acquire microbiomes from the soil rather than the host plant[J]. Nature Communications, 2019, 10:1254 Luo Y, Mao D Q, Rysz M, et al. Trends in antibiotic resistance genes occurrence in the Haihe River, China[J]. Environmental Science&Technology, 2010, 44(19):7220-7225 Yang F, Mao D, Zhou H, et al. Propagation of new delhi metallo-β -lactamase genes (blaNDM-1) from a wastewater treatment plant to its receiving river[J]. Environmental Science&Technology Letters, 2016, Thimmegowda G G, Mullen S, Sottilare K, et al. A field-based quantitative analysis of sublethal effects of air pollution on pollinators[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(34):20653-20661 Okamoto M, Kumagai M, Kanamori H, et al. Antimicrobial resistance genes in bacteria isolated from Japanese honey, and their potential for conferring macrolide and lincosamide resistance in the American foulbrood pathogen Paenibacillus larvae [J]. Frontiers in Microbiology, 2021, 12:667096 Bezirtzoglou E. Emerging antibiotic resistance in honey as a hazard for human health[J]. Journal of Bacteriology&Mycology:Open Access, 2016, 2(1):6-12 Tsekoura F, Alexopoulos A, Stefanis C, et al. Aerobic and anaerobic bacteriology of Greek honeys[C]. Patra, Greece:2nd International Congress on Bioprocesses in Food Industries (ICBF 2006), 2006 Kim D W, Cha C J. Antibiotic resistome from the One-Health perspective:Understanding and controlling antimicrobial resistance transmission[J]. Experimental&Molecular Medicine, 2021, 53(3):301-309 Orr M C, Hughes A C, Chesters D, et al. Global patterns and drivers of bee distribution[J]. Current Biology, 2021, 31(3):451-458 Goretti E, Pallottini M, Rossi R, et al. Heavy metal bioaccumulation in honey bee matrix, an indicator to assess the contamination level in terrestrial environments[J]. Environmental Pollution, 2020, 256:113388 Celli G, Maccagnani B. Honey bees as bioindicators of environmental pollution[J]. Bulletin of Insectology, 2003, 56(1):137-139 Dornhaus A, Klügl F, Oechslein C, et al. Benefits of recruitment in honey bees:Effects of ecology and colony size in an individual-based model[J]. Behavioral Ecology, 2006, 17(3):336-344
计量
- 文章访问数: 2745
- HTML全文浏览数: 2745
- PDF下载数: 120
- 施引文献: 0