蛋白质组学在环境毒理学中的研究进展

耿柠波, 任晓倩, 张海军, 曹蓉, 宋肖垚, 罗云, 张保琴, 陈吉平. 蛋白质组学在环境毒理学中的研究进展[J]. 生态毒理学报, 2020, 15(4): 88-98. doi: 10.7524/AJE.1673-5897.20190419001
引用本文: 耿柠波, 任晓倩, 张海军, 曹蓉, 宋肖垚, 罗云, 张保琴, 陈吉平. 蛋白质组学在环境毒理学中的研究进展[J]. 生态毒理学报, 2020, 15(4): 88-98. doi: 10.7524/AJE.1673-5897.20190419001
Geng Ningbo, Ren Xiaoqian, Zhang Haijun, Cao Rong, Song Xiaoyao, Luo Yun, Zhang Baoqin, Chen Jiping. A Review on the Application of Proteomic Approaches in Environmental Toxicology[J]. Asian Journal of Ecotoxicology, 2020, 15(4): 88-98. doi: 10.7524/AJE.1673-5897.20190419001
Citation: Geng Ningbo, Ren Xiaoqian, Zhang Haijun, Cao Rong, Song Xiaoyao, Luo Yun, Zhang Baoqin, Chen Jiping. A Review on the Application of Proteomic Approaches in Environmental Toxicology[J]. Asian Journal of Ecotoxicology, 2020, 15(4): 88-98. doi: 10.7524/AJE.1673-5897.20190419001

蛋白质组学在环境毒理学中的研究进展

    作者简介: 耿柠波(1985-),女,博士,副研究员,研究方向为环境毒理学,E-mail:gengningbo@dicp.ac.cn
    通讯作者: 张海军, E-mail: hjzhang@dicp.ac.cn 陈吉平, E-mail: chenjp@dicp.ac.cn
  • 基金项目:

    国家自然科学基金委联合重大研究计划资助项目(91543201);国家自然科学基金资助项目(21607152)

  • 中图分类号: X171.5

A Review on the Application of Proteomic Approaches in Environmental Toxicology

    Corresponding authors: Zhang Haijun, hjzhang@dicp.ac.cn ;  Chen Jiping, chenjp@dicp.ac.cn
  • Fund Project:
  • 摘要: 蛋白质组学是系统生物学的重要组成部分,它以整体、动态和定量的原则来研究各种蛋白质的功能,系统地分析生物体内蛋白质表达,蛋白-蛋白相互作用和翻译后修饰等特征,已成为后基因组时代不可或缺的分析工具。蛋白质组学技术具有高通量的特征,能实现对蛋白质的高效快捷的定量分析。将蛋白质组学技术应用于环境毒理学研究,可从蛋白水平上研究外源性化合物对机体的毒性作用机制,并从中筛选出具有较高特异型和高灵敏度的蛋白标志物,为污染物的健康风险评估提供新的技术手段。本文综述了蛋白质组学技术的主要研究方法、研究策略和在环境毒理学研究中的应用,重点讨论了蛋白质组学技术在重金属和有机化合物尤其是持久性有机污染物(POPs)毒性评估中的应用。
  • 加载中
  • Schmidt C W. TOX21:New dimensions of toxicity testing[J]. Environmental Health Perspectives, 2009, 117(8):A348-A353
    Andersen M E, Krewski D. Toxicity testing in the 21st Century:Bringing the vision to life[J]. Toxicological Sciences, 2009, 107(2):324-330
    Kim M S, Pinto S M, Getnet D, et al. A draft map of the human proteome[J]. Nature, 2014, 509(7502):575-581
    Pandey A, Mann M. Proteomics to study genes and genomes[J]. Nature, 2000, 405(6788):837-846
    Mallick P, Kuster B. Proteomics:A pragmatic perspective[J]. Nature Biotechnology, 2010, 28:695
    Wilkins M R, Pasquali C, Appel R D, et al. From proteins to proteomes:Large scale protein identification by two-dimensional electrophoresis and amino acid analysis[J]. Biotechnology, 1996, 14(1):61-65
    Gorg A, Weiss W, Dunn M J. Current two-dimensional electrophoresis technology for proteomics[J]. Proteomics, 2004, 4(12):3665-3685
    Wellner D, Panneerselvam C, Horecker B L. Sequencing of peptides and proteins with blocked N-terminal amino acids:N-acetylserine or N-acetylthreonine[J]. Proceedings of the National Academy of Sciences of the United States of America, 1990, 87(5):1947-1949
    Fenn J B, Mann M, Meng C K, et al. Electrospray ionization for mass spectrometry of large biomolecules[J]. Science, 1989, 246(4926):64-71
    Hillenkamp F, Karas M. Mass Spectrometry of Peptides and Proteins by Matrix-Assisted Ultraviolet Laser Desorption/Ionization[M]//Methods in Enzymology. Academic Press, 1990:280-295
    Steen H, Mann M. The abc's (and xyz's) of peptide sequencing[J]. Nature Reviews Molecular Cell Biology, 2004, 5:699-711
    Aebersold R, Mann M. Mass spectrometry-based proteomics[J]. Nature, 2003, 422(6928):198-207
    Han X, Aslanian A, Yates J R. Mass spectrometry for proteomics[J]. Current Opinion in Chemical Biology, 2008, 12(5):483-490
    Gallien S, Duriez E, Crone C, et al. Targeted proteomic quantification on quadrupole-Orbitrap mass spectrometer[J]. Molecular & Cellular Proteomics, 2012, 11(12):1709-1723
    Chait B T. Mass spectrometry:Bottom-up or top-down?[J]. Science, 2006, 314(5796):65-66
    Catherman A D, Skinner O S, Kelleher N L. Top down proteomics:Facts and perspectives[J]. Biochemical and Biophysical Research Communications, 2014, 445(4):683-693
    Doerr A. Mass spectrometry-based targeted proteomics[J]. Nature Methods, 2012, 10:23
    Company R, Ant ú nez O, Cosson R P, et al. Protein expression profiles in Bathymodiolus azoricus exposed to cadmium[J]. Ecotoxicology and Environmental Safety, 2019, 171:621-630
    Lu Z, Wang S, Shan X, et al. Differential biological effects in two pedigrees of clam Ruditapes philippinarum exposed to cadmium using iTRAQ-based proteomics[J]. Environmental Toxicology and Pharmacology, 2019, 65:66-72
    Luo L, Zhang Q, Kong X, et al. Differential effects of zinc exposure on male and female oysters (Crassostrea angulata) as revealed by label-free quantitative proteomics[J]. Environmental Toxicology and Chemistry, 2017, 36(10):2602-2613
    Le V Q A, Ahn J Y, Heo M Y, et al. Proteomic profiles of Daphnia magna exposed to lead (Ⅱ) acetate trihydrate and atrazine[J]. Genes & Genomics, 2017, 39(8):887-895
    Wang H, Wang S, Cui D, et al. iTRAQ-based proteomic technology revealed protein perturbations in intestinal mucosa from manganese exposure in rat models[J]. RSC Advances, 2017, 7(50):31745-31758
    Lee E K, Shin Y J, Park E Y, et al. Selenium-binding protein 1:A sensitive urinary biomarker to detect heavy metal-induced nephrotoxicity[J]. Archives of Toxicology, 2017, 91(4):1635-1648
    Zhao W J, Zhang Z J, Zhu Z Y, et al. Time-dependent response of A549 cells upon exposure to cadmium[J]. Journal of Applied Toxicology, 2018, 38(11):1437-1446
    Kumar V, Karri V, Edwin M, et al. A system-based comparative proteomics approach to investigate heavy metals mixtures toxicity mechanism relates to the neurodegeneration on hippocampal cell line[J]. Toxicology Letters, 2018, 295(1):S203-S203
    Karri V, Ramos D, Martinez J B, et al. Differential protein expression of hippocampal cells associated with heavy metals (Pb, As, and MeHg) neurotoxicity:Deepening into the molecular mechanism of neurodegenerative diseases[J]. Journal of Proteomics, 2018, 187:106-125
    Chasapis C T, Andreini C, Georgiopolou A K, et al. Identification of the zinc, copper and cadmium metalloproteome of the protozoon Tetrahymena thermophila by systematic bioinformatics[J]. Archives of Microbiology, 2017, 199(8):1141-1149
    Son J, Lee Y S, Lee S E, et al. Bioavailability and toxicity of copper, manganese, and nickel in Paronychiurus kimi (Collembola), and biomarker discovery for their exposure[J]. Archives of Environmental Contamination and Toxicology, 2017, 72(1):142-152
    Baig M A, Ahmad J, Bagheri R, et al. Proteomic and ecophysiological responses of soybean (Glycine max L.) root nodules to Pb and Hg stress[J]. BMC Plant Biology, 2018, 18(1):283
    Gutsch A, Keunen E, Guerriero G, et al. Long-term cadmium exposure influences the abundance of proteins that impact the cell wall structure in Medicago sativa stems[J]. Plant Biology, 2018, 20(6):1023-1035
    Wang X H, Wang Q, Nie Z W, et al. Ralstonia eutropha Q2-8 reduces wheat plant above-ground tissue cadmium and arsenic uptake and increases the expression of the plant root cell wall organization and biosynthesis-related proteins[J]. Environmental Pollution, 2018, 242:1488-1499
    Georgiadou E C, Kowalska E, Patla K, et al. Influence of heavy metals (Ni, Cu and Zn) on nitro-oxidative stress responses, proteome regulation and allergen production in basil (Ocimum basilicum L.) plants[J]. Frontiers in Plant Science, 2018, 9:862
    Zeng F, Wu X, Qiu B, et al. Physiological and proteomic alterations in rice (Oryza sativa L.) seedlings under hexavalent chromium stress[J]. Planta, 2014, 240(2):291-308
    Cheng Z W, Chen Z Y, Yan X, et al. Integrated physiological and proteomic analysis reveals underlying response and defense mechanisms of Brachypodium distachyon seedling leaves under osmotic stress, cadmium and their combined stresses[J]. Journal of Proteomics, 2018, 170:1-13
    Liu H, Weisman D, Tang L, et al. Stress signaling in response to polycyclic aromatic hydrocarbon exposure in Arabidopsis thaliana involves a nucleoside diphosphate kinase, NDPK-3[J]. Planta, 2015, 241(1):95-107
    Shen Y, Du J, Yue L, et al. Proteomic analysis of plasma membrane proteins in wheat roots exposed to phenanthrene[J]. Environmental Science and Pollution Research, 2016, 23(11):10863-10871
    Shen Y, Li J, Gu R, et al. Proteomic analysis for phenanthrene-elicited wheat chloroplast deformation[J]. Environment International, 2019, 123:273-281
    Skogland Enerstvedt K, Sydnes M O, Pampanin D M. Study of the plasma proteome of Atlantic cod (Gadus morhua):Effect of exposure to two PAHs and their corresponding diols[J]. Chemosphere, 2017, 183:294-304
    Filis P, Walker N, Robertson L, et al. Long-term exposure to chemicals in sewage sludge fertilizer alters liver lipid content in females and cancer marker expression in males[J]. Environment International, 2019, 124:98-108
    Nam T H, Jeon H J, Mo H H, et al. Determination of biomarkers for polycyclic aromatic hydrocarbons (PAHs) toxicity to earthworm (Eisenia fetida)[J]. Environmental Geochemistry and Health, 2015, 37(6):943-951
    Shi X, Yeung L W Y, Lam P K S, et al. Protein profiles in zebrafish (Danio rerio) embryos exposed to perfluorooctane sulfonate[J]. Toxicological Sciences, 2009, 110(2):334-340
    Dorts J, Kestemont P, Marchand P A, et al. Ecotoxicoproteomics in gills of the sentinel fish species, Cottus gobio, exposed to perfluorooctane sulfonate (PFOS)[J]. Aquatic Toxicology, 2011, 103(1):1-8
    Roland K, Kestemont P, Hénuset L, et al. Proteomic responses of peripheral blood mononuclear cells in the European eel (Anguilla anguilla) after perfluorooctane sulfonate exposure[J]. Aquatic Toxicology, 2013, 128-129:43-52
    Roland K, Kestemont P, Loos R, et al. Looking for protein expression signatures in European eel peripheral blood mononuclear cells after in vivo exposure to perfluorooctane sulfonate and a real world field study[J]. Science of the Total Environment, 2014, 468-469:958-967
    Zhang Y Y, Tang L L, Zheng B, et al. Protein profiles of cardiomyocyte differentiation in murine embryonic stem cells exposed to perfluorooctane sulfonate[J]. Journal of Applied Toxicology, 2016, 36(5):726-740
    Tan F, Jin Y, Liu W, et al. Global liver proteome analysis using iTRAQ labeling quantitative proteomic technology to reveal biomarkers in mice exposed to perfluorooctane sulfonate (PFOS)[J]. Environmental Science & Technology, 2012, 46(21):12170-12177
    Huang Q, Zhang J, Peng S, et al. Proteomic analysis of perfluorooctane sulfonate-induced apoptosis in human hepatic cells using the iTRAQ technique[J]. Journal of Applied Toxicology, 2014, 34(12):1342-1351
    Cui R, Zhang H, Guo X, et al. Proteomic analysis of cell proliferation in a human hepatic cell line (HL-7702) induced by perfluorooctane sulfonate using iTRAQ[J]. Journal of Hazardous Materials, 2015, 299:361-370
    Li M, Huo X, Pan Y, et al. Proteomic evaluation of human umbilical cord tissue exposed to polybrominated diphenyl ethers in an e-waste recycling area[J]. Environment International, 2018, 111:362-371
    Huang S, Cui Y, Guo X, et al. 2,2',4,4'-tetrabromodiphenyl ether disrupts spermatogenesis, impairs mitochondrial function and induces apoptosis of early leptotene spermatocytes in rats[J]. Reproductive Toxicology, 2015, 51:114-124
    Song J, Li Z H, He Y T, et al. Decabrominated diphenyl ether (BDE-209) and/or BDE-47 exposure alters protein expression in purified neural stem/progenitor cells determined by proteomics analysis[J]. International Journal of Developmental Neuroscience, 2014, 33:8-14
    Fong C C, Shi Y F, Yu W K, et al. iTRAQ-based proteomic profiling of the marine medaka (Oryzias melastigma) gonad exposed to BDE-47[J]. Marine Pollution Bulletin, 2014, 85(2):471-478
    Ji C, Wu H, Wei L, et al. Proteomic and metabolomic analysis reveal gender-specific responses of mussel Mytilus galloprovincialis to 2,2',4,4'-tetrabromodiphenyl ether (BDE 47)[J]. Aquatic Toxicology, 2013, 140-141:449-457
    Ji C, Wu H, Wei L, et al. Proteomic and metabolomic analysis of earth worm Eisenia fetida exposed to different concentrations of 2,2',4,4'-tetrabromodiphenyl ether[J]. Journal of Proteomics, 2013, 91:405-416
    Rasinger J D, Carroll T S, Maranghi F, et al. Low dose exposure to HBCD, CB-153 or TCDD induces histopathological and hormonal effects and changes in brain protein and gene expression in juvenile female BALB/c mice[J]. Reproductive Toxicology, 2018, 80:105-116
    Miller I, Serchi T, Cambier S, et al. Hexabromocyclododecane (HBCD) induced changes in the liver proteome of eu- and hypothyroid female rats[J]. Toxicology Letters, 2016, 245:40-51
    Miller I, Diepenbroek C, Rijntjes E, et al. Gender specific differences in the liver proteome of rats exposed to short term and low-concentration hexabromocyclododecane (HBCD)[J]. Toxicological Research, 2016, 5(5):1273-1283
    Rasinger J D, Carroll T S, Lundebye A K, et al. Cross-omics gene and protein expression profiling in juvenile female mice highlights disruption of calcium and zinc signalling in the brain following dietary exposure to CB-153, BDE-47, HBCD or TCDD[J]. Toxicology, 2014, 321:1-12
    Senthil Kumar S, Muthuselvam P, Pugalenthi V, et al. Toxicoproteomic analysis of human lung epithelial cells exposed to steel industry ambient particulate matter (PM) reveals possible mechanism of PM related carcinogenesis[J]. Environmental Pollution, 2018, 239:483-492
    Zhao C, Zhu L, Li R, et al. Omics approach reveals metabolic disorders associated with the cytotoxicity of airborne particulate matter in human lung carcinoma cells[J]. Environmental Pollution, 2019, 246:45-52
    Huang Q, Zhang J, Peng S, et al. Effects of water soluble PM2.5 extracts exposure on human lung epithelial cells (A549):A proteomic study[J]. Journal of Applied Toxicology, 2014, 34(6):675-687
    Luyten L J, Saenen N D, Janssen B G, et al. Air pollution and the fetal origin of disease:A systematic review of the molecular signatures of air pollution exposure in human placenta[J]. Environmental Research, 2018, 166:310-323
    Hincal F. Effects of exposure to air pollution and smoking on the placental aryl hydrocarbon hydroxylase (AHH) activity[J]. Archives of Environmental Health, 1986, 41(6):377-383
    Obolenskaya M Y, Teplyuk N M, Divi R L, et al. Human placental glutathione S-transferase activity and polycyclic aromatic hydrocarbon DNA adducts as biomarkers for environmental oxidative stress in placentas from pregnant women living in radioactivity- and chemically-polluted regions[J]. Toxicology Letters, 2010, 196(2):80-86
    Sorkun H C, Bir F, Akbulut M, et al. The effects of air pollution and smoking on placental cadmium, zinc concentration and metallothionein expression[J]. Toxicology, 2007, 238(1):15-22
    Kedryna T, Guminska M, Lucyna Z. Pyruvate kinase activity in the placentas of women living in polluted and unpolluted environments[J]. Medical Science Monitor, 2004, 10(12):CR672-CR678
    Bahr B L, Price M D, Merrill D, et al. Different expression of placental pyruvate kinase in normal, preeclamptic and intrauterine growth restriction pregnancies[J]. Placenta, 2014, 35(11):883-890
    Saenen N D, Vrijens K, Janssen B G, et al. Placental nitrosative stress and exposure to ambient air pollution during gestation:A population study[J]. American Journal of Epidemiology, 2016, 184(6):442-449
    Weldy C S, Liu Y, Liggitt H D, et al. In utero exposure to diesel exhaust air pollution promotes adverse intrauterine conditions, resulting in weight gain, altered blood pressure, and increased susceptibility to heart failure in adult mice[J]. PLoS One, 2014, 9(2):e88582
  • 加载中
计量
  • 文章访问数:  4250
  • HTML全文浏览数:  4250
  • PDF下载数:  159
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-04-19

蛋白质组学在环境毒理学中的研究进展

    通讯作者: 张海军, E-mail: hjzhang@dicp.ac.cn ;  陈吉平, E-mail: chenjp@dicp.ac.cn
    作者简介: 耿柠波(1985-),女,博士,副研究员,研究方向为环境毒理学,E-mail:gengningbo@dicp.ac.cn
  • 1. 中国科学院大连化学物理研究所, 中国科学院分离分析化学重点实验室, 大连 116023;
  • 2. 中国科学院大学, 北京 100049
基金项目:

国家自然科学基金委联合重大研究计划资助项目(91543201);国家自然科学基金资助项目(21607152)

摘要: 蛋白质组学是系统生物学的重要组成部分,它以整体、动态和定量的原则来研究各种蛋白质的功能,系统地分析生物体内蛋白质表达,蛋白-蛋白相互作用和翻译后修饰等特征,已成为后基因组时代不可或缺的分析工具。蛋白质组学技术具有高通量的特征,能实现对蛋白质的高效快捷的定量分析。将蛋白质组学技术应用于环境毒理学研究,可从蛋白水平上研究外源性化合物对机体的毒性作用机制,并从中筛选出具有较高特异型和高灵敏度的蛋白标志物,为污染物的健康风险评估提供新的技术手段。本文综述了蛋白质组学技术的主要研究方法、研究策略和在环境毒理学研究中的应用,重点讨论了蛋白质组学技术在重金属和有机化合物尤其是持久性有机污染物(POPs)毒性评估中的应用。

English Abstract

参考文献 (69)

目录

/

返回文章
返回